0% found this document useful (0 votes)
50 views18 pages

Adobe Scan

Uploaded by

arunrajamech1
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
50 views18 pages

Adobe Scan

Uploaded by

arunrajamech1
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 18

The Sezuana shit Rayng us a type of

unit

8. The Base Crates and Gombinated


irwts.
Lae
O,-9A BCDEF
(Baie 2) 0,1
Birany
-’. Deimal (Baue io)
Octal (Base 8) 0-7

Aeza decina (BauR l6)


Ib) D-5

Biray to ctima!
(347 )a to (?
7x8
4x8' 32
2 2
142

-1 x5: (231)10

0O2

t60
:68

934) to - 7
(1625) to( 2.)
Deoinal to Biny ) (auy Nurnben )
2 ]1 ,3
()t to(9>a1 (231)1o b (2), 25-1

231 )
0.25 0.5
23, - 1
25
22 l3-47 Conmplement
Complement
Binany to octal Binany to Heza deind 1101011

fonyorcou (0o1D100 )
(U32 1), p) 16
Ddal to Headeimal io binany Conploment Subs trac t
(132); to (1e (6D4) t(). (10101b1)e - (100 |D|01)
(00.I o1 otbi1) 1's |00l0)ol:
0clal to hea olecimal:
(onoliolloo|) I

Henato ocla
to( ?)b

(E1)16 (altl
(0o10 10) {lo101bl
to deeinal: 2
O01010 lo

x2:0.5

,2
(-ol000060)
Ans: In:625
( CDEF)6 to (?, (187), b (2),
ol0 (I100101m01) 7x8°: 7
g2: 64
(CDEE b to(?),
(a16) to (2),
(ot It0)a
(146157)g
1 Codes:

7 8421 code
BCD (o a) 9424 Code

* roy ode
0. 1
Boote an Theorems:
Tdentity theonerm
13 Cormpleentany theunem A1ã -1 , A.A 0

COmudaive AtB:B+A ,A.B= B.A


14|
(AB).
Distributive lau AC B+c)- A8+AC, A +8C

Tdempotent
theonem

Inveluton theor em

AbSorbton lau A4 AB :A A (A18 ) A

A(G+ B): A8
Assoaive (auo Not NOR

A+ (8+c): (94B)+ A(BC) (AB) c


A A

B B+C A+(8+c) Ar B(A1B) tc

1
NAND

Y: 9.B
Y: Ae

Lenorgan's theovem:

A-B A. B

Ex - NOR
Logie Gates :
OR A

AND TL08
B
Y: A18

B
A y: AB1
5V
wivesal Ghates: NOT uung wOR.
NAND
NOR

NoT Ciate ung NAND (rake


OR NoA

OR Gale uing NAND iate : NoT NOR OR NOR

A+B

AND ing NoR


A.8 A-B = AB

AND Gtate wirg ate:


Y: A.B
NQND wng NOR
uing
NoR Gat NAND Grule A

-
B
be
13
bc a m7
(6
oobc
de de de de
be de de de Vebe
de Vaiablede abc
b a im
M3 abc M3:
t4 5
b+c a Mi àbc Mi
2
bc a mp
map Vaaiable
K 4 Vaiables
feins max munterms
maule Called
6
fach
2 tc) (atb (a+5+) (a+btc)
a 0
bc em: May
map Vauable
K 3 maVaiable:
p c 2
mnden
calle Proclucls
w
Map auah Kan 8ame which unlem unotuicua Eah
ab be +a bc abct
ab
abli) () ab mintgurn.
(C+) ab :
(âth|
1) +64c) tb+c)
( (a ab abe abct
ababct 2) ahC ab )
enpruon: lean
blauing
Bo
the tRodue (Pos) Gum of
procdud SoP) produck( ofSum
)
ab
Map: k-cung enprewon 1he Reclue
ab
cod cd 00 ab
cd
tdbd't-
be tb ac *)
qb
14 Qb
a
5 4 ab
bta
2
cd
Pair b
(o,l,6,7,99,
1312, 1), )f(o,b.c,d)=
Em Dar
Octet
2
Quod
Pair
4,3,0,*3 znl6, fab.c): Groupmg
) Map - k
Sm (o,1,3,7,9,1o, l315) :
RS
(o,1,3, 7, 9,lo,13,15)
RS RS RS RS RS Pa R1S RiS

00 2 P+a 00 0)
2
6 :) RPa t PRS tPRS
t SP?SP
15
|2
1 10
Plo 8 Rsp + RS P

+4R)( P1R1s) (PAQ+s) (P+R1S)


