Chemical Reviews pubs.acs.
org/CR Review
Novel D761Y and Common Secondary T790M Mutations in Detection of Circulating Tumor DNA in Early- and Late-Stage
Epidermal Growth Factor Receptor-Mutant Lung Adenocarcinomas Human Malignancies. Sci. Transl. Med. 2014, 6, 224ra24.
with Acquired Resistance to Kinase Inhibitors. Clin. Cancer Res. 2006, (99) Chen, M.; Zhao, H. Next-Generation Sequencing in Liquid
12, 6494−6501. Biopsy: Cancer Screening and Early Detection. Hum. Genomics 2019,
(80) Yun, C.-H.; Mengwasser, K. E.; Toms, A. V.; Woo, M. S.; 13, 34.
Greulich, H.; Wong, K.-K.; Meyerson, M.; Eck, M. J. The T790M (100) Volm, M.; Efferth, T. Prediction of Cancer Drug Resistance
Mutation in EGFR Kinase Causes Drug Resistance by Increasing the and Implications for Personalized Medicine. Front. Oncol. 2015, 5,
Affinity for ATP. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 2070−2075. 282.
(81) Gruber, F. X.; Hjorth-Hansen, H.; Mikkola, I.; Stenke, L.; (101) Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.;
Johansen, T. A Novel Bcr-Abl Splice Isoform is Associated with the Baradaran, B. The Different Mechanisms of Cancer Drug Resistance:
L248V Mutation in CML Patients with Acquired Resistance to A Brief Review. Adv. Pharm. Bull. 2017, 7, 339−348.
Imatinib. Leukemia 2006, 20, 2057−2060. (102) Barouch-Bentov, R.; Sauer, K. Mechanisms of Drug Resistance
(82) Pagliarini, R.; Shao, W.; Sellers, W. R. Oncogene Addiction: in Kinases. Expert Opin. Invest. Drugs 2011, 20, 153−208.
Pathways of Therapeutic Response, Resistance, and Road Maps (103) Heydt, C.; Kumm, N.; Fassunke, J.; Kunstlinger, H.; Ihle, M.
Toward a Cure. EMBO Rep. 2015, 16, 280−296. A.; Scheel, A.; Schildhaus, H. U.; Haller, F.; Buttner, R.; Odenthal,
(83) Bardelli, A.; Siena, S. Molecular Mechanisms of Resistance to M.; et al. Massively Parallel Sequencing Fails to Detect Minor
Cetuximab and Panitumumab in Colorectal Cancer. J. Clin. Oncol. Resistant Subclones in Tissue Samples Prior to Tyrosine Kinase
2010, 28, 1254−1261. Inhibitor Therapy. BMC Cancer 2015, 15, 291.
(84) Chandarlapaty, S.; Sakr, R. A.; Giri, D.; Patil, S.; Heguy, A.; (104) (a) Vallette, F. M.; Olivier, C.; Lezot, F.; Oliver, L.;
Morrow, M.; Modi, S.; Norton, L.; Rosen, N.; Hudis, C.; et al. Cochonneau, D.; Lalier, L.; Cartron, P. F.; Heymann, D. Dormant,
Frequent Mutational Activation of the PI3K-AKT Pathway in Quiescent, Tolerant and Persister Cells: Four Synonyms for the Same
Trastuzumab-Resistant Breast Cancer. Clin. Cancer Res. 2012, 18, Target in Cancer. Biochem. Pharmacol. 2019, 162, 169−176.
6784−6791. (b) Kochanowski, K.; Morinishi, L.; Wu, L.; Altschuler, S. J. Drug
(85) Green, D. R.; Evan, G. I. Cancer Cell. Cancer Cell 2002, 1, 19− Persistence - From Antibiotics to Cancer Therapies. Curr. Opin. Syst.
30. Biol. 2018, 10, 1−8. (c) Sharma, V. S.; Lee, D. Y.; Li, B.; Quinlan, M.
(86) (a) Pommier, Y.; Sordet, O.; Antony, S.; Hayward, R. L.; Kohn, P.; Takahashi, F.; Maheswaran, S.; McDermott, U.; Azizian, A.; Zou,
K. W. Apoptosis Defects and Chemotherapy Resistance: Molecular L.; Fishbach, M. A.; et al. A Chromatin-Mediated Reversible Drug-
Interaction Maps and Networks. Oncogene 2004, 23, 2934−2949. Tolerant State in Cancer Cell Subpopulations. Cell 2010, 141, 69−80.
(b) Carneiro, B. A.; El-Deiry, W. S. Targeting Apoptosis in Cancer (105) Rosa, R.; Monteleone, F.; Zambrano, N.; Bianco, R. In Vitro
Therapy. Nat. Rev. Clin. Oncol. 2020, 17, 395−417. and In Vivo Models for Analysis of Resistance to Anticancer
(87) Zhivotovsky, B.; Orrenius, S. Defects in the Apoptotic Molecular Therapies. Curr. Med. Chem. 2014, 21, 1595−1606.
