0% found this document useful (0 votes)
17 views9 pages

Guided Revision: Solution Section-I Single Correct Answer Type 19 Q. (3 M (-1) )

gr

Uploaded by

qwervanshi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
17 views9 pages

Guided Revision: Solution Section-I Single Correct Answer Type 19 Q. (3 M (-1) )

gr

Uploaded by

qwervanshi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

GUIDED REVISION

JEE (Advanced) 2024 2024


JEE (Advanced)
ENTHUSIAST
ENTHUSIAST COURSE COURSE
STAR BATCH
STAR BATCH

PHYSICS GR # CENTRE OF MASS AND MOMENTUM

SOLUTION
SECTION-I
Single Correct Answer Type 19 Q. [3 M (–1)]
1. Ans. (C)
Sol. To remain in equilibrium C must be CM of semicircular disc.
4R
(\ IMg = 0) So OC = = 1.33 m
3p
2. Ans. (C)
u u
Sol. In (i) & (ii) will be no impulse by string & A will not move v B = but in (iii), v B = , A will also move
2 3
u
vA =
3
3. Ans. (C)
4. Ans. (B)
5. Ans. (C)
6. Ans. (A)
7. Ans. (C)
u/3 u/3
B A
Sol. 2m m

mu = 2mV + mV
V = u/3
1
2
(
k 02 - x 2 )
1 1 1
m ( u / 3 ) + 2m ( u / 3 ) - mu 2
2 2
=
2 2 2
8. Ans. (B)
1
Sol. F (x1 + x2) = k (x1 + x2)2
2
2F
(x1 + x2) =
K
9. Ans. (A)
2 m×v

v0
Sol.
q

mv 1
m × v = mv1 sin q
2mv0 = mv1 cos q

Physics / GR # Centre of mass and Momentum E-1/9


GUIDED REVISION
JEE (Advanced) 2024
ENTHUSIAST COURSE
STAR BATCH

v
Þ = tan q
2v 0
1
´ 2mv 20 = 3 ´ 10 9
2
1
´ mv 2 = 2 ´ 10 9
2

3 ´ 10 9 4 ´10 9
v0 = v=
m m

4 1
2´ = tan q =
3 3
q = 30°
4 ´ 10 9 10 9
v1 = 2 =4
m m
1 1
E f = ´ mv 2 + mv12
2 2
1 10 9
= + ´ ´ ´
2 m 16 = 10GJ
2 m
10. Ans. (D)
11. Ans. (A)
12. Ans. (C)
Sol. Let bigger prism moves a distance X towards left then in horizontal direction
2L
5MX = M (4L–x) Þ 6MX = 4ML Þ X =
3

5M
M

5L

13. Ans. (D)


e(vcos37°)

vsin37° vsin37°
vcos37°
Sol. v=Ö2gh

Before collision After collision


Þ After collision, net velocity in vertical direction will be
vy = (e v cos 37°) cos 37° – (v sin 37°) sin 37°

E-2/9 Physics / GR # Centre of mass and Momentum


GUIDED REVISION
JEE (Advanced) 2024
ENTHUSIAST COURSE
STAR BATCH
2 2
3 æ4ö æ3ö
= v ´ç ÷ - vç ÷
4 è5ø è5ø
3v
Þ vy =
25
v 2y 9v 2 9 9h
Þ h max = = = ´ 2gh =
2g 1250g 1250g 625
14. Ans. (B)

ò (dm)(r) x
Sol. x cm =
ò dm dx
a

ò rdm = ò 2kx ´ rxdx


2

a
2kra 4
ò0
3
= 2kp x dx =
4

ò dm = ò 2kx rdx
2

2kra 3 3
= ; x cm = a
3 4
ycm = 0 as object is symmetric about x = 0
15. Ans. (C)
Sol. Initial mass = 4000 kg
µvrel – mg = ma
µ × 980 – 4000 × 9.8 = 4000 × 19.6
µvrel

mg

Þ µ = 40 + 80 = 120
16. Ans. (D)
v
Sol. M

Energy loss will be maximum when collision will be perfectly elastic


mM v'
(By momentum) mv = (m + M)v'
mv
Þ v' =
m+M
Maximum energy loss = Ki – Kf
1 1
= mv2 – (m + M)v'2
2 2

