0% found this document useful (0 votes)
20 views99 pages

SD Jfet 2

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
20 views99 pages

SD Jfet 2

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 99

Semiconductor Devices

Junction Field-Effect Transistors: Part 2

M. B. Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering


Indian Institute of Technology Bombay

M. B. Patil, IIT Bombay


JFET I -V relationship
linear VG4
VG Gate
saturation
p+
0V 2a VD VG3

ID
Source Drain
p+
n-Si VG2
VG Gate VG1
L 0
0 VD

In the linear region, i.e., VD < VDsat ,


( "  #)
2 VD + Vbi − VG 3/2 Vbi − VG 3/2 (2aZ )
 
ID = G0 VD − (Vbi − VP ) − , G0 = × (qµn Nd ).
3 Vbi − VP Vbi − VP L

M. B. Patil, IIT Bombay


JFET I -V relationship
linear VG4
VG Gate
saturation
p+
0V 2a VD VG3

ID
Source Drain
p+
n-Si VG2
VG Gate VG1
L 0
0 VD

In the linear region, i.e., VD < VDsat ,


( "  #)
2 VD + Vbi − VG 3/2 Vbi − VG 3/2 (2aZ )
 
ID = G0 VD − (Vbi − VP ) − , G0 = × (qµn Nd ).
3 Vbi − VP Vbi − VP L
Pinch-off (saturation): VG − VD = VP → VDsat = VG − VP .

M. B. Patil, IIT Bombay


JFET I -V relationship
linear VG4
VG Gate
saturation
p+
0V 2a VD VG3

ID
Source Drain
p+
n-Si VG2
VG Gate VG1
L 0
0 VD

In the linear region, i.e., VD < VDsat ,


( "  #)
2 VD + Vbi − VG 3/2 Vbi − VG 3/2 (2aZ )
 
ID = G0 VD − (Vbi − VP ) − , G0 = × (qµn Nd ).
3 Vbi − VP Vbi − VP L
Pinch-off (saturation): VG − VD = VP → VDsat = VG − VP .
Substituting in the ID equation, we get
( "  #)
2 Vbi − VG 3/2

IDsat (VG ) = G0 (VG − VP ) − (Vbi − VP ) 1 − .
3 Vbi − VP

M. B. Patil, IIT Bombay


JFET I -V relationship
linear VG4
VG Gate
saturation
p+
0V 2a VD VG3

ID
Source Drain
p+
n-Si VG2
VG Gate VG1
L 0
0 VD

In the linear region, i.e., VD < VDsat ,


( "  #)
2 VD + Vbi − VG 3/2 Vbi − VG 3/2 (2aZ )
 
ID = G0 VD − (Vbi − VP ) − , G0 = × (qµn Nd ).
3 Vbi − VP Vbi − VP L
Pinch-off (saturation): VG − VD = VP → VDsat = VG − VP .
Substituting in the ID equation, we get
( "  #)
2 Vbi − VG 3/2

IDsat (VG ) = G0 (VG − VP ) − (Vbi − VP ) 1 − .
3 Vbi − VP
Note that IDsat depends on VG . For an n-channel JFET, IDsat ↓ as VG ↓
M. B. Patil, IIT Bombay
Comparison of JFET and BJT I -V relationships

saturation

linear
linear VG4
IB5

saturation IB4

VG3 IB3
ID

IC
IB2
VG2

VG1 IB1
0 0
0 VD 0 VCE
n-channel JFET npn BJT

M. B. Patil, IIT Bombay


Comparison of JFET and BJT I -V relationships

saturation

linear
linear VG4
IB5

saturation IB4

VG3 IB3
ID

IC
IB2
VG2

VG1 IB1
0 0
0 VD 0 VCE
n-channel JFET npn BJT

* Note the different nomenclature for linear and saturation regions.

M. B. Patil, IIT Bombay


Comparison of JFET and BJT I -V relationships

saturation

linear
linear VG4
IB5

saturation IB4

VG3 IB3
ID

IC
IB2
VG2

VG1 IB1
0 0
0 VD 0 VCE
n-channel JFET npn BJT

* Note the different nomenclature for linear and saturation regions.


sat ≈ 0.2 V irrespective of I .
* In a BJT, VCE B
In a JFET, VDsat (= VG − VP ) depends on VG .

M. B. Patil, IIT Bombay


Example

VG Gate

p+
0V 2a VD
Source + Drain
p
n-Si

VG Gate
L

For an n-channel Si JFET with Nd = 1 × 1017 cm−3 , µn = 300 cm2 /V-s, a = 0.2 µm, L = 5 µm,
Z = 10 µm, Vbi = 0.9 V for the p + n gate-to-channel junction,

M. B. Patil, IIT Bombay


Example

VG Gate

p+
0V 2a VD
Source + Drain
p
n-Si

VG Gate
L

For an n-channel Si JFET with Nd = 1 × 1017 cm−3 , µn = 300 cm2 /V-s, a = 0.2 µm, L = 5 µm,
Z = 10 µm, Vbi = 0.9 V for the p + n gate-to-channel junction,
(a) What is the pinch-off voltage VP ?

M. B. Patil, IIT Bombay


Example

VG Gate

p+
0V 2a VD
Source + Drain
p
n-Si

VG Gate
L

For an n-channel Si JFET with Nd = 1 × 1017 cm−3 , µn = 300 cm2 /V-s, a = 0.2 µm, L = 5 µm,
Z = 10 µm, Vbi = 0.9 V for the p + n gate-to-channel junction,
(a) What is the pinch-off voltage VP ?
(b) Plot ID versus VG for −2.5 V < VG < 0 V and with (i) VD = 0.1 V and (ii) VD = 5 V.

M. B. Patil, IIT Bombay


Example

VG Gate

p+
0V 2a VD
Source + Drain
p
n-Si

VG Gate
L

For an n-channel Si JFET with Nd = 1 × 1017 cm−3 , µn = 300 cm2 /V-s, a = 0.2 µm, L = 5 µm,
Z = 10 µm, Vbi = 0.9 V for the p + n gate-to-channel junction,
(a) What is the pinch-off voltage VP ?
(b) Plot ID versus VG for −2.5 V < VG < 0 V and with (i) VD = 0.1 V and (ii) VD = 5 V.
(c) Plot ID versus VD for 0 V < VD < 5 V and VG = −1.5, −1, −0.5, 0 V. Mark the boundary
between the linear and saturation regions.

