Cthuc
Cthuc
1
Unloaded BJT Transistor Amplifiers
Configuration Zi Zo Av Ai
Fixed-bias: Medium (1 k) Medium (2 k) High (- 200) High (100)
VCC
Io = RB 7 bre = RC 7 r o (RC 7 ro) bRBro
RC = - =
RB re (ro + RC)(RB + bre)
Ii
+ ⬵ bre ⬵ RC
Vo RC ⬵ b
+ Zo
– (RB Ú 10bre) (ro Ú 10RC) ⬵ -
Vi re
Zi (ro Ú 10RC,
–
(ro Ú 10RC) RB Ú 10bre)
Emitter- High (100 k) Low (20 ) Low ( ⬵1) High (- 50)
follower: VCC
= RB 7 Zb = RE 7 r e RE bRB
Ii RB = ⬵ -
RE + r e RB + Zb
Zb ⬵ b(re + RE)
+ ⬵ re
⬵ RB 7 bRE ⬵ 1
Vi Io RE + (RE W re)
Zi Vo
– Zo (RE W re)
–
Common-base: Low (20 ) Medium (2 k) High (200) Low (- 1)
Ii
= RE 7 r e = RC RC ⬵ -1
⬵
+ Io RC + re
Vi Zi
RE
Vo ⬵ re
Zo
VEE VCC
– – (RE W re)
293
TABLE 5.2
BJT Transistor Amplifiers Including the Effect of Rs and RL
Including ro:
(RL 7 RC 7 ro)
- RB 7 bre RC 7 r o
re
Including ro:
- (RL 7 RC 7 ro)
R1 7 R2 7 bre RC 7 r o
re
RE = RL 7 RE Rs = Rs 7 R1 7 R2
Rs
⬵ 1 R1 7 R2 7 b(re + RE) RE 储 a + re b
b
Including ro:
Rs
⬵ 1 R1 7 R2 7 b(re + RE) RE 储 a + re b
b
- (RL 7 RC) RE 7 r e RC
⬵
re
Including ro:
- (RL 7 RC 7 ro)
⬵ RE 7 r e RC 7 r o
re
VCC
- (RL 7 RC)
R1 7 R2 7 b(re + RE) RC
RC RE
R1
Vo
Rs Vi Including ro:
Zo
- (RL 7 RC)
+ RL R1 7 R2 7 b(re + Re) ⬵ RC
Vs Zi R2 RE
RE
–
294
TABLE 5.2 (Continued)
BJT Transistor Amplifiers Including the Effect of Rs and RL
- (RL 7 RC)
RC RB 7 b(re + RE1) RC
RB RE1
Vo
Rs Vi
Zo Including ro:
+ RE1 RL
Zi - (RL 7 RC)
Vs RB 7 b(re + RE) ⬵ RC
– REt
RE2 CE
VCC
- (RL 7 RC) RF
RC bre 储 RC
re 兩 Av 兩
RF
Vo
Rs Vi
Zo
Including ro:
+ RL
- (RL 7 RC 7 ro) RF
Vs bre 储 RC 7 RF 7 r o
– Zi re 0 Av 0
VCC
- (RL 7 RC) RF
RC bRE 储 ⬵ RC 7 RF
RE 0 Av 0
RF
Vo
Rs Vi
Zo Including ro:
+ RL - (RL 7 RC) RF
⬵ ⬵ bRE 储 ⬵ RC 7 RF
Vs
Zi RE
L
RE 0 Av 0
–
packaged system relates to the actual amplifier or network. The system of Fig. 5.61 is
called a two-port system because there are two sets of terminals—one at the input and the
other at the output. At this point it is particularly important to realize that
the data surrounding a packaged system is the no-load data.
This should be fairly obvious because the load has not been applied, nor does it come with
the load attached to the package.
Ii Io
+ +
Zi Zo
Vi AvNL Vo
– –
Thévenin
FIG. 5.61
Two-port system.