Physics / GR # Centre of mass and Momentum E-3/9


GUIDED REVISION
JEE (Advanced) 2024
ENTHUSIAST COURSE
STAR BATCH

1 1 m 2v 2
= mv – (m + M)
2
2 2 (m + M)2

1 é m ù
= mv 2 ê1 - ú
2 ë m + Mû

æ M ö1
=ç ÷ mv2
èm +Mø2
statement 1 is false.
17. Ans. (C)
Sol. Area of F-t graph gives change in momentum and above area is taken positive and down area is negative.
F(t)

4N

q 3s 4.5s
t
O q
x

4 x
tan q = = Þ x =2
3 1.5
1 1
Þ Area = ´ 3 ´ 4 + ( -2 )(1.5 ) = mv
2 2
Þ 6 – 1.5 = 2v
4.5
Þ v= = 2.25
2
1 1
mv 2 = 2 ´ ( 2.25 ) = 5.06 J
2
Þ K.E. =
2 2
18. Ans. (B)
Sol. When a particle of mass m, moving with velocity u, collides with stationary particle of mass km elastically,
2u
then velocity of second particle is , here velocity of 4kg particle after all collision is
km + 1

æ 20 ö
2ç ÷
è m +1 ø = 40
æ4 ö æ 4ö
ç m + 1÷ ç5 + m + m ÷
è ø è ø
This is maximum when m = 2kg
19. Ans. (A)

Sol.

From frame of plate, particles come at v and go at v.


Dp = 2mv

E-4/9 Physics / GR # Centre of mass and Momentum


GUIDED REVISION
JEE (Advanced) 2024
ENTHUSIAST COURSE
STAR BATCH

dp dN
F= = ´ 2mv
dt dt
dN dv
= ´ ´ 2mv
dv dt
= n × A × 2mv2
dv
Mg – 2mnAv2 = Mv
dx
vdv dx
ò Mg - 2mnAv M 2

Mg – 2mnAv = z – 4mnAvdv = dz
2

v 4mnAx
ln(Mg - 2mnAv 2 ) = -
0 M
4mnAx
Mg - 2mnAv 2 -
= -e M
Mg
4mnAx
-
1-e M
v=
2mnA

4´10 -3 ´104 ´10-2 ´10


-
1-e 1
æ 1 ö
= -3 4 -2
= 5 ç1 - 4 ÷
2 ´ 10 ´ 10 ´ 10 è e ø
Multiple Correct Answer Type 4 Q. [4 M (–1)]
20. Ans. (A, C)
21. Ans. (A,B,C)
Sol. m1u1 + m2u2 = m1v1 + m2v2
v2 = 6 m/s
æ v - v1 ö æ 6 - 1 ö 5
e = -ç 2 =ç ÷= = 0.2
è u2 - u1 ø÷ è 4 + 21ø 25

1 1 1 1
´ 1 ´ ( 21) + ´ 2 ´ ( 4) - ´ 1 ´ 1 - ´ 2 ´ 62 = 200J , mDv = 1 × (21–1) = 20 N-s
2 2
Dk =
2 2 2 2
22. Ans. (A,B,C,D)
dm
Sol. = 5kg / s
dt f
vC = 0.75 m/s
Fext – f = 0 f
Fext = f Fext

r mdvr r dm
f= - v rel
dt dt

(
f iˆ = - 0 - vC iˆ ) dm
dt
f = 0.75 × 5

Physics / GR # Centre of mass and Momentum E-5/9


GUIDED REVISION
JEE (Advanced) 2024
ENTHUSIAST COURSE
STAR BATCH
f = 3.75 N
f
W = ò Fext dS = 3.75 (S) = 3.75 (v t)
C
i

W = 3.75 (0.75 × 1)
= 2.81 J
dk 1 æ dm ö 2
= v
dt 2 çè dt ÷ø
1
( 5) ´ ( 0.75 )
2
=
2
= 1.41 J
23. Ans. (A, B, D)

Sol.

u cos 60° = v1 cos 30°


u
v1 =
3
v1 cos60° 1
e= =
u cos30° 3
1 v sin f v sin f
= 2 °
= 2
6 v1 cos30 u 3
´
3 2
v1 cos 60° = v2 cos f
u 1
´ = v 2 cos f
3 2
u
= v 2 sin f
12
1 1 4 3
v2 = u + =
144 12 12
1 1
tan f = ´2 3 =
12 2 3