M. B. Patil, IIT Bombay


Example

VG Gate

p+
0V 2a VD
Source + Drain
p
n-Si

VG Gate
L

qNd 2
(a) VP = Vbi − a = −2.2 V.
2

M. B. Patil, IIT Bombay


Example

VG Gate

p+
0V 2a VD
Source + Drain
p
n-Si

VG Gate
L

qNd 2
(a) VP = Vbi − a = −2.2 V.
2
( "  #)
2 VD + Vbi − VG 3/2 Vbi − VG 3/2
 
(b) ID = G0 VD − (Vbi − VP ) − , VD < VDsat
3 Vbi − VP Vbi − VP

M. B. Patil, IIT Bombay


Example

VG Gate

p+
0V 2a VD
Source + Drain
p
n-Si

VG Gate
L

qNd 2
(a) VP = Vbi − a = −2.2 V.
2
( "  #)
2 VD + Vbi − VG 3/2 Vbi − VG 3/2
 
(b) ID = G0 VD − (Vbi − VP ) − , VD < VDsat
3 Vbi − VP Vbi − VP
( "  #)
2 Vbi − VG 3/2

= G0 (VG − VP ) − (Vbi − VP ) 1 − , VD > VDsat
3 Vbi − VP

M. B. Patil, IIT Bombay


Example

VG Gate

p+
0V 2a VD
Source + Drain
p
n-Si

VG Gate
L

qNd 2
(a) VP = Vbi − a = −2.2 V.
2
( "  #)
2 VD + Vbi − VG 3/2 Vbi − VG 3/2
 
(b) ID = G0 VD − (Vbi − VP ) − , VD < VDsat
3 Vbi − VP Vbi − VP
( "  #)
2 Vbi − VG 3/2

= G0 (VG − VP ) − (Vbi − VP ) 1 − , VD > VDsat
3 Vbi − VP
2aZ 2 × 0.2 × 10−4 × 10 × 10−4
G0 = qµn Nd = × 1.6 × 10−19 × 300 × 1017 = 3.84 × 10−4 f = 0.384 mf.
L 5 × 10−4

M. B. Patil, IIT Bombay


Example

VG Gate

p+
0V 2a VD
Source + Drain
p
n-Si

VG Gate
L

qNd 2
(a) VP = Vbi − a = −2.2 V.
2
( "  #)
2 VD + Vbi − VG 3/2 Vbi − VG 3/2
 
(b) ID = G0 VD − (Vbi − VP ) − , VD < VDsat
3 Vbi − VP Vbi − VP
( "  #)
2 Vbi − VG 3/2

= G0 (VG − VP ) − (Vbi − VP ) 1 − , VD > VDsat
3 Vbi − VP
2aZ 2 × 0.2 × 10−4 × 10 × 10−4
G0 = qµn Nd = × 1.6 × 10−19 × 300 × 1017 = 3.84 × 10−4 f = 0.384 mf.
L 5 × 10−4
cm × cm cm2 1 A
Units: × Coul × × = = f.
cm V-sec cm3 V
M. B. Patil, IIT Bombay
0.2
Example

VG Gate

ID (mA)
p+ 0.1
0V 2a VD
Source Drain
p+
n-Si
VP
VG Gate
0
L −2.5 −2 −1.5 −1 −0.5 0
VG (volts)
0.2
Example

VG Gate

ID (mA)
p+ 0.1
0V 2a VD
Source Drain
p+
n-Si
VP
VG Gate
0
L −2.5 −2 −1.5 −1 −0.5 0
VG (volts)

(b) For the transistor to be in the linear region, we need VG − VD > VP , i.e., VG > VP + VD .
0.2
Example

VG Gate

ID (mA)
p+ 0.1
0V 2a VD
Source Drain
p+
n-Si
VP
VG Gate
0
L −2.5 −2 −1.5 −1 −0.5 0
VG (volts)

(b) For the transistor to be in the linear region, we need VG − VD > VP , i.e., VG > VP + VD .
(i) VD = 0.1 V, → VG > −2.2 + 0.1 = −2.1 V for linear region.
0.2
Example

VG Gate

ID (mA)
p+ 0.1
0V 2a VD
Source Drain
p+
n-Si
VP
VG Gate
0
L −2.5 −2 −1.5 −1 −0.5 0
VG (volts)

(b) For the transistor to be in the linear region, we need VG − VD > VP , i.e., VG > VP + VD .
(i) VD = 0.1 V, → VG > −2.2 + 0.1 = −2.1 V for linear region.
(ii) VD = 5 V, → VG > −2.2 + 5 = 2.8 V for linear region.
(Note: such a large VG is not realistic.)
0.2
Example

VG Gate

ID (mA)
p+ 0.1
0V 2a VD
Source Drain
p+
n-Si
VP
VG Gate
0
L −2.5 −2 −1.5 −1 −0.5 0
VG (volts)

(b) For the transistor to be in the linear region, we need VG − VD > VP , i.e., VG > VP + VD .
(i) VD = 0.1 V, → VG > −2.2 + 0.1 = −2.1 V for linear region.
(ii) VD = 5 V, → VG > −2.2 + 5 = 2.8 V for linear region.
(Note: such a large VG is not realistic.)
The ID -VG plot can now be obtained using the appropriate ID expression.
0.2
Example

VG Gate

ID (mA)
p+ 0.1
0V 2a VD
Source Drain 5V
p+
n-Si
VP
VD = 0.1 V
VG Gate
0
L −2.5 −2 −1.5 −1 −0.5 0
VG (volts)

(b) For the transistor to be in the linear region, we need VG − VD > VP , i.e., VG > VP + VD .
(i) VD = 0.1 V, → VG > −2.2 + 0.1 = −2.1 V for linear region.
(ii) VD = 5 V, → VG > −2.2 + 5 = 2.8 V for linear region.
(Note: such a large VG is not realistic.)
The ID -VG plot can now be obtained using the appropriate ID expression.

