0% found this document useful (0 votes)
17 views4 pages

Termo

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
17 views4 pages

Termo

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

File:ejercicio 8.5.ESS.EES 8/03/2024 10:49:43 p. m.

Page 1
EES Ver. 8.400: #91: Educational version distributed by McGraw-Hill

P[3]=8
s[3]=s[2]
x[3]=Quality(Water;s=s[3];P=P[3])
h_s[3]=Enthalpy(Water;x=x[3];s=s[3])
h[3]=h[2]-x[3]*(h[2]-h_s[3])
P[1]=8000
T[1]=480
h[1]=Enthalpy(Water;T=T[1];P=P[1])
s[1]=Entropy(Water;T=T[1];P=P[1])
P[2]=700
s[2]=s[1]
h[2]=Enthalpy(Water;s=s[2];P=P[2])
P[4]=8
x[4]=0
h[4]=Enthalpy(Water;x=x[4];P=P[4])
v[4]=Volume(Water;x=x[4];P=P[4])
P[5]=700
h[5]=h[4]+v[4]*(P[5]-P[4])
P[6]=700
x[6]=0
h[6]=Enthalpy(Water;x=x[6];P=P[6])
v[6]=Volume(Water;x=x[6];P=P[6])
P[7]=8000
h[7]=h[6]+v[6]*(P[7]-P[6])
y*h[2]+(1-y)*h[5]=h[6]
W_t=(h[1]-h[2])+(1-y)*(h[2]-h[3])
W_b=(h[7]-h[6])+(1-y)*(h[5]-h[4])
Q_in=h[1]-h[7]
n_eficiencia=(W_t-W_b)/Q_in
W_cycle=W_t-W_b
W_neto=100,000
m_[1]=(W_neto*3600)/W_cycle

SOLUTION
Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees]
neficiencia = 0,3841 [%] Qin = 2643 [kW] W b = 8,644 [kW] W cycle = 1015 [kW]
W neto = 100 [kW] W t = 1024 [kW] y = 0,2036

10 potential unit problems were detected.

Arrays Table
hi Pi Ti si xi hs;i vi mi
[kJ/kg] [kpa] [°C] [(kJ/kg)K] [m 3/kg] [kg/s]

1 3349 8000 480 6,659 354,6


2 2742 700 6,659
3 2218 8 6,659 0,7946 2083
4 173,7 8 0 0,001008
5 174,4 700
6 697,3 700 0 0,001108
7 705,4 8000
File:Ejercicio 10.8.EES 8/03/2024 10:14:37 p. m. Page 1
EES Ver. 8.400: #91: Educational version distributed by McGraw-Hill

P[1]=7000
P[2]=P[1]
P[3]=P[2]

T[1]=500
T[2]=T[1]
T[3]=T[2]
h[1]=Enthalpy(Water;T=T[1];P=P[1])
h[2]=h[1]
h[3]=h[2]
s[1]=Entropy(Water;T=T[1];P=P[1])
s[2]=s[1]
s[3]=s[2]

P[4]=500
h[4]=h[3]
s[4]=s[3]

P[5]=500
s[5]=s[3]
x[5]=Quality(Water;s=s[5];P=P[5])
h[5]=Enthalpy(Water;x=x[5];s=s[5])

P[6]=5
T_sat[6]=T_sat(Water;P=P[6])
s[6]=s[5]
x[6]=Quality(Water;s=s[6];P=P[6])
h[6]=Enthalpy(Water;x=x[6];T=T_sat[6])

P[7]=500
x[7]=0
h[7]=Enthalpy(Water;x=x[7];P=P[7])
v[7]=Volume(Water;x=x[7];P=P[7])

P[8]=5,0
x[8]=0
h[8]=Enthalpy(Water;x=x[8];P=P[8])
v[8]=Volume(Water;x=x[8];P=P[8])

P[9]=7000
W_bomba[1]=v[8]*(P[9]-P[8])
h[9]=h[8]+W_bomba[1]
h[11]=h[9]

P[10]=7000
W_bomba[2]=v[7]*(P[10]-P[7])
h[10]=h[7]+W_bomba[2]

m[1]=15
Q_pmax=m[1]*(h[4]-h[7])

