0% found this document useful (0 votes)
464 views11 pages

Trigonometry

Angle of elevation=Angle of depression

Uploaded by

aksh12.ag
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
464 views11 pages

Trigonometry

Angle of elevation=Angle of depression

Uploaded by

aksh12.ag
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

MENTI-CLASS-X

INTRODUCTION TO TRIGONOMETRY
8
TRIGONOMETRY
BY B K SINGH OBJECTIVE SECTION
[BASIC/STANDARD]

I. MULTIPLE CHOICE QUESTIONS


1. The value of (sin 30° + cos 30°) – (sin 60° + cos 60°) is
(a) –1 (b) 0 (c) 1 (d) 2
tan 30°
2. The value of is
cot 60°
1 1
(a) (b) (c) 3 (d) 1
2 3
3. The value of (sin 45° + cos 45°) is
1 3
(a) (b) 2 (c) (d) 1
2 2
4
4. If cos A = , then the value of tan A is
3 5 3 4 5
(a) (b) (c) (d)
5 4 3 3
1
5. If sin A = , then the value of cot A is
2
1 3
(a) 3 (b) (c) (d) 1
3 2
6. The value of the expression cosec (75° + θ) – sec (15° – θ) – tan (55° + θ)
+ cot (35° – θ)] is
3
(a) –1 (b) 0 (c) 1 (d)
2
a
7. Given that sin θ = , then cos θ is equal to
b
b b b2 − a 2 a
(a) (b) (c) (d)
2
b − a 2 a b b − a2
2

8. If cos (α + β) = 0, then sin (α – β) can be reduced to


(a) cos β (b) cos 2β (c) sin α (d) sin 2 α
9. The value of tan 1° tan 2° tan 3° ... tan 89° is
1
(a) 0 (b) 1 (c) 2 (d)
2
10. If cos 9α = sin 9α and α < 90°, then the value of tan 5α is
1
(a) (b) 3 (c) 1 (d) 0
3
11. If ∆ ABC is right angled at C, then the value of cos (A + B) is
Real Numbers 43
1 3
(a) 0 (b) 1 (c) (d)
2 2
12. If sin A + sin2 A = 1, then the value of the expression (cos2 A + cos4 A) is
1
(a) 1 (b) (c) 2 (d) 3
2
1 1
13. Given that sin α = and cos β = , then the value of (α + β) is
2 2
(a) 0° (b) 30° (c) 60° (d) 90°

 sin 2 22° + sin 2 68° 


14. The value of the expression  + sin 2
63° + cos 63°sin 27° is

2 2
 cos 22° + cos 68° 
(a) 3 (b) 2 (c) 1 (d) 0

 4 sin θ − cos θ 
15. If 4 tan θ = 3, then   is equal to
 4 sin θ + cos θ 
2 1 1 3
(a) (b) (c) (d)
3 3 2 4
16. If sin θ – cos θ = 0, then the value of (sin4 θ + cos4 θ) is
3 1 1
(a) 1 (b) (c) (d)
4 2 4
17. sin (45° + θ) – cos (45° – θ) is equal to
(a) 2 cos θ (b) 0 (c) 2 sin θ (d) 1
18. The value of cos226° – sin2 64° is
(a) 1 (b) –1 (c) 0 (d) 2
19. If sec θ + tan θ = m, then tan θ is equal to
m2 − 1 m2 + 1 m2 − 1 m2 + 1
(a) (b) (c) (d)
2m 2m m m
sin θ
20. is equal to
1 + cos θ
1 + cos θ 1 − cos θ 1 + cos 2 θ 1 − sin 2 θ
(a) (b) (c) (d)
sin θ sin θ sin θ sin θ
21. If triangle ABC is right angled at C, then the value of sec (A + B) is [Cbse (sp) 2019]
2
(a) 0 (b) 1 (c) (d) not defined
3
22. If sinθ + cosθ = 2 cosθ, (θ ≠ 90°), then the value of tanθ is [Cbse (sp) 2019]
(a) 2 −1 (b) 2 +1 (c) 2 (d) – 2

3
23. Given that sin α = and cos β = 0, then the value of β – α is [Cbse (sp) 2019]
2
(a) 0° (b) 90° (c) 60° (d) 30°
21 ,
24. Given cot θ = then cosec θ =
20
44 Mathematics - 10
21 29 20 29
(a) (b) (c) (d)
20 21 29 20
P
25. In the figure, tanP – cotR =
(a) –1 (b) 1 cm
12 13 cm

