CHAPTER – 9
Encoder and Decoder
DECODER
• A decoder is a combinational circuit.
• A decoder accepts a set of inputs that represents a binary
  number and activates only that output corresponding to the
  input number. All other outputs remain inactive.
• Fig. shows the block diagram of decoder with ‘N’ inputs and
  ‘M’outputs.
• There are 2N possible input combinations, for each of these
  input combination only one output will be HIGH (active) all
  other outputs are LOW.
• Some decoder have one or more ENABLE (E) inputs that are
  used to control the operation of decoder.
                                                           2
BLOCK DIAGRAM OF DECODER
    A0                                                B0
    A1                                                B1
    A2                                                B2
          .                                     .
                          DECODER               .
          .
          .                                     .
          .                                     .
   AN-1                                               BM-1
              N- Inputs             M- Outputs (2^N)
                                     Only one output is High for
                                     each input
                                                                   3
2 to 4 Line Decoder
 Block diagram of 2 to 4 decoder is shown in fig.
Decoder:
   A and B are the inputs. ( No. of inputs =2)
   No. of possible output combinations: 22=4
   No. of Outputs : 22=4, they are indicated by D0, D1, D2 and D3
   From the Truth Table it is clear that each output is “1” for only
    specific combination of inputs.
                                                  TRUTH TABLE
    A                         D0
                                        INPUTS           OUTPUTS
              2X4             D1
              Decoder                   A     B     D0   D1     D2   D3
     B                        D2
                                        0     0      1    0     0    0
                              D3
                                        0     1      0    1     0    0
     Inputs             Outputs
                                        1     0      0    0     1    0
                                        1     1      0    0     0    1
                                                                          4
BOOLEAN EXPRESSION:
  From Truth Table
                D0  AB              D1  A B
            D2  A B                 D3  AB
LOGIC DIAGRAM:
A       B
    A       B
                          D0  A B
                          D1  A B
                          D2  A B
                          D3  A B
                                                5
3 to 8 Line Decoder
Decoder:
  Block diagram of 3 to 8 decoder is shown in fig.
   A , B and C are the inputs. ( No. of inputs =3)
   No. of possible output combinations: 23=8
   No. of Outputs : 23=8, they are indicated by D0 to D7
   From the Truth Table it is clear that each output is “1” for only
    specific combination of inputs.
     A
                             . D0
     B        3X8            .
              Decoder        .
     C                       .
                              D7
     Inputs             Outputs
                                                                        6
TRUTH TABLE FOR 3 X 8 DECODER:
 INPUTS                         OUTPUTS
A   B   C   D0   D1   D2   D3   D4   D5   D6   D7
0   0   0   1    0    0    0     0    0   0    0    D0  A'B'C'
0   0   1   0    1    0    0     0    0   0    0    D1  A'B' C
0   1   0   0    0    1    0     0    0   0    0    D 2  A'BC'
0   1   1   0    0    0    1     0    0   0    0    D3  A'BC
1   0   0   0    0    0    0     1    0   0    0    D 4  AB'C'
1   0   1   0    0    0    0     0    1   0    0    D5  AB''C
1   1   0   0    0    0    0     0    0   1    0    D6  A BC'
1   1   1   0    0    0    0     0    0   0    1    D7  A BC
                                                            7
LOGIC DIAGRAM OF 3 X 8 DECODER:
            INPUTS
A       B            C
    A        B           C
                             D0  A B C
                             D1  A B C
                             D2  A B C
                             D3  A BC
                                          OUTPUTS
                             D4  A B C
                             D5  A B C
                             D6  A B C
                             D7  A B C
                                                    8
EXPANSION OF DECODERS:
The number of lower order Decoder for implementing higher order
  Decoder can be find as
No. of lower order required = m2/m1
Where, m1=No. of Outputs of lower order Decoder
          m2=No. of Outputs of higher order Decoder
                                                                  9
10
ENCODER
•   An Encoder is a combinational logic circuit.