295
TABLE 7.1
FET Bias Configurations
VDD ID
RD IDSS
JFET VGSQ = - VGG
Fixed-bias RG VDS = VDD - IDRS Q-point
VGG –
+ VP VGG 0 VGS
ID
VDD
IDSS
RD
JFET VGS = - IDRS
I'D
Self-bias VDS = VDD - ID(RD + RS) Q-point
RG RS
VP V' 0 VGS
GS
VDD ID
R2VDD IDSS
JFET R1 RD VG =
R1 + R2 VG
Voltage-divider
VGS = VG - IDRS Q-point RS
bias R2 RS
VDS = VDD - ID(RD + RS)
VP 0 VG VGS
VDD ID
RD IDSS
JFET VGS = VSS - IDRS VSS
Q-point
Common-gate VDS = VDD + VSS - ID(RD + RS) RS
RS
–VSS VP 0 VSS VGS
ID
VDD VGS = - IDRS IDSS
RD
JFET VD = VDD
(RD = 0 ⍀) VS = IDRS I'D
Q-point
VDS = VDD - ISRS
VP V'GS 0 VGS
VDD ID
RD Q-point IDSS
JFET
VGSQ = 0 V
Special case VGS = 0 V
IDQ = IDSS Q
(VGSQ = 0 V) RG
VGG
VP 0 VGS
ID
VDD
Depletion-type Q-point
MOSFET VGSQ = + VGG IDSS
Fixed-bias RG VDS = VDD - IDRS
RS
(and MESFETs)
VP 0 VGG VGS
VG ID
Depletion-type VDD R2VDD
MOSFET R1 RD VG = RS Q-point
R1 + R2 IDSS
Voltage-divider
R2 VGS = VG - ISRS
bias RS
VDS = VDD - ID(RD + RS)
(and MESFETs) VP 0 VG VGS
VDD ID
Enhancement VDD
RD RD
type MOSFET RG ID(on)
VGS = VDS
Feedback Q-point
VGS = VDD - IDRD
configuration
(and MESFETs) 0 VGS(Th) VDD VGS
VGS(on)
Enhancement VDD VG ID
R2VDD RS
type MOSFET RD
R1 VG =
Voltage-divider R1 + R2 Q-point
bias R2 RS VGS = VG - IDRS
(and MESFETs) 0 VGS(Th) VG VGS
450
TABLE 8.1
Zi, Zo, and Av for various FET configurations
Configuration Zi Zo Vo
Av =
Vi
Fixed-bias
[JFET or D-MOSFET]
Fixed-bias +VDD
[JFET or D-MOSFET] Medium (2 k) Medium (- 10)
RD
C2 High (10 M)
C1
Vo = RD 储 r d = - gm(rd 储 RD)
Vi = RG
Zo ⬵ RD ⬵ - gmRD (rd Ú 10 RD)
RG (rd Ú 10 RD)
Zi
–V
GG
+
Self-bias
bypassed RS
[JFET or D-MOSFET]
Self-bias +VDD
bypassed RS Medium (2 k) Medium (- 10)
[JFET or D-MOSFET] RD High (10 M)
C2
Vo = RD 储 r d = - gm(rd 储 RD)
C1 = RG
Vi
Zo ⬵ RD ⬵ - gmRD
(rd Ú 10 RD) (rd Ú 10 RD)
Zi
RG
RS CS
Self-bias
unbypassed RS
[JFET or D-MOSFET]
Low (- 2)
Self-bias +VDD RS
unbypassed RS c 1 + gmRS + dR
rd D gmRD
[JFET or D-MOSFET] RD High (10 M) = =
C2 RS RD RD + RS
Vo c 1 + gmRS + + d 1 + gmRS +
C1 = RG rd rd rd
Vi
Zo
= RD gmRD
Zi rd Ú 10 RD or rd = ⬵ -
RG 1 + gmRS 3 rd Ú 10 (RD + RS)4
RS
Voltage-divider bias
[JFET or D-MOSFET]
Voltage-divider bias +VDD
[JFET or D-MOSFET]
Medium (2 k) Medium (- 10)
RD High (10 M)
C2
R1
Vo = RD 储 r d = - gm(rd 储 RD)
C1
Vi = R1 储 R2
Zo ⬵ RD ⬵ - gmRD (rd Ú 10 RD)
(rd Ú 10 RD)
Zi
R2
RS CS
514
TABLE 8.1
(Continued)
Configuration Zi Zo Vo
Av =
Vi
Common-gate
[JFET or D-MOSFET]
Medium (+ 10)
Common-gate +VDD Low (1 k⍀)
[JFET or D-MOSFET] Medium (2 k⍀) RD
RD r d + RD gmRD +
C1 Q1 C2 = RS 储 c d rd
1 + gmrd = RD 储 r d =
Vi Vo RD
1 +
⬵ RD rd
1
Zi RS Zo ⬵ RS 储 (Rd Ú 10 RD)
RG CS gm ⬵ gmRD
(rd Ú 10 RD) (rd Ú 10 RD)
Source-follower
[JFET or D-MOSFET]
Low ( 6 1)
Source-follower Low (100 k⍀)
[JFET or D-MOSFET] +VDD