12
(c) 0 (d)
13 R Q

26. The value of cos267° – sin223° =


1
(a) 1 (b) –1 (c) 0 (d)
2
 Α + Β
27. A, B, and C are interior angles of ∆ABC, then cosec  =
 2 
C
(a) sin C (b) tan B (c) cos A (d) sec
2 2 2 2
28. If tan 2A = cot (A – 24°), then A =
(a) 32° (b) 35° (c) 37° (d) 38°
29. The value of sin233° + sin257° =
(a) 1 (b) –1 (c) 1 (d) 0
2
tan 36°
30. The value of =
cot 54°
(a) 0 (b) 1 (c) –2 (d) 3
31. If cosec2θ (1 + cosθ) (1 – cosθ) = k, then the value of k is
(a) 0 (b) –1 (c) 1 (d) 1
2
4
32. If tan A = , then sin A + cos A =
3
2 3 4 7
(a) (b) (c) (d)
5 5 11 5
33. If ∆ACB is right angled at C and AB = 29 units, BC = 21 units, and ∠ABC = θ, then
sin2θ + cos2θ =
29 21
(a) (b) (c) 0 (d) 1
21 29
34. In right triangle ABC, right angled at B, if tan A = 1, then 2sin A.cos A =
1
(a) 1 (b) –1 (c) 0 (d)
2
35. In ∆OPQ, right angled at P, OP = 7 cm and OQ – PQ = 1 cm, then sin Q + cos Q =
7 24 31 7
(a) (b) (c) (d)
25 25 25 24
36. If 15 cot A = 8, then sec A =
8 17 15 8
(a) (b) (c) (d)
17 8 8 15

Real Numbers 45
P
37. In the given figure, ∆PQR is right-angled at Q, PQ = 3 cm,
PR = 6 cm. The value of ∠QPR – ∠PRQ =
(a) 15° (b) 30°

(c) 45° (d) 10° Q R

1 1
38. If sin(A – B) = ; cos(A + B) = , then sin(A + B) =
2 2
1 1 3
(a) (b) (c) (d) 1
2 2 2

39. In ∆ABC, right-angled at B, AB = 5 cm A

BC
and ∠ACB = 30°, then =
AC
1 3
(a) (b)
2 2 B
30°
C
(c) 5 3 (d) 10 cm
1
40. If tan(A + B) = 3 and tan(A – B) = , then sec(A – B) =
3
3 2 1
(a) (b) (c) 3 (d)
2 3 3
41. If sin 3A = cos(A – 26°), then the value of A is
(a) 29° (b) 32° (c) 36° (d) 42°
42. If tan 2A = cot(A – 18°), then the value of A is
(a) 32° (b) 35° (c) 36° (d) 38°
43. If sec 4A = cosec(A – 20°), then measurement of ∠A =
(a) 19° (b) 21° (c) 22° (d) 26°

Β+C
44. If A, B and C are interior angles of a triangle ABC, then sin  =
 2 
(a) cosec A (b) tan A (c) sec A (d) cos A
2 2 2 2
45. secθ(1 – sinθ) (secθ + tanθ) =
(a) 0 (b) 1 (c) 1 (d) none of these
2
sin 2 52° + sin 2 38°
46. =
cos 2 26° + cos 2 64°
(a) 0 (b) 1 (c) 1 (d) none of these
2
47. sin 72°.cos 18° + cos 72°. sin 18° =
(a) 1 (b) 1 – sin2θ (c) cos2θ (d) 0
48. 9 sec2θ –9 tan2θ =
(a) 1 (b) 9 (c) 8 (d) 0
46 Mathematics - 10
49. (1 + tanθ + secθ) (1 + cotθ – cosecθ) =
(a) 0 (b) 1 (c) 2 (d) –1
2
1 + tan θ
50. =
1 + cot 2 θ
(a) sec2θ (b) –1 (c) cot2θ (d) tan2θ
51. (secθ + tanθ) (1 – sinθ) =
(a) secθ (b) sinθ (c) cosecθ (d) cosθ
2
52. 2cos2θ +
1 + cot 2 θ
(a) 1 (b) 2 (c) 0 (d) 1
2
3 − tan θ
53. Simplified form of is
3 cosec θ − sec θ
(a) cosθ (b) sinθ (c) cosecθ (d) tanθ
2 sin 2 63° + 1 + 2 sin 2 27°
54. =
3 cos 2 17° − 2 + 3 cos 2 73°
(a) 1 (b) 3 (c) 0 (d) 3
2 2
cos 2 40° + cos 2 50°
55. cos(40° + θ) – sin(50° – θ) + =
sin 2 40° + sin 2 50°
(a) 1 (b) 1 (c) 0 (d) none of these
2