M. B. Patil, IIT Bombay


Example

VG Gate

p+
0V 2a VD
Source + Drain
p
n-Si

VG Gate
L
Example

VG Gate

p+
0V 2a VD
Source + Drain
p
n-Si

VG Gate
L

( "  #)
2 VD + Vbi − VG 3/2 Vbi − VG 3/2
 
(c) ID = G0 VD − (Vbi − VP ) − , VD < VDsat
3 Vbi − VP Vbi − VP
( "  #)
2 Vbi − VG 3/2

= G0 (VG − VP ) − (Vbi − VP ) 1 − , VD > VDsat
3 Vbi − VP
Example

VG Gate

p+
0V 2a VD
Source + Drain
p
n-Si

VG Gate
L

( "  #)
2 VD + Vbi − VG 3/2 Vbi − VG 3/2
 
(c) ID = G0 VD − (Vbi − VP ) − , VD < VDsat
3 Vbi − VP Vbi − VP
( "  #)
2 Vbi − VG 3/2

= G0 (VG − VP ) − (Vbi − VP ) 1 − , VD > VDsat
3 Vbi − VP

For each VG , we first find VDsat . For example, with VG = −1.5 V, VDsat = VG − VP = −1.5 − (−2.2) = 0.7 V.
Example

VG Gate

p+
0V 2a VD
Source + Drain
p
n-Si

VG Gate
L

( "  #)
2 VD + Vbi − VG 3/2 Vbi − VG 3/2
 
(c) ID = G0 VD − (Vbi − VP ) − , VD < VDsat
3 Vbi − VP Vbi − VP
( "  #)
2 Vbi − VG 3/2

= G0 (VG − VP ) − (Vbi − VP ) 1 − , VD > VDsat
3 Vbi − VP

For each VG , we first find VDsat . For example, with VG = −1.5 V, VDsat = VG − VP = −1.5 − (−2.2) = 0.7 V.
We then use the appropriate ID expression to obtain the ID -VD plot for that particular VG .
0.2
Example ID = G0 VD
0V
VG Gate
(Isat sat
D ,VD )

ID (mA)
p +
0.1 −0.5 V
0V 2a VD
Source Drain
p+ −1 V
n-Si
VG = −1.5 V
VG Gate
0
L 0 1 2 3 4 5
VD (volts)
( "  #)
2 VD + Vbi − VG 3/2 Vbi − VG 3/2
 
(c) ID = G0 VD − (Vbi − VP ) − , VD < VDsat
3 Vbi − VP Vbi − VP
( "  #)
2 Vbi − VG 3/2

= G0 (VG − VP ) − (Vbi − VP ) 1 − , VD > VDsat
3 Vbi − VP

For each VG , we first find VDsat . For example, with VG = −1.5 V, VDsat = VG − VP = −1.5 − (−2.2) = 0.7 V.
We then use the appropriate ID expression to obtain the ID -VD plot for that particular VG .

M. B. Patil, IIT Bombay


JFET source/drain resistances

p+
2a
S D
n-Si p+

G
L
L’
JFET source/drain resistances

p+
2a
S D
n-Si p+

G
L
L’

* In a real JFET structure, the source and drain contacts are some distance away from the
active part of the device, adding resistances RS and RD in the current path.
JFET source/drain resistances

p+
2a
S D
n-Si p+

G
L
L’

* In a real JFET structure, the source and drain contacts are some distance away from the
active part of the device, adding resistances RS and RD in the current path.
* The intrinsic device model needs to be augmented to include these resistances.
JFET source/drain resistances

G
G
p+
2a S D
S D RS RD
n-Si p+
intrinsic
device
G
L
L’

* In a real JFET structure, the source and drain contacts are some distance away from the
active part of the device, adding resistances RS and RD in the current path.
* The intrinsic device model needs to be augmented to include these resistances.

M. B. Patil, IIT Bombay


Simplified JFET model for circuit analysis

0.2
ID = G0 VD
VG Gate 0V

(Isat sat
D ,VD )
p+

ID (mA)
0V 2a VD 0.1 −0.5 V
S + D
p
n-Si −1 V
VG Gate VG = −1.5 V
L 0
0 1 2 3 4 5
VD (volts)
Simplified JFET model for circuit analysis

0.2
ID = G0 VD
VG Gate 0V

(Isat sat
D ,VD )
p+

ID (mA)
0V 2a VD 0.1 −0.5 V
S + D
p
n-Si −1 V
VG Gate VG = −1.5 V
L 0
0 1 2 3 4 5
VD (volts)
* When a JFET is used for amplification, it is biased in the saturation region, and the
saturation current IDsat at a given VG is of interest.
Simplified JFET model for circuit analysis

0.2
ID = G0 VD
VG Gate 0V

(Isat sat
D ,VD )
p+

ID (mA)
0V 2a VD 0.1 −0.5 V
S + D
p
n-Si −1 V
VG Gate VG = −1.5 V
L 0
0 1 2 3 4 5
VD (volts)
* When a JFET is used for amplification, it is biased in the saturation region, and the
saturation current IDsat at a given VG is of interest.
( "  #)
2 Vbi − VG 3/2

* IDsat (VG ) = G0 (VG − VP ) − (Vbi − VP ) 1 − .
3 Vbi − VP
Simplified JFET model for circuit analysis

0.2
0.2
ID = G0 VD
VG Gate 0V

(Isat sat

D (mA)
D ,VD )
p+

ID (mA)
0V 2a VD −0.5 V 0.1
0.1

Isat
S + D
p
n-Si analytical
−1 V
VP
VG Gate VG = −1.5 V
L 0 0
0 1 2 3 4 5 −2.5 −2 −1.5 −1 −0.5 0
VD (volts) VG (volts)
* When a JFET is used for amplification, it is biased in the saturation region, and the
saturation current IDsat at a given VG is of interest.
( "  #)
2 Vbi − VG 3/2

* IDsat (VG ) = G0 (VG − VP ) − (Vbi − VP ) 1 − .
3 Vbi − VP
Simplified JFET model for circuit analysis

0.2
0.2
ID = G0 VD
VG Gate 0V

(Isat sat

D (mA)
D ,VD )
p+

ID (mA)
0V 2a VD −0.5 V 0.1
0.1

Isat
S + D
p
n-Si analytical
−1 V
VP
VG Gate VG = −1.5 V
L 0 0
0 1 2 3 4 5 −2.5 −2 −1.5 −1 −0.5 0
VD (volts) VG (volts)
* When a JFET is used for amplification, it is biased in the saturation region, and the
saturation current IDsat at a given VG is of interest.
( "  #)
2 Vbi − VG 3/2

* IDsat (VG ) = G0 (VG − VP ) − (Vbi − VP ) 1 − .
3 Vbi − VP
* For circuit design, we can use a simplified empirical expression for IDsat :
IDsat (VG ) = IDSS [1 − (VG /VP )]2 , where IDSS = IDsat VG =0 V
.
Simplified JFET model for circuit analysis

0.2
0.2
ID = G0 VD
VG Gate 0V

(Isat sat

D (mA)
D ,VD )
p+

ID (mA)
0V 2a VD −0.5 V 0.1
0.1 approximate

Isat
S + D
p
n-Si analytical
−1 V
VP
VG Gate VG = −1.5 V
L 0 0
0 1 2 3 4 5 −2.5 −2 −1.5 −1 −0.5 0
VD (volts) VG (volts)
* When a JFET is used for amplification, it is biased in the saturation region, and the
saturation current IDsat at a given VG is of interest.
( "  #)
2 Vbi − VG 3/2

* IDsat (VG ) = G0 (VG − VP ) − (Vbi − VP ) 1 − .
3 Vbi − VP
* For circuit design, we can use a simplified empirical expression for IDsat :
IDsat (VG ) = IDSS [1 − (VG /VP )]2 , where IDSS = IDsat VG =0 V
.