High (10 M⍀) gm(rd 储 RS)
C1 = rd 储 RS 储 1>gm =
Vi 1 + gm(rd 储 RS)
C2 = RG
Zi RG
Vo ⬵ RS 储 1>gm gmRS
RS
(rd Ú 10 RS)
⬵
Zo
1 + gmRS
(rd Ú 10 RS)
Drain-feedback bias
E-MOSFET
Drain-Feedback bias +VDD Medium (1 M⍀)
E-MOSFET Medium (2 k⍀) Medium (- 10)
RD RF + r d 储 RD
RF C2 = = RF 储 r d 储 RD = - gm(RF 储 rd 储 RD)
Vo 1 + gm(rd 储 RD)
C1
Vi RF ⬵ RD ⬵ - gmRD
(RF, rd Ú 10RD)
Zo ⬵ (RF, rd Ú 10RD)
1 + gmRD
Zi (rd Ú 10 RD)
Voltage-divider bias
E-MOSFET
Voltage-divider bias +VDD
E-MOSFET
Medium (2 k⍀) Medium (−10)
RD
C2 Medium (1 M⍀)
R1 D Vo
= RD 储 r d = - gm(rd 储 RD)
C1
G = R1 储 R2
Vi
Zo ⬵ RD ⬵ - gmRD
S (rd Ú 10 RD) (rd Ú 10 RD)
Zi R2 RS
515
TABLE 8.2
Configuration AvL ⴝ Vo 储 Vi Zi Zo
- gm(RD 储 RL) RG RD
+
Vss Including rd:
–
- gm(RD 储 RL 储 rd) RG RD 储 r d
- gm(RD 储 RL) RG RD
1 + gmRS 1 + gmRS
Including rd:
+
Vs - gm(RD 储 RL) RD
– RG ⬵
RD + RS 1 + gmRS
1 + gmRS +
rd
- gm(RD 储 RL) R 1 储 R2 RD
+
Vs Including rd:
–
- gm(RD 储 RL 储 rd) R 1 储 R2 RD 储 r d ;
+ Including rd:
Vs RS
– gmrd(RS 储 RL) gmrdRS
= RG 1 +
rd + RD + gmrd (RS 储 RL) r d + RD
gm(RD 储 RL) RS RD
1 + gmRS
+
Including rd: RS
Vs Zi = RD 储 r d
– gmrdRS
⬵ gm(RD 储 RL) 1 +
r d + RD 储 RL
519
V - V 50 mV - 40 mV SUMMARY 591
c. P = = = 0.2
V 50 mV
P 0.2
fLo = fs = a b (5 kHz) = 318.31 Hz
p p
9.15 SUMMARY
●
Important Conclusions and Concepts
1. The logarithm of a number gives the power to which the base must be brought to
obtain the same number. If the base is 10, it is referred to as the common loga-
rithm; if the base is e = 2.71828c, it is called the natural logarithm.
2. Because the decibel rating of any piece of equipment is a comparison between levels, a
reference level must be selected for each area of application. For audio systems the ref-
erence level is generally accepted as 1 mW. When using voltage levels to determine the
gain in dB between two points, any difference in resistance level is generally ignored.
3. The dB gain of cascaded systems is simply the sum of the dB gains of each stage.
4. It is the capacitive elements of a network that determine the bandwidth of a system.
The larger capacitive elements of the basic design determine the low-cutoff frequency,
whereas the smaller parasitic capacitors determine the high-cutoff frequencies.
5. The frequencies at which the gain drops to 70.7% of the midband value are called the
cutoff, corner, band, break, or half-power frequencies.
6. The narrower the bandwidth, the smaller is the range of frequencies that will permit
a transfer of power to the load that is at least 50% of the midband level.
7. A change in frequency by a factor of two, equivalent to one octave, results in a 6-dB
change in gain. For a 10:1 change in frequency, equivalent to one decade, there is a
20-dB change in gain.