56. If 3 tanθ = 3sinθ, then sin2θ – cos2θ =


1
(a) 1 (b) 1 (c) 1 (d)
2 3 3
sin θ 1 + cos θ
57. + =
1 + cos θ sin θ
(a) 2sinθ (b) 2cosθ (c) 2tanθ (d) 2cosecθ
a
58. If sinθ = , then tanθ =
a + b2
2

(a) b (b) a (c) – a (d) –b


a b b a
cos θ cos θ
59. + =
1 − sin θ 1 + sin θ
(a) 2sinθ (b) 2cosθ (c) 2cosθ (d) 2secθ
sin θ − 2 sin 3 θ
60. =
2 cos3 θ − cos θ
1
(a) cotθ (b) tanθ (c) (d) secθ
sin θ
61. If tanθ + cotθ = 2, then tan1000θ + cot100θ =

Real Numbers 47
1
(a) 100 (b) (c) –2 (d) 2
100
62. If sinθ + cosθ = 2 sin(90° – θ), then cot θ =
1
(a) 2 (b) 2–1 (c) 2 +1 (d)
2
63. If a cosθ – b sinθ = c, then a sinθ + b cosθ =
(a) ± a 2 + b2 + c2 (b) ± a 2 − b 2 + c 2 (c) ± a 2 − b2 − c2 (d) ± a 2 + b2 − c2
sin 50° cosec 40°
64. + – 4cos50°.cosec40° =
cos 40° sec 50°
(a) 1 (b) 2 (c) –2 (d) 0
65. If cosθ + sinθ = 2 cosθ, then cosθ – sinθ =
1
(a) 2 tanθ (b) 2 cotθ (c) sinθ (d) 2 sinθ
2
p2 − 1
66. If secθ + tanθ = p, then =
p2 + 1
(a) tanθ (b) cosθ (c) sinθ (d) cosecθ
67. sin6θ + cos6θ + 3sin2θ.cos2θ =
(a) 0 (b) 1 (c) 2 (d) –2
68. If sinθ + cosθ = 3 , then tanθ + cotθ =
(a) 1 (b) –1 (c) 2 (d) –2
3
69. If tanA = , then sinA.cosA =
4
11 13 12 17
(a) (b) (c) (d)
25 25 25 25
70. If 3 tanθ = 1, then sin2θ – cos2θ =
–1 1 3 5
(a) (b) (c) (d)
2 2 2 2
71. (1 + tan2θ) (1 – sinθ) (1 + sin2θ) =
(a) 0 (b) –1 (c) 1 (d) 2
72. If 2sin2θ – cos2θ = 2, then the value of θ is =
(a) 60° (b) 30° (c) 0° (d) 90°
cos 2 (45° + θ) + cos 2 (45° − θ)
73. =
tan(60° + θ).tan(30° − θ)
(a) 0 (b) 1 (c) 2 (d) –1
2
p −1
74. If cosecθ + cotθ = p, then =
p2 + 1
(a) sinθ (b) tanθ (c) cosecθ (d) cosθ
75. If sinθ + 2cosθ = 1, then 2sinθ – cosθ =
(a) 1 (b) 0 (c) –2 (d) 2

48 Mathematics - 10
p2 + 1
76. If tanθ + secθ = p, then =
2p
(a) sinθ (b) cosθ (c) secθ (d) tanθ
sin 3 θ + cos3 θ
77. + sinθ.cosθ =
sin θ + cos θ
1
(a) 0 (b) 1 (c) –1 (d)
2
sec θ − 1 sec θ + 1
78. + =
sec θ + 1 sec θ − 1
(a) 2 sinθ (b) 2 cosecθ (c) 2 tanθ (d) 2 secθ
(1 − cot θ)2
79. + 2 sinθ.cosθ =
cosec2 θ
(a) 1 (b) 0 (c) 2 (d) –2
sin 43° cot 30°
80. 2 − − 2 sin 45° =
cos 47° tan 60°
(a) 2 (b) –1 (c) 1 (d) 0
2 2
sin 47°   cos 43° 
81.  + – 2 cos2 45° =
 cos 43°   sin 47° 
(a) –2 (b) 2 (c) 0 (d) 1
cos 80°
82. + 2 sin 59°.cosec 31° – 3tan 49° tan 41° =
sin 10°
3
(a) 0 (b) 1 (c) (d) –1
2
83. cot4 θ – cosec4θ + cot2θ + cosec2θ =
(a) 0 (b) 1 (c) –1 (d) 2
1 1
84. If cot θ + = 2, then cot2θ + =
cot θ cot 2 θ
(a) 1 (b) 2 (c) –1 (d) –2
85. If sin θ + cos θ = 1, then the value of sin θ.cos θ =
(a) 1 (b) 0 (c) –1 (d) 2
86. If sin θ + cosec θ = 2, then the value of sin2θ + cosec2θ =
(a) 1 (b) 0 (c) 3 (d) 2