M. B. Patil, IIT Bombay


JFET small-signal model

VG Gate

p+
0V 2a VD
Source Drain
p+
n-Si

VG Gate
L
JFET small-signal model

VG Gate

p+
0V 2a VD
Source Drain
p+
n-Si

VG Gate
L

In an amplifier, a JFET is biased in saturation, and we have

IDsat = IDSS [1 − (VG /VP )]2 .


JFET small-signal model

linear VG4
VG Gate
saturation
p+
0V 2a VD VG3

ID
Source Drain
p+
n-Si VG2
VG Gate VG1
L 0
0 VD

In an amplifier, a JFET is biased in saturation, and we have

IDsat = IDSS [1 − (VG /VP )]2 .


JFET small-signal model

linear VG4
VG Gate
saturation
p+
0V 2a VD VG3

ID
Source Drain
p+
n-Si VG2
VG Gate VG1
L 0
0 VD

In an amplifier, a JFET is biased in saturation, and we have

IDsat = IDSS [1 − (VG /VP )]2 .

The small-signal model at low frequencies can be derived as follows (with source at 0 V).
∂ID ∂ID
∆ID = ∆VG + ∆VD .
∂VG ∂VD
JFET small-signal model

linear VG4
VG Gate
saturation
p+
0V 2a VD VG3

ID
Source Drain
p+
n-Si VG2
VG Gate VG1
L 0
0 VD

In an amplifier, a JFET is biased in saturation, and we have

IDsat = IDSS [1 − (VG /VP )]2 .

The small-signal model at low frequencies can be derived as follows (with source at 0 V).
∂ID ∂ID
∆ID = ∆VG + ∆VD .
∂VG ∂VD
2IDSS
 
∂ID VG
→ id = gm vg , with gm = =− 1− .
∂VG VP VP
JFET small-signal model

linear VG4 id
VG Gate G D
saturation
p+ vgs
0V 2a VD VG3

ID
gm vgs
Source Drain
p+
n-Si VG2
is
VG Gate VG1
S
L 0
0 VD Small-signal model

In an amplifier, a JFET is biased in saturation, and we have

IDsat = IDSS [1 − (VG /VP )]2 .

The small-signal model at low frequencies can be derived as follows (with source at 0 V).
∂ID ∂ID
∆ID = ∆VG + ∆VD .
∂VG ∂VD
2IDSS
 
∂ID VG
→ id = gm vg , with gm = =− 1− .
∂VG VP VP

M. B. Patil, IIT Bombay


JFET small-signal model

linear VG4 id
VG Gate G D
saturation
p+ vgs
0V 2a VD VG3

ID
gm vgs
Source Drain
p+
n-Si VG2
is
VG Gate VG1
S
L 0
0 VD Small-signal model

In an amplifier, a JFET is biased in saturation, and we have

IDsat = IDSS [1 − (VG /VP )]2 .

The small-signal model at low frequencies can be derived as follows (with source at 0 V).
∂ID ∂ID
∆ID = ∆VG + ∆VD .
∂VG ∂VD
2IDSS
 
∂ID VG
→ id = gm vg , with gm = =− 1− .
∂VG VP VP
(Note that there is a reverse biased pn junction between G and S and betweeen G and D. → ig = 0.)
M. B. Patil, IIT Bombay
G depletion
p+ region

S D
0V VD

Channel length modulation:

∆L

G VD
V
(VD − Vsat
D )

0 x2
L
G depletion
p+ region

S D
0V VD

Channel length modulation:


* In saturation, the actual channel length is
∆L Leff = L − ∆L.
G VD
V
(VD − Vsat
D )

0 x2
L
G depletion
p+ region

S D
0V VD

Channel length modulation:


* In saturation, the actual channel length is
∆L Leff = L − ∆L.
G VD ↑ → ∆L ↑ → Leff ↓
VD
V (2aZ )
 
(VD − Vsat
D ) → G0 = × (qµn Nd ) ↑ → ID ↑
Leff

0 x2
L
G depletion
p+ region
ID linear saturation

1
slope = gd =
ro

S D
0V VD VD

Channel length modulation:


* In saturation, the actual channel length is
∆L Leff = L − ∆L.
G VD ↑ → ∆L ↑ → Leff ↓
VD
V (2aZ )
 
(VD − Vsat
D ) → G0 = × (qµn Nd ) ↑ → ID ↑
Leff

0 x2
L
G depletion id
p+ region
G D
ID linear saturation

vgs ro
gm vgs
1
slope = gd =
ro
is
S D S
0V VD VD Small-signal model

Channel length modulation:


* In saturation, the actual channel length is
∆L Leff = L − ∆L.
G VD ↑ → ∆L ↑ → Leff ↓
VD
V (2aZ )
 
(VD − Vsat
D ) → G0 = × (qµn Nd ) ↑ → ID ↑
Leff

0 x2
L M. B. Patil, IIT Bombay
G depletion id
p+ region
G D
ID linear saturation

vgs ro
gm vgs
1
slope = gd =
ro
is
S D S
0V VD VD Small-signal model

Channel length modulation:


* In saturation, the actual channel length is
∆L Leff = L − ∆L.
G VD ↑ → ∆L ↑ → Leff ↓
VD
V (2aZ )
 
(VD − Vsat
D ) → G0 = × (qµn Nd ) ↑ → ID ↑
Leff
* This “channel length modulation” is significant in
short-channel devices (L ∼ 1 µm).

0 x2
L M. B. Patil, IIT Bombay
JFET: small-signal model

VG Gate

p+
0V 2a VD
Source Drain
p+
n-Si

VG Gate
L
JFET: small-signal model

id
VG Gate
G D
+
p
0V 2a VD vgs ro
Source Drain gm vgs
p+
n-Si

VG Gate is

L S
JFET: small-signal model

id
VG Gate
G D
+
p
0V 2a VD vgs ro
Source Drain gm vgs
p+
n-Si

VG Gate is

L S

* At high frequencies, the device capacitances must be included in the small-signal model.
JFET: small-signal model

id
VG Gate
G D
+
p
0V 2a VD vgs ro
Source Drain gm vgs
p+
n-Si

VG Gate is

L S

* At high frequencies, the device capacitances must be included in the small-signal model.
* The gate capacitance is essentially that of the gate-to-channel reverse-biased p + n junction, which gets
divided between Cgs and Cgd .
JFET: small-signal model

id ig Cgd id
VG Gate
G D G D
rd
+
p
0V 2a VD vgs ro vgs ro
Source Drain gm vgs Cgs gm vgs
p+
n-Si

VG Gate is
rs
L S
is
S

* At high frequencies, the device capacitances must be included in the small-signal model.
* The gate capacitance is essentially that of the gate-to-channel reverse-biased p + n junction, which gets
divided between Cgs and Cgd .