E-6/9 Physics / GR # Centre of mass and Momentum


GUIDED REVISION
JEE (Advanced) 2024
ENTHUSIAST COURSE
STAR BATCH
SECTION-II
Numerical Answer Type Question 1Q.[3M(0)]
(upto second decimal place)
24. Ans. 1.25 m

SECTION-III
Numerical Grid Type (Ranging from 0 to 9) 2 Q. [4 M (0)]
25. Ans. 4

26. Ans. 3 N
Sol. For collision in normal direction : eucos30° = vcos60°
u 30° 60°
1 v
and in tangential direction usin 30° = vsin60° Þ we get e = 30° 60°
3
SECTION-IV
Matrix Match Type (4 × 5) 2 Q. [8 M (for each entry +2(0)]
27. Ans. (A)®(P,R,T); (B)®(Q,S); (C)®(P,S,T); (D)®(P, S, T)
Sol. No external force along horizontal in A, C, D so center of mass will remain at rest and linear momentum
will always remain constant.
In B work is done by F so mechanical energy increases.
In C, D internal forces of man does work so mechanical energy increases
28. Ans. (A)-P,Q,R,S; (B)-P,R,S; (C)-P,Q; (D)-P,Q
Sol. 2 3 6

3´ 2 2
v CM = =
9 3
centre of mass frame
4/3 2/3

3 6
(A) no deformation
velocity in ground frame
2 3 6 v=0

centre of mass frame


v=0 v=0
3 6
(B) no deformation
velocity in ground frame
2/3 3 2/3 6

centre of mass frame


4/3 2/3
3 6
(C) Deformation is zero
velocity in ground frame
3 2/3 6 v=0

Physics / GR # Centre of mass and Momentum E-7/9


GUIDED REVISION
JEE (Advanced) 2024
ENTHUSIAST COURSE
STAR BATCH

centre of mass frame


v=0 v=0
3 6
(D) Deformation is maximum
velocity in ground frame
2/3 3 2/3 6

Subjective Type 4Q. [4 M (0)]


10
29. Ans. v1 = m/s, t = 2/3 sec, solved
3
13
30. Ans. (a) 20 , (b) , (c) 15
2
r
Sol. v G = 4 ĵ
r
v P = 2î
r
(a) v G / P = 4ˆj - 2î = - 2î + 4ˆj
r
\ v G / P = 20

r 2 ´ 4ˆj + 6 ´ 2î 3î


(b) v CM = = + ĵ
8 2
r 9 13
v CM = +1 =
4 2
r r r 3
(c) v G / CM = v G – v CM = - î + 3ˆj
2
r r r 1
v P / CM = v P – v CM = î - ˆj
2
1 æ9 ö 1 æ1 ö 45 15
KEsys/CM = (2)ç + 9 ÷ + ´ 6ç + 1÷ = + = 15
2 è4 ø 2 è4 ø 4 4
r
31. Ans. PPM = m vPM
= - mv2 sin w t iˆ + m(v2 cos w t - v1 ) ˆj

v2 v2cosq
q
v2sinq
v1
q=wt
Sol.

E-8/9 Physics / GR # Centre of mass and Momentum


GUIDED REVISION
JEE (Advanced) 2024
ENTHUSIAST COURSE
STAR BATCH

v2
w=
R
r
v rel = ( -v 2 × sin q ) iˆ + ( v 2 cos q - v1 ) ˆj

= ( - v 2 × sin wt ) iˆ + ( v 2 cos wt - v1 ) ˆj
r r
Prel = m × v rel
= -mv 2 sin wt iˆ + m ( v 2 cos wt - v1 ) ˆj
32. Ans: vB = 55/36m/s, vA = 11/6 m/s, solved
Sol. Given vD/C = 6 m/sec
Case Ist
C.O.L.M.
r r
O = MD v D + mB v B
r r
v D = -6i + v B
\ i.e. vD = – 5î toword A
Case II In this condition when dog & trolly A will move with common speed again
nd

C.O.L.M. – 5i × 4 = (20 + 4) vcommon


vcommon = – 5/6 î
so will jumping from A ® B
r r
v D = 6î + v A

î = ( 6î + vr × 4 + vr A . 20
( )
5
– (24) ×
6 A

11
vA = – î
6
Case IIIrd
11 25
vD = 6 – î = î
6 6
r r
MD v D + M B v B = (MB + MD) vcommon
11
\ vcommon = m/sec Ans.
6

Physics / GR # Centre of mass and Momentum E-9/9

You might also like