W_turbina=m[1]*(h[3]-h[6])
W_bombaentrada=m[1]*(W_bomba[1])
W_neto=(W_turbina-W_bombaentrada)

Q_entrada=m[1]*(h[1]-h[11])
File:Ejercicio 10.8.EES 8/03/2024 10:14:37 p. m. Page 2
EES Ver. 8.400: #91: Educational version distributed by McGraw-Hill

Q_p=0
p_u=(W_neto+Q_p)/Q_entrada

m[4]=(0,1)*(15)
m[5]=(0,7)*(15)
m[7]=m[4]+m[5]

Q_salida=(m[4]*h[4])+(m[5]*h[5])-(m[7]*h[7])

SOLUTION
Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees]
pu = 0,4076 Qentrada = 48986 [Kw] Qp = 0 [Kw] Qpmax = 41553 [Kw]
Qsalida = 26186 [Kw] W bombaentrada = 105,5 [kW] W neto = 19967 [kW] W turbina = 20072 [kW]

2 potential unit problems were detected.

Arrays Table
hi mi Pi si Ti Tsat;i vi Wbomba;i xi
[kJ/kg] [kg/s] [kpa] [(kJ/kg)K] [°C] [°C] [m 3/kg] [kW]

1 3411 15 7000 6,798 500 7,032


2 3411 7000 6,798 500 7,101
3 3411 7000 6,798 500
4 3411 1,5 500 6,798
5 2738 10,5 500 6,798 0,9952
6 2072 5 6,798 32,88 0,7985
7 640,3 12 500 0,001093 0
8 137,7 5 0,001005 0
9 144,8 7000
10 647,4 7000
11 144,8
File:ejercicio 10.5.EES 8/03/2024 10:03:00 p. m. Page 1
EES Ver. 8.400: #91: Educational version distributed by McGraw-Hill

P[1]=10
T_sat[1]=T_sat(Water;P=P[1])
h[1]=Enthalpy(Water;T=T_sat[1];P=P[1])
v[1]=Volume(Water;T=T_sat[1];P=P[1])
P[3]=1200
T_sat[3]=T_sat(Water;P=P[3])
h[3]=Enthalpy(Water;T=T_sat[3];P=P[3])
v[3]=Volume(Water;T=T_sat[3];P=P[3])
s[3]=Entropy(Water;T=T_sat[3];P=P[3])
P[2]=1200
s[1]=Entropy(Water;T=T_sat[1];P=P[1])
s[1]=s[2]
W_bomba[1]=v[1]*(P[2]-P[1])
h[2]=h[1]+W_bomba[1]
P[4]=15000
s[4]=s[3]
W_bomba[2]=v[3]*(P[4]-P[3])
h[4]=h[3]+W_bomba[2]
P[5]=15000
T[5]=600
h[5]=Enthalpy(Water;T=T[5];P=P[5])
s[5]=Entropy(Water;T=T[5];P=P[5])
P[6]=1200
s[6]=s[5]
T_sat[6]=T_sat(Water;P=P[6])
h[6]=Enthalpy(Water;s=s[6];P=P[6])
P[7]=10
s[7]=s[6]
x[7]=Quality(Water;P=P[7];s=s[6])
h[7]=Enthalpy(Water;x=x[7];P=P[7])
y=(h[3]-h[2])/(h[6]-h[2])
q_entrada=h[5]-h[4]
q_salida=(1-y)*(h[7]-h[1])
n_termica=1-q_salida/q_entrada

SOLUTION
Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees]
ntermica = 0,4632 [%] qentrada = 2767 [kJ/kg] qsalida = 1486 [kJ/kg] y = 0,2273

5 potential unit problems were detected.

Arrays Table
hi Pi Tsat;i vi si Wbomba;i Ti xi
[kJ/kg] [Kpa] [°C] [M3/Kg] [(kJ/kg)*K] [kJ/kg] [°C]

1 191,7 10 45,79 0,00101 0,6489 1,202


2 192,9 1200 0,6489 15,71
3 798,6 1200 188 0,001138 2,216
4 814,3 15000 2,216
5 3581 15000 6,677 600
6 2858 1200 188 6,677
7 2114 10 6,677 0,8037

You might also like