M. B. Patil, IIT Bombay


0.2 15
JFET amplifiers
VBE = 0.725 V
0V
linear
10
saturation

ID (mA)

IC (mA)
0.1 −0.5 V
0.7 V
5
−1 V
0.675 V
VG = −1.5 V 0.65 V
0 0
0 1 2 3 4 5 0 1 2 3 4 5
VD (volts) VCE (volts)

ig id ib ic
G D B C

vgs ro vbe rπ ro
gm vgs gm vbe

is ie
S JFET BJT E

M. B. Patil, IIT Bombay


0.2 15
JFET amplifiers
VBE = 0.725 V
0V
linear
10
saturation

ID (mA)

IC (mA)
0.1 −0.5 V
0.7 V
5
−1 V
0.675 V
VG = −1.5 V 0.65 V
0 0
0 1 2 3 4 5 0 1 2 3 4 5
VD (volts) VCE (volts)

ig id ib ic
G D B C

vgs ro vbe rπ ro
gm vgs gm vbe

is ie
S JFET BJT E

* Qualitatively, the ID -VDS relationship of a JFET is similar to the IC -VCE relationship of a BJT.

M. B. Patil, IIT Bombay


0.2 15
JFET amplifiers
VBE = 0.725 V
0V
linear
10
saturation

ID (mA)

IC (mA)
0.1 −0.5 V
0.7 V
5
−1 V
0.675 V
VG = −1.5 V 0.65 V
0 0
0 1 2 3 4 5 0 1 2 3 4 5
VD (volts) VCE (volts)

ig id ib ic
G D B C

vgs ro vbe rπ ro
gm vgs gm vbe

is ie
S JFET BJT E

* Qualitatively, the ID -VDS relationship of a JFET is similar to the IC -VCE relationship of a BJT.
* A JFET can be used for amplification, e.g., we can have a “common-source” amplifier which is similar to the
“common-emitter” amplifier.
M. B. Patil, IIT Bombay
JFET amplifiers

* For amplification, a JFET needs to be biased


in the saturation region, and the design goal
is to bias it at a certain Q-point, (ID , VDS ).
VDD
JFET amplifiers

RD
* For amplification, a JFET needs to be biased
D ID
in the saturation region, and the design goal
is to bias it at a certain Q-point, (ID , VDS ). G
S
VGG VGS

(a)
VGS = −VGG
VDD
JFET amplifiers

RD
* For amplification, a JFET needs to be biased
D ID
in the saturation region, and the design goal
is to bias it at a certain Q-point, (ID , VDS ). G
S
VGG VGS

(a)
VGS = −VGG

ID

(a)

IQ
D

VQ 0 VGS
GS
VP
VDD VDD
JFET amplifiers

RD RD
* For amplification, a JFET needs to be biased
D ID D ID
in the saturation region, and the design goal
is to bias it at a certain Q-point, (ID , VDS ). G G
S S
VGG VGS VGS
RS

(a) (b)
VGS = −VGG VGS = −ID RS

ID

(a)

IQ
D

VQ 0 VGS
GS
VP
VDD VDD
JFET amplifiers

RD RD
* For amplification, a JFET needs to be biased
D ID D ID
in the saturation region, and the design goal
is to bias it at a certain Q-point, (ID , VDS ). G G
S S
VGG VGS VGS
RS

(a) (b)
VGS = −VGG VGS = −ID RS

ID

(a)

(b)

IQ
D

VQ 0 VGS
GS
VP
VDD VDD VDD
JFET amplifiers

RD RD R1 RD
* For amplification, a JFET needs to be biased
D ID D ID D ID
in the saturation region, and the design goal
is to bias it at a certain Q-point, (ID , VDS ). G G G
S S S
VGG VGS VGS VGS
R2
RS RS

(a) (b) (c)


R2
VGS = −VGG VGS = −ID RS VGS = VDD − ID RS
R1 + R2

ID

(a)

(b)

IQ
D

VQ 0 VGS
GS
VP
VDD VDD VDD
JFET amplifiers

RD RD R1 RD
* For amplification, a JFET needs to be biased
D ID D ID D ID
in the saturation region, and the design goal
is to bias it at a certain Q-point, (ID , VDS ). G G G
S S S
VGG VGS VGS VGS
R2
RS RS

(a) (b) (c)


R2
VGS = −VGG VGS = −ID RS VGS = VDD − ID RS
R1 + R2

ID

(a)

(b)

(c) IQ
D

VQ 0 VGS
GS
VP
VDD VDD VDD
JFET amplifiers

RD RD R1 RD
* For amplification, a JFET needs to be biased
D ID D ID D ID
in the saturation region, and the design goal
is to bias it at a certain Q-point, (ID , VDS ). G G G
S S S
VGG VGS VGS VGS
R2
RS RS
* The drain current equation,
2
IDsat (VG ) = IDSS [1 − (VG /VP )] ,
(a) (b) (c)
implies that there is a unique ID for a given R2
VGS = −VGG VGS = −ID RS VGS = VDD − ID RS
VGS . R1 + R2
However, there is a device-to-device varation
in the ID -VGS curve, giving rise to some ID

deviation from the intended bias point.


(a)

(b)

(c) IQ
D

VQ 0 VGS
GS
VP
VDD VDD VDD
JFET amplifiers

RD RD R1 RD
* For amplification, a JFET needs to be biased
D ID D ID D ID
in the saturation region, and the design goal
is to bias it at a certain Q-point, (ID , VDS ). G G G
S S S
VGG VGS VGS VGS
R2
RS RS
* The drain current equation,
2
IDsat (VG ) = IDSS [1 − (VG /VP )] ,
(a) (b) (c)
implies that there is a unique ID for a given R2
VGS = −VGG VGS = −ID RS VGS = VDD − ID RS
VGS . R1 + R2
However, there is a device-to-device varation
in the ID -VGS curve, giving rise to some ID

deviation from the intended bias point.