cosec2 θ − cot 2 θ 7
87. If 4 sin θ = 3 and 2 + 2cotθ = + cos θ, then the value of x is
sec θ − 1 x
1 5 4 3
(a) (b) (c) (d)
3 3 3 4
15 (2 + 2 sin θ)(1 − sin θ)
88. If cot θ = , then =
8 (1 + cos θ)(2 − 2 cos θ)
25 64 225 225
(a) (b) (c) (d) –
64 225 64 64
89. 5 tan2 θ – 5 sec2 θ =
(a) –5 (b) 5 (c) 0 (d) 1

Real Numbers 49
3
90. If cosec θ = , then the value of 2(cosec2 θ + cot2 θ) =
2
7
(a) 5 (b) 6 (c) 7 (d)
5
2 , cosec2 θ − sec2 θ
91. If tan θ = then =
5 cosec2 θ + sec2 θ
1 5 1 5
(a) (b) (c) (d)
3 7 9 9
92. If cosec θ – sin θ = a, sec θ – cos θ = b, then a2 b2(a2 + b2 + 3) =
(a) 3 (b) –3 (c) 1 (d) –1
93. sec4 θ (1 – sin2 θ) – 2tan4 θ =
(a) 0 (b) 1 (c) –1 (d) none of these
94. cot 18°.cot 39°.cot 51°.cot 60°.cot 72° =
2 1
(a) 3 (b) (c) (d) 1
3 3
2 2
 x 3  y 3
95. If x = a cos3θ, y=b sin3θ,
then   +   =
a b
1 2 3
(a) (b) (c) (d) 1
3 3 2
sin 43° cot 30°
96. 2 − – 2 sin 45° =
cos 47° tan 60°
(a) 2 (b) –2 (c) 2 (d) 0
1 2 tan θ
97. If tan 30° = , then, using tan2θ = , the value of tan 60° =
3 1 − tan 2 θ
1
(a) (b) 3 (c) 0 (d) not defined
3
98. [cos(90° – θ) + sin(90° – θ)]2 + [sin(90° – θ) – cos(90° – θ)]2 =
(a) 0 (b) 1 (c) 2 (d) –1
cos(90° − θ).cos θ
99. + cos2(90° – θ) =
tan θ
(a) 1 (b) –1 (c) 0 (d) none of these
2 2
 sin 47°   cos 43° 
100.  + – 4cos2 45° =
 cos 43°   sin 47° 
(a) 1 (b) 0 (c) 2 (d) –1

II. FILL IN THE BLANKS

3 1
1. If sin A = , then tan A + = ______________
5 cos A

7,
2. If cos θ = then the value of tan θ + cot θ = ___________
25

50 Mathematics - 10
13 ,
3. If cosec θ = then the value of cot θ + tan θ = ___________
12
3,
4. If sin θ = then the value of 2cot2 θ –1 = ___________
2
1 ,
5. If tan θ = then 7 sin2 θ + 3 cos2 θ = _____________
3
6. In a right triangle PQR, right angled at Q, if tan P = 1, then, 2 sin P. cos P = _______
7. If cos A = cos 60°.cos 30° + sin 60°.sin 30°, then the value of A = _________.
1 ,
8. If A and B are acute angle such that tan (A + B) = 3 and tan (A – B) = then
A + B = __________ 3