( wnyz) : Sm ( o,2, 6,8 ,10, ,19,14)
W 92 J2

fC PaRS) : <mo,, 3,7,9,10,13,15 )


Pa Rts RIS RIS RS
4 6
00
P+Q RS 00 (O
12
wN 0

0
fa bc) Sm (ol,3,4, 6,1) (3
be b Pta 10

:) (P+Q4R) CP+R15) (P+@ +s) (P +RS)

wt
o x 19)(G+z )(oiz)
(n ),
ab
fcabrt : Dmeo,2, 4461)
Mini mie the neun
abt abo + be +b
uing - mag
12
t

Sandan
t kblc+ ).
abCc+Á) + abc+ abc Quine dusteuy melnod Cfabalaion method),
ab + abdt abc + ad ?
fco,b.c, d): (o, 2)3, b,1,8, lo,12, 13)
Stepl
+ad( t .
ab (c+©)(d+d) t abd (C+) +abc(dtd) b cd SBep-g:
Cb t6) mo mo
abcd
abed + abed + abd
mg mg
Sowe k Map
m6
b

1
Mi2

0
Step 8:
ab \cd

Mo, m2
c + hdt ab
mo, m
áb

ab
m2 m6
Mio

Sm (o, 2, 4o6, 1,I, 13,15,


de 1,21,95,97,29,31
bc
de de ded o c Je de de de
be l6
bc
be
Mie, mi3 20 24
bc
12 be
23
bi

be + bea t ade
Mo,m8 ,m2 | Mo
P T- 03
me,m3,M6 mi
PT - 4

Prime 2
Impiconls
m3, mng

tri m3 , mb,m1
Sm(o,5, 6, 8,9,19,1l,16, 20,24,26, 26,27, 29,31) Eml1,4,8,10, ,20,22, 24, 25,26 ) + c (o, 19, l6, I )
de a L de
a bc

de dede de ded5 dë de de de
\de de de de be de de de ode, bc
3

bc 1
bc 5
6 21 23
be X
bc 93 22 I5 bc 29 29 31

be
bc 15 bc 20 24 3o bo
be
26

) b +Tde tabe tabele t a bce


m(, 3.6,10, I,12, 14,1 17,19, 224, 29, 20) nit. 4
de de
be be Combinaional Logic cYcui ts:
de de de de de dede de,
be 1 2
bc Problen dor mulaton and decin of (ombinatione
bc 6
be
20 22 aYuits.
bc be
15 I4 2 Deig n proedure:
b 23 25 2 26 26 25
’ Obseve fhe problem debnition
(0

- detenhune the No of i/p Vauabe.


/p Vauable.
Em CI3, 6,t0l, 12,14, 15/n19, 20, 22,
24,29, 3o) -> Assaig n Cettes (or Sumbos to the
the reqw'ed
de
-) DYaw truth toble that debines
a
de
be
de de de de bc de de de de yelaHonship. ate.

Cuing the deleruned
bc
&inpifie boolean anion
16 13
- Deteune the the
23 22
Draw the logie dingYarm .
Combinato nal ÜTut
bc be
T
20 29
wing tao losnave loye
be
bc ba
24 25 21 26 gales. NO . oi
haing
output.
ard
abd tobce deperco upon e preen t State
bee t cde 4abce outpuw
inpui .
gt doesn't Contains any menoney lensrt.
ode tonventes:
83 Be B. Bo

-o
1

1
to

10

18 7

12 2

B, Bo
Be. ). B.
82
1a 1 B Bo

83
Ba
Binay to BC D: Binany panallel addert

8g 82 Bo D4 Dg De D, Do

Ie le. e, lEo
2)

10
3)

Bo

(ou)

Caty Cok a head adden:


(ang projagate

Cuny
8CO adden:

So

Da

4
So

6
3

1
()

2 bil magitude Ompaulor :


Bo

1
bi tompoulor:
13

()
BoB,
9,8 BBo 8,8 Br8o
A,Ao A8
dor
AZB
2

6
5/

19 15

Decoden:
8,Bo B,B6 8,6o 8,B
dor A>8 n Vo ine, ünes

6
2 :4 Deoden
) AiB1 +AoBBot
AAo
A,AoBo 3:8 Deoclen

8.Bo

8160 8,Bo B, Bo BBo

0
3:8 Deode

Aa A Ao

o0

Y2

You might also like