(a)

(b)

(c) IQ
D

VQ 0 VGS
GS
M. B. Patil, IIT Bombay VP
VDD VDD VDD
JFET amplifiers

RD RD R1 RD
* For amplification, a JFET needs to be biased
D ID D ID D ID
in the saturation region, and the design goal
is to bias it at a certain Q-point, (ID , VDS ). G G G
S S S
VGG VGS VGS VGS
R2
RS RS
* The drain current equation,
2
IDsat (VG ) = IDSS [1 − (VG /VP )] ,
(a) (b) (c)
implies that there is a unique ID for a given R2
VGS = −VGG VGS = −ID RS VGS = VDD − ID RS
VGS . R1 + R2
However, there is a device-to-device varation
in the ID -VGS curve, giving rise to some ID

deviation from the intended bias point.


(a)
* The voltage divider scheme (c) is superior
since it is least sensitive, i.e., the deviation in (b)
ID is small compared to the other schemes.
(c) IQ
D

VQ 0 VGS
GS
M. B. Patil, IIT Bombay VP
Example

The JFET parameters are IDSS = 1 mA, VP = −2 V. For VDD = 12 V and RD = 15 kΩ, find
suitable values of R1 , R2 , RS to get a bias point of IDQ = 0.4 mA and VDS
Q
= 4 V. VDD

R1 RD

D ID

G
S
VGS
R2
RS

R2
VGS = VDD − ID RS
R1 + R2

M. B. Patil, IIT Bombay


Example

The JFET parameters are IDSS = 1 mA, VP = −2 V. For VDD = 12 V and RD = 15 kΩ, find
suitable values of R1 , R2 , RS to get a bias point of IDQ = 0.4 mA and VDS
Q
= 4 V. VDD

Solution: The drain current in the saturation region is given by RD


R1
IDsat (VG ) = IDSS [1 − (VGS /VP )]2 .
D ID

G
S
VGS
R2
RS

R2
VGS = VDD − ID RS
R1 + R2

M. B. Patil, IIT Bombay


Example

The JFET parameters are IDSS = 1 mA, VP = −2 V. For VDD = 12 V and RD = 15 kΩ, find
suitable values of R1 , R2 , RS to get a bias point of IDQ = 0.4 mA and VDS
Q
= 4 V. VDD

Solution: The drain current in the saturation region is given by RD


R1
IDsat (VG ) = IDSS [1 − (VGS /VP )]2 .
D ID
Solving for IDsat = IDQ = 0.4 mA, we get Q
VGS = −0.735 V.
G
S
VGS
R2
RS

R2
VGS = VDD − ID RS
R1 + R2

M. B. Patil, IIT Bombay


Example

The JFET parameters are IDSS = 1 mA, VP = −2 V. For VDD = 12 V and RD = 15 kΩ, find
suitable values of R1 , R2 , RS to get a bias point of IDQ = 0.4 mA and VDS
Q
= 4 V. VDD

Solution: The drain current in the saturation region is given by RD


R1
IDsat (VG ) = IDSS [1 − (VGS /VP )]2 .
D ID
Solving for IDsat = IDQ = 0.4 mA, we get Q
VGS = −0.735 V.
G
S
VD = VDD − ID RD = 12 V − 0.4 mA × 15 k = 6 V. VGS
R2
RS

R2
VGS = VDD − ID RS
R1 + R2

M. B. Patil, IIT Bombay


Example

The JFET parameters are IDSS = 1 mA, VP = −2 V. For VDD = 12 V and RD = 15 kΩ, find
suitable values of R1 , R2 , RS to get a bias point of IDQ = 0.4 mA and VDS
Q
= 4 V. VDD

Solution: The drain current in the saturation region is given by RD


R1
IDsat (VG ) = IDSS [1 − (VGS /VP )]2 .
D ID
Solving for IDsat = IDQ = 0.4 mA, we get Q
VGS = −0.735 V.
G
S
VD = VDD − ID RD = 12 V − 0.4 mA × 15 k = 6 V. VGS
Q R2
→ VS = VD − VDS = 6V − 4V = 2V RS

R2
VGS = VDD − ID RS
R1 + R2

M. B. Patil, IIT Bombay


Example

The JFET parameters are IDSS = 1 mA, VP = −2 V. For VDD = 12 V and RD = 15 kΩ, find
suitable values of R1 , R2 , RS to get a bias point of IDQ = 0.4 mA and VDS
Q
= 4 V. VDD

Solution: The drain current in the saturation region is given by RD


R1
IDsat (VG ) = IDSS [1 − (VGS /VP )]2 .
D ID
Solving for IDsat = IDQ = 0.4 mA, we get Q
VGS = −0.735 V.
G
S
VD = VDD − ID RD = 12 V − 0.4 mA × 15 k = 6 V. VGS
Q R2
→ VS = VD − VDS = 6 V − 4 V = 2 V → RS = VS /IDQ = 2 V/0.4 mA = 5 kΩ. RS

R2
VGS = VDD − ID RS
R1 + R2

M. B. Patil, IIT Bombay


Example

The JFET parameters are IDSS = 1 mA, VP = −2 V. For VDD = 12 V and RD = 15 kΩ, find
suitable values of R1 , R2 , RS to get a bias point of IDQ = 0.4 mA and VDS
Q
= 4 V. VDD

Solution: The drain current in the saturation region is given by RD


R1
IDsat (VG ) = IDSS [1 − (VGS /VP )]2 .
D ID
Solving for IDsat = IDQ = 0.4 mA, we get Q
VGS = −0.735 V.
G
S
VD = VDD − ID RD = 12 V − 0.4 mA × 15 k = 6 V. VGS
Q R2
→ VS = VD − VDS = 6 V − 4 V = 2 V → RS = VS /IDQ = 2 V/0.4 mA = 5 kΩ. RS

For VGS to be −0.735 V, we need VG = VS + VGS = 2 V + (−0.735 V) = 1.265 V.


R2
VGS = VDD − ID RS
R1 + R2

M. B. Patil, IIT Bombay


Example

The JFET parameters are IDSS = 1 mA, VP = −2 V. For VDD = 12 V and RD = 15 kΩ, find
suitable values of R1 , R2 , RS to get a bias point of IDQ = 0.4 mA and VDS
Q
= 4 V. VDD

Solution: The drain current in the saturation region is given by RD


R1
IDsat (VG ) = IDSS [1 − (VGS /VP )]2 .
D ID
Solving for IDsat = IDQ = 0.4 mA, we get Q
VGS = −0.735 V.
G
S
VD = VDD − ID RD = 12 V − 0.4 mA × 15 k = 6 V. VGS
Q R2
→ VS = VD − VDS = 6 V − 4 V = 2 V → RS = VS /IDQ = 2 V/0.4 mA = 5 kΩ. RS

For VGS to be −0.735 V, we need VG = VS + VGS = 2 V + (−0.735 V) = 1.265 V.