9. If 3 tan2 A – 1 = 0 (0° < A < 90°), then A = _________.

10. If 3 cot 2A = 1, [0° < A < 90°], then A = __________.


5
11. If cosec θ = , then 5 sin θ – 3 tan θ = ___________.
4
12. If cos x = cos 60°.cos 30° + sin 60°.sin 30°, then x = ___________.
13. If 3 sin θ + 5 cos θ = 5, then 5 sin θ – 3 cos θ = _________
2  2 1 
14. If cosec θ = 2x and cot θ = , then 2  x − 2  = ___________
x  x 
2  1 
15. If 2x = sec θ and = tan θ, then  x 2 − 2  = ___________
x  x 
x y x y x2 y 2
16. If sin θ – cos θ = 1 and cos θ + sin θ = 1, then 2 + 2 = _________.
a b a b a b
17. If 5 sin θ + 7 cos θ = 7, then 7 sin θ – 5 cos θ = ___________.
18. If cos θ + cos2 θ = 1, then the value of sin2 θ + sin4 θ = _____________
19. If 7 sin2 θ + 3 cos2 θ = 4, then tan θ = _____________
20. (sin4 θ – cos4 θ + 1) cosec2 θ = ___________
cos 70° cos 59°
21. + – 8 sin2 30° = ___________
sin 20° sin 31°
22. cot 1°.cot 2°.cot 3° ..... cot 89° = __________
23. If xsin (90° – θ). cot(90° – θ) = cos(90° – θ), then x = _____________
 sec2 59° − cot 2 31°  2 2 2 x
24. If 4   – 3 sin 90° + 3 tan 56°.tan 34° = 3, then x = ____________
 3 
25. (sec 13° – cot 77°) (sec 13° + cot 77°) = _________

III. VERY SHORT ANSWER QUESTIONS


1. Find the value of sin A sec A cot A.

Real Numbers 51
2
2. Find the value of (1 + tan θ) .
sec2 θ
3
3. If sin A = , then find the value of cos A + sec A.
5
4. If θ ≤ 0° ≤ 90°, then what is the minimum value of sin θ.
1 1
5. As we know, can always be written as x–1, x ≠ 0. Can we also write as sin–1A?
x sin Α
6. Find the value of 2sin 30° cos 30°.
7. Find the value of cos 45° sin 30° + cos 30° sin 45°.
5
8. Can sin θ be equal to
for some angle θ?
3
5
9. Can tan θ be equal to for some angle θ?
3
sin 44°
10. Evaluate + tan 45°.
cos 46°
11. Express tan 72° + sin 69° in terms of t-ratios of angles between 0° and 45°.
12. Find the value of 4 sec2 θ – 4 tan2 θ
13. Evaluate sin2 60° + 2 tan 45° – cos2 30°. [Cbse 2019]
3
14. If sin A = , find sec A. [Cbse 2019]
4
15. Find A if tan 2A = cot(A – 24°). [Cbse 2019]
16. Find the value of (sin2 33° + sin2 57°) [Cbse 2019]
17. Find the value of (cos2 67° – sin2 23°) [Cbse 2018]

ANSWERS
I. Multiple Choice Questions :
1. (b) 2. (d) 3. (b) 4. (b) 5. (a) 6. (b) 7. (c)
8. (b) 9. (b) 10. (c) 11. (a) 12. (a) 13. (d) 14. (b)
15. (c) 16. (c) 17. (b) 18. (c) 19. (a) 20. (b) 21. (d)
22. (a) 23. (d) 24. (b) 25. (c) 26. (c) 27. (d) 28. (d)
29. (a) 30. (b) 31. (d) 32. (d) 33. (d) 34. (a) 35. (c)
36. (b) 37. (b) 38. (c) 39. (c) 40. (b) 41. (a) 42. (c)
43. (c) 44 (d) 45. (c) 46. (c) 47. (a) 48. (b) 49. (c)
50. (d) 51. (d) 52. (b) 53. (b) 54. (d) 55. (b) 56. (c)
57. (d) 58. (b) 59. (d) 60. (b) 61. (d) 62. (c) 63. (d)
64. (c) 65 (d) 66. (c) 67. (b) 68. (a) 69. (c) 70. (a)
71. (c) 72. (d) 73. (b) 74. (d) 75. (d) 76. (c) 77. (b)
78. (b) 79. (a) 80. (d) 81. (d) 82. (a) 83. (a) 84. (b)
85. (b) 86. (d) 87. (c) 88. (c) 89. (a) 90. (c) 91. (c)
92. (c) 93. (b) 94. (c) 95. (d) 96. (d) 97. (b) 98. (c)
99. (a) 100. (b)

52 Mathematics - 10
II. Fill in the Blanks :
625 –1
1. 2 2. 3. 169 4. 5. 4
168 60 3
6. 1 7. 30° 8. 60° 9. 30° 10. 30°
11. 0 12. 30° 13. ± 3 14. 1 15. 1
2 4
1
16. 2 17. ± 5 18. 1 19. 20. 2
3
21. 0 22. 1 23. 1 24. 11 25. 1
III. Very Short Answer Questions :
41
1. 1 2. 1 3. 4. 0 5. no
20
3 2 +1
6. 7. 8. no 9. yes 10. 2
2 2 2
4
11. cot 18° + cos 21° 12. 4 13. 2 14.
7
15. 38° 16. 1 17. 0

Real Numbers 53

You might also like