•   It performs the inverse operation of Decoder.
•   The opposite process of decoding is known as Encoding.
•   An Encoder converts an active input signal into a coded output signal.
•   Block diagram of Encoder is shown in Fig. It has ‘M’inputs and ‘N’outputs.
•   An Encoder has ‘M’ input lines, only one of which is activated at a giventime,
    and produces an N-bit output code, depending on which input is activated.
          ‘M’ Inputs (2^N)
                             A0                                             B0
                                                                                   ‘N’ Outputs
                             A1                                             B1
                             A2                                             B2
                                                             - - - - - --
                                    - - - - - --
                                                   Encoder
                             AM-1                                           BN-1
                                                                                                 11
4 to 2 line Encoder
• Block Diagram of 4 to 2 line Encoder is shown in Fig.
• It has four inputs and two outputs.
• Only one input has one value at any given time.
                                                          12
TRUTH TABLE & DIAGRAM:
              INPUT                OUTPUT
    Y0   Y1       Y2      Y3   A1     A0    Expression for the
    1     0           0   0    0      0     truth table is,
    0     1           0   0    0      1
                                            A0=Y1+Y3
    0     0           1   0    1      0
                                            A1=Y2+Y3
    0     0           0   1    1      1
                                                              13
8 to 3 line Encoder -OCTAL TO BINARY
• Block Diagram of Octal to Binary Encoder is shown in Fig.
)ENCODER:
• It has eight inputs and three outputs.
• Only one input has one value at any given time.
• Each input corresponds to each octal digit and output generates
  corresponding Binary Code.
                       D0
                       D1                X
                       D2
                       D3
                          ENCODER        Y
                       D4
                       D5
                       D6
                                         Z
                       D7
             INPUT                      OUTPUT
                                                             14
TRUTH TABLE:
                    INPUT                        OUTPUT
    D0   D1    D2   D3   D4   D5   D6   D7   X     Y      Z
     1   0     0    0    0    0    0    0    0     0      0
     0   1     0    0    0    0    0    0    0     0      1
     0   0     1    0    0    0    0    0    0     1      0
     0   0     0    1    0    0    0    0    0     1      1
     0   0     0    0    1    0    0    0    1     0      0
     0   0     0    0    0    1    0    0    1     0      1
     0   0     0    0    0    0    1    0    1     1      0
     0   0     0    0    0    0    0    1    1     1      1
                                                              15
                  X  D 4  D5  D6  D7
                  Y  D 2  D3  D6  D7
LOGIC DIAGRAM:
                  Z  D1  D 3  D 5  D 7
D0 D1 D2   D3    D4 D5 D6 D7
                                             X  D 4  D5  D 6 D 7
                                             Y  D 2  D3  D 6 D 7
                                             Z  D1  D 3  D 5  D 7
                                                                  16
ENCODER & DECODER
 M=4
 M=22
 M=2N
 ‘M’ is the input and
 ‘N’ is the output
                        A0
                                                 B0
                        A1
                                                 B1
                        A2   Encoder   Decoder
                        A3                       B2
                             4x2       2x4
                                                 B3
                                                      18
ENCODER & DECODER
 M=4
 M=22
 M=2N
 ‘M’ is the input and
 ‘N’ is the output
               A0       00
               A1       01
               A2       10   Encoder   Decoder
               A3       11   4x2       2x4
                                                 19
ENCODER & DECODER
 M=4
 M=22
 M=2N
 ‘M’ is the input and
 ‘N’ is the output
               A0       00
                        01             1
               A1
                A2      10   Encoder       Decoder
                                       0
               A3       11   4x2           2x4
                                                     20
ENCODER & DECODER
 M=4
 M=22
 M=2N
 ‘M’ is the input and
 ‘N’ is the output
               A0       00
                        01             1
               A1
                A2      10   Encoder       Decoder
                                       0             10
               A3       11   4x2           2x4
                                                          21
THANK YOU
            21