R2 R2
Since VG = VDD , we now need to choose suitable values of R1 and R2 to get VGS = VDD − ID RS
R1 + R2 R1 + R2
the above VG . R1 = 200 kΩ and R1 = 23.5 kΩ is one such choice.

M. B. Patil, IIT Bombay


Example

The JFET parameters are IDSS = 1 mA, VP = −2 V. For VDD = 12 V and RD = 15 kΩ, find
suitable values of R1 , R2 , RS to get a bias point of IDQ = 0.4 mA and VDS
Q
= 4 V. VDD

Solution: The drain current in the saturation region is given by RD


R1
IDsat (VG ) = IDSS [1 − (VGS /VP )]2 .
D ID
Solving for IDsat = IDQ = 0.4 mA, we get Q
VGS = −0.735 V.
G
S
VD = VDD − ID RD = 12 V − 0.4 mA × 15 k = 6 V. VGS
Q R2
→ VS = VD − VDS = 6 V − 4 V = 2 V → RS = VS /IDQ = 2 V/0.4 mA = 5 kΩ. RS

For VGS to be −0.735 V, we need VG = VS + VGS = 2 V + (−0.735 V) = 1.265 V.


R2 R2
Since VG = VDD , we now need to choose suitable values of R1 and R2 to get VGS = VDD − ID RS
R1 + R2 R1 + R2
the above VG . R1 = 200 kΩ and R1 = 23.5 kΩ is one such choice.
Finally, we check whether the transistor is indeed biased in saturation.

M. B. Patil, IIT Bombay


Example

The JFET parameters are IDSS = 1 mA, VP = −2 V. For VDD = 12 V and RD = 15 kΩ, find
suitable values of R1 , R2 , RS to get a bias point of IDQ = 0.4 mA and VDS
Q
= 4 V. VDD

Solution: The drain current in the saturation region is given by RD


R1
IDsat (VG ) = IDSS [1 − (VGS /VP )]2 .
D ID
Solving for IDsat = IDQ = 0.4 mA, we get Q
VGS = −0.735 V.
G
S
VD = VDD − ID RD = 12 V − 0.4 mA × 15 k = 6 V. VGS
Q R2
→ VS = VD − VDS = 6 V − 4 V = 2 V → RS = VS /IDQ = 2 V/0.4 mA = 5 kΩ. RS

For VGS to be −0.735 V, we need VG = VS + VGS = 2 V + (−0.735 V) = 1.265 V.


R2 R2
Since VG = VDD , we now need to choose suitable values of R1 and R2 to get VGS = VDD − ID RS
R1 + R2 R1 + R2
the above VG . R1 = 200 kΩ and R1 = 23.5 kΩ is one such choice.
Finally, we check whether the transistor is indeed biased in saturation.
For saturation, we need VGS − VDS < VP ,

M. B. Patil, IIT Bombay


Example

The JFET parameters are IDSS = 1 mA, VP = −2 V. For VDD = 12 V and RD = 15 kΩ, find
suitable values of R1 , R2 , RS to get a bias point of IDQ = 0.4 mA and VDS
Q
= 4 V. VDD

Solution: The drain current in the saturation region is given by RD


R1
IDsat (VG ) = IDSS [1 − (VGS /VP )]2 .
D ID
Solving for IDsat = IDQ = 0.4 mA, we get Q
VGS = −0.735 V.
G
S
VD = VDD − ID RD = 12 V − 0.4 mA × 15 k = 6 V. VGS
Q R2
→ VS = VD − VDS = 6 V − 4 V = 2 V → RS = VS /IDQ = 2 V/0.4 mA = 5 kΩ. RS

For VGS to be −0.735 V, we need VG = VS + VGS = 2 V + (−0.735 V) = 1.265 V.


R2 R2
Since VG = VDD , we now need to choose suitable values of R1 and R2 to get VGS = VDD − ID RS
R1 + R2 R1 + R2
the above VG . R1 = 200 kΩ and R1 = 23.5 kΩ is one such choice.
Finally, we check whether the transistor is indeed biased in saturation.
For saturation, we need VGS − VDS < VP , i.e., −0.735 − 4 < −2 V.

M. B. Patil, IIT Bombay


Example

The JFET parameters are IDSS = 1 mA, VP = −2 V. For VDD = 12 V and RD = 15 kΩ, find
suitable values of R1 , R2 , RS to get a bias point of IDQ = 0.4 mA and VDS
Q
= 4 V. VDD

Solution: The drain current in the saturation region is given by RD


R1
IDsat (VG ) = IDSS [1 − (VGS /VP )]2 .
D ID
Solving for IDsat = IDQ = 0.4 mA, we get Q
VGS = −0.735 V.
G
S
VD = VDD − ID RD = 12 V − 0.4 mA × 15 k = 6 V. VGS
Q R2
→ VS = VD − VDS = 6 V − 4 V = 2 V → RS = VS /IDQ = 2 V/0.4 mA = 5 kΩ. RS

For VGS to be −0.735 V, we need VG = VS + VGS = 2 V + (−0.735 V) = 1.265 V.


R2 R2
Since VG = VDD , we now need to choose suitable values of R1 and R2 to get VGS = VDD − ID RS
R1 + R2 R1 + R2
the above VG . R1 = 200 kΩ and R1 = 23.5 kΩ is one such choice.
Finally, we check whether the transistor is indeed biased in saturation.
For saturation, we need VGS − VDS < VP , i.e., −0.735 − 4 < −2 V.

M. B. Patil, IIT Bombay


Common-source amplifier

VDD

RD
R1
G D
D CD
G vs R′ vgs ro RD RL vo
CG S
vO RL gm vgs
vs R2 S
RS
CS
Ri Ro

M. B. Patil, IIT Bombay


Common-source amplifier

VDD

RD
R1
G D
D CD
G vs R′ vgs ro RD RL vo
CG S
vO RL gm vgs
vs R2 S
RS
CS
Ri Ro

vo
* AV ≡ = −gm (RD0 k RL ), where RD0 = RD k ro ≈ RD if ro is large.
vs

M. B. Patil, IIT Bombay


Common-source amplifier

VDD

RD
R1
G D
D CD
G vs R′ vgs ro RD RL vo
CG S
vO RL gm vgs
vs R2 S
RS
CS
Ri Ro

vo
* AV ≡ = −gm (RD0 k RL ), where RD0 = RD k ro ≈ RD if ro is large.
vs
AVO = AV = −gm RD0 .
RL →∞

M. B. Patil, IIT Bombay


Common-source amplifier

VDD

RD
R1
G D
D CD
G vs R′ vgs ro RD RL vo
CG S
vO RL gm vgs
vs R2 S
RS
CS
Ri Ro

vo
* AV ≡ = −gm (RD0 k RL ), where RD0 = RD k ro ≈ RD if ro is large.
vs
AVO = AV = −gm RD0 .
RL →∞

* Ri = R 0 = R1 k R2 , Ro = RD0 .