8. For any inverting amplifier, the input capacitance will be increased by a Miller effect
capacitance determined by the gain of the amplifier and the interelectrode (parasitic)
capacitance between the input and output terminals of the active device.
9. A 3-dB drop in beta (hfe) will occur at a frequency defined by fB that is sensitive to
the dc operating conditions of the transistor. This variation in beta can define the
upper cutoff frequency of the design.
10. The high- and low-cutoff frequencies of an amplifier can be determined by the
response of the system to a square-wave input. The general appearance will immedi-
ately reveal whether the low- or high-frequency response of the system is too limited
for the applied frequency, whereas a more detailed examination of the response will
reveal the actual bandwidth of the amplifier.
Equations
Logarithms:
a
a = bx, x = logba, log10 = log10 a - log10 b
b
P2 V2
log10 ab = log10 a + log10 b, GdB = 10 log10 = 20 log10
P1 V1
GdBT = GdB1 + GdB2 + GdB3 + g + GdBn
Low-frequency response:
1 1
Av = , fL =
1 - j( fL >f ) 2pRC
BJT low-frequency response:
1
fLs = , Ri = R1 储 R2 储 bre
2p(Rs + Ri)Cs
1
fLC = , Ro = RC 储 ro
2p(Ro + RL)CC
592 BJT AND JFET 1 Rs
FREQUENCY RESPONSE fLE = , Re = RE 储 a + re b , Rs = Rs 储 R1 储 R2
2pReCE b
FET low-frequency response:
1
fLG = , Ri = RG
2p(Rsig + Ri)CG
1
fLC = , Ro = RD 储 rd
2p(Ro + RL)CC
1 RS 1
fLS = , Req = ⬵ RS " `
2pReqCS 1 + RS(1 + gmrd)>(rd + RD 储 RL) gm rd ⬵
Miller effect capacitance:
1
CMi = (1 - Av)Cf, CMo = a 1 - b Cf
Av
BJT high-frequency response:
1 1
Av = , fHi = , RThi = Rs 储 R1 储 R2 储 Ri,
1 + j( f>fH) 2pRThiCi
Ci = CWi + Cbe + CMi
1
fHo = , RTho = RC 储 RL 储 ro, Co = CWo + Cce + CMo,
2pRThoCo
hfemid
hfe =
1 + j( f>fb)
1
fb ⬵
2pbmidre(Cbe + Cbc)
fT ⬵ hfemid fb
FET high-frequency response:
1
fHi = , RThi = Rsig 储 RG, Ci = CWi + Cgs + CMi,
2pRThiCi
CMi = (1 - Av)Cgd
1
fHo = , RTho = RD 储 RL 储 rd, Co = CWo + Cds + CMo,
2pRThoCo
1
CMo = a 1 - b Cgd
Av
Multistage effects:
fL
f L = , f H = (221>n - 1)fH
22 1>n
- 1
Square-wave testing:
0.35 P V - V
BW ⬵ fHi = , fLo = fs, P =
tr p V
Equations
Pi (dc) = VCC ICQ
Po (ac) = VCE (rms)IC (rms)
= I 2C (rms)RC
V C2 (rms)
=
RC
VCE (p)IC (p)
Po (ac) =
2
2
I C (p)
=
2RC
2
V CE (p)
=
2RC
VCE (p@p)IC (p@p)
Po (ac) =
8
2
I C (p@p)
= RC
8
2
V CE (p@p)
=
8RC
Po(ac)
%h = * 100%
Pi(dc)
Transformer action:
V2 N2
=
V1 N1
I2 N1
=
I1 N2
Class B operation: COMPUTER ANALYSIS 715
2
Idc = I(p)
p
2
Pi (dc) = VCC a I(p)b
p
V L2 (rms)
Po (ac) =
RL
2
V CC
maximum Po (ac) =
2RL
2VCC 2V 2CC
maximum Pi(dc) = VCC (maximum Idc) = VCC a b =
pRL pRL
2
2V CC
maximum P2Q =
p 2RL
Harmonic distortion:
0 An 0
% nth harmonic distortion = % Dn = * 100%
0 A1 0
Heat sink:
uJA = uJC + uCS + uSA
FIG. 12.28
Series-fed class A amplifier.