M. B. Patil, IIT Bombay


Common-source amplifier: Example

VDD

RD
R1
G D
D CD
G vs R′ vgs ro RD RL vo
CG S
vO RL gm vgs
vs R2 S
RS
CS
Ri Ro

For the common-source amplifier of the last example, find (a) gain with RL → ∞ and (b) input resistance Ri .

M. B. Patil, IIT Bombay


Common-source amplifier: Example

VDD

RD
R1
G D
D CD
G vs R′ vgs ro RD RL vo
CG S
vO RL gm vgs
vs R2 S
RS
CS
Ri Ro

For the common-source amplifier of the last example, find (a) gain with RL → ∞ and (b) input resistance Ri .
Solution:

M. B. Patil, IIT Bombay


Common-source amplifier: Example

VDD

RD
R1
G D
D CD
G vs R′ vgs ro RD RL vo
CG S
vO RL gm vgs
vs R2 S
RS
CS
Ri Ro

For the common-source amplifier of the last example, find (a) gain with RL → ∞ and (b) input resistance Ri .
Solution:
! 
VQ 1 −0.735 V 1
    
gm = 2 IDSS 1 − GS × − = 2 (1 mA) 1 − × − = 0.63 mS.
VP VP −2 V −2 V

M. B. Patil, IIT Bombay


Common-source amplifier: Example

VDD

RD
R1
G D
D CD
G vs R′ vgs ro RD RL vo
CG S
vO RL gm vgs
vs R2 S
RS
CS
Ri Ro

For the common-source amplifier of the last example, find (a) gain with RL → ∞ and (b) input resistance Ri .
Solution:
! 
VQ 1 −0.735 V 1
    
gm = 2 IDSS 1 − GS × − = 2 (1 mA) 1 − × − = 0.63 mS.
VP VP −2 V −2 V
(a) AVO = −gm RD = −0.63 mS × 15 kΩ = −9.5, assuming ro to be large.

M. B. Patil, IIT Bombay


Common-source amplifier: Example

VDD

RD
R1
G D
D CD
G vs R′ vgs ro RD RL vo
CG S
vO RL gm vgs
vs R2 S
RS
CS
Ri Ro

For the common-source amplifier of the last example, find (a) gain with RL → ∞ and (b) input resistance Ri .
Solution:
! 
VQ 1 −0.735 V 1
    
gm = 2 IDSS 1 − GS × − = 2 (1 mA) 1 − × − = 0.63 mS.
VP VP −2 V −2 V
(a) AVO = −gm RD = −0.63 mS × 15 kΩ = −9.5, assuming ro to be large.
(b) Ri = R1 k R2 = 200 kΩ k 23.5 kΩ = 21 kΩ.

M. B. Patil, IIT Bombay


n-channel Metal-Semiconductor Field-Effect Transistor (MESFET)

Source Gate Drain

n+ n+ a

semi-insulating GaAs

M. B. Patil, IIT Bombay


n-channel Metal-Semiconductor Field-Effect Transistor (MESFET)

Source Gate Drain

n+ n+ a

semi-insulating GaAs

* In a MESFET, the channel conductance is modulated by a rectifying metal-semiconductor junction.

M. B. Patil, IIT Bombay


n-channel Metal-Semiconductor Field-Effect Transistor (MESFET)

Source Gate Drain

n+ n+ a

semi-insulating GaAs

* In a MESFET, the channel conductance is modulated by a rectifying metal-semiconductor junction.


* The substrate is semi-insulating, with a resistivity of about 108 Ω-cm.

M. B. Patil, IIT Bombay


n-channel Metal-Semiconductor Field-Effect Transistor (MESFET)

Source Gate Drain

n+ n+ a

semi-insulating GaAs

* In a MESFET, the channel conductance is modulated by a rectifying metal-semiconductor junction.


* The substrate is semi-insulating, with a resistivity of about 108 Ω-cm.
* On the substrate, an n-type channel region is deposited, and the n+ source/drain regions are created by
ion implantation.

M. B. Patil, IIT Bombay


n-channel Metal-Semiconductor Field-Effect Transistor (MESFET)

Source Gate Drain

n+ n+ a

semi-insulating GaAs

* In a MESFET, the channel conductance is modulated by a rectifying metal-semiconductor junction.


* The substrate is semi-insulating, with a resistivity of about 108 Ω-cm.
* On the substrate, an n-type channel region is deposited, and the n+ source/drain regions are created by
ion implantation.
* The S/D contacts are ohmic; gate contact is rectifying.

M. B. Patil, IIT Bombay


n-channel Metal-Semiconductor Field-Effect Transistor (MESFET)

Source Gate Drain

n+ n+ a

semi-insulating GaAs

M. B. Patil, IIT Bombay


n-channel Metal-Semiconductor Field-Effect Transistor (MESFET)

Source Gate Drain

n+ n+ a

semi-insulating GaAs

* For MESFETs, GaAs is preferred over silicon because of its higher electron mobility
(typically a factor of 5 larger than µn in silicon).

M. B. Patil, IIT Bombay


n-channel Metal-Semiconductor Field-Effect Transistor (MESFET)

Source Gate Drain

n+ n+ a

semi-insulating GaAs

* For MESFETs, GaAs is preferred over silicon because of its higher electron mobility
(typically a factor of 5 larger than µn in silicon).
* Small channel lengths (tenths of a micron) are often used to make the transistor faster,
by reducing the transit time from source to drain and also the gate capacitance.

M. B. Patil, IIT Bombay


n-channel Metal-Semiconductor Field-Effect Transistor (MESFET)

Source Gate Drain

n+ n+ a

semi-insulating GaAs

* For MESFETs, GaAs is preferred over silicon because of its higher electron mobility
(typically a factor of 5 larger than µn in silicon).
* Small channel lengths (tenths of a micron) are often used to make the transistor faster,
by reducing the transit time from source to drain and also the gate capacitance.
* GaAs MESFETs are commonly used in high-frequency (a few GHz) applications.

M. B. Patil, IIT Bombay

You might also like