Machinery of Cancer Cells: Role in Drug Resistance. Semin. Cancer (106) Ma, L.; Boucher, J. I.; Paulsen, J.; Matuszewski, S.; Eide, C. A.;
Biol. 2003, 13, 125−134. Ou, J.; Eickelberg, G.; Press, R. D.; Zhu, L. J.; Druker, B. J.; et al.
(88) Indran, I. R.; Tufo, G.; Pervaiz, S.; Brenner, C. Recent CRISPR-Cas9-Mediated Saturated Mutagenesis Screen Predicts
Advances in Apoptosis, Mitochondria and Drug Resistance in Cancer Clinical Drug Resistance with Improved Accuracy. Proc. Natl. Acad.
Cells. Biochim. Biophys. Acta, Bioenerg. 2011, 1807, 735−745. Sci. U. S. A. 2017, 114, 11751−11756.
(89) Boumahdi, S.; de Sauvage, F. The Great Escape: Tumour Cell (107) Avizienyte, E.; Ward, R. A.; Garner, A. P. Comparison of the
Plasticity in Resistance to Targeted Therapy. Nat. Rev. Drug Discovery EGFR Resistance Mutation Profiles Generated by EGFR-Targeted
2020, 19, 39−56. Tyrosine Kinase Inhibitors and the Impact of Drug Combinations.
(90) Nurwidya, F.; Takahashi, F.; Murakami, A.; Takahashi, K. Biochem. J. 2008, 415, 197−206.
Epithelial Mesenchymal Transition in Drug Resistance and Metastasis (108) Thress, K. S.; Paweletz, C. P.; Felip, E.; Cho, B. C.; Stetson,
of Lung Cancer. Cancer Res. Treat. 2012, 44, 151−156. D.; Dougherty, B.; Lai, Z.; Markovets, A.; Vivancos, A.; Kuang, Y.;
(91) Du, B.; Shim, J. S. Targeting Epithelial-Mesenchymal et al. Acquired EGFR C797S Mutation Mediates Resistance to
Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules AZD9291 in Non-Small Cell Lung Cancer Harboring EGFR T790M.
2016, 21, 965−980. Nat. Med. 2015, 21, 560−562.
(92) Shibue, T.; Weinberg, R. A. EMT, CSCs, and Drug Resistance: (109) Huang, D.; Ding, Y.; Zhou, M.; Rini, B. I.; Petillo, D.; Qian, C.
The Mechanistic Link and Clinical Implications. Nat. Rev. Clin. Oncol. N.; Kahnoski, R.; Futreal, P. A.; Furge, K. A.; et al. Interleukin-8
2017, 14, 611−629. Mediates Resistance to Antiangiogenic Agent Sunitinib in Renal Cell
(93) Sun, X.; Hu, B. Mathematical Modeling and Computational Carcinoma. Cancer Res. 2010, 70, 1063−1071.
Prediction of Cancer Drug Resistance. Briefings Bioinf. 2018, 19, (110) Callegari, D.; Ranaghan, K. E.; Woods, C. J.; Minari, R.; Tiseo,
1382−1399. M.; Mor, M.; Mulholland, A. J.; Lodola, A. L718Q Mutant EGFR
(94) Sun, X.; Bao, J.; Shao, Y. Mathematical Modeling of Therapy- Escapes Covalent Inhibition by Stabilizing a Non-Reactive Con-
induced Cancer Drug Resistance: Connecting Cancer Mechanisms to formation of the Lung Cancer Drug Osimertinib. Chem. Sci. 2018, 9,
Population Survival Rates. Sci. Rep. 2016, 6, 22498. 2740−2749.
(95) Greene, J. M.; Gevertz, J. L.; Sontag, E. D. Mathematical (111) Hauser, K.; Negron, C.; Albanese, S. K.; Ray, S.; Steinbrecher,
Approach to Differentiate Spontaneous and Induced Evolution to T.; Abel, R.; Chodera, J. D.; Wang, L. Predicting Resistance of
Drug Resistance During Cancer Treatment. Clin. Cancer Inform. 2019, Clinical Abl Mutations to Targeted Kinase Inhibitors Using
3, 1−20. Alchemical Free-Energy Calculations. Commun. Biol. 2018, 1, 70.
(96) Martin, E. C.; Aarons, L.; Yates, J. W. T. Pharmacodynamic (112) Kaserer, T.; Blagg, J. Combining Mutational Signatures,
Modelling of Resistance to Epidermal Growth Factor Receptor Clonal Fitness, and Drug Affinity to Define Drug-Specific Resistance
Inhibition in Brain Metastasis Mouse Models. Cancer Chemother. Mutations in Cancer. Cell. Chem. Biol. 2018, 25, 1359−1371.
Pharmacol. 2018, 82, 669−675. (113) Rodrigues, C. H.; Ascher, D. B.; Pires, D. E. Kinact: A
(97) Kamps, R.; Brandao, R. D.; Bosch, B. J.; Paulussen, A. D.; Computational Approach for Predicting Activating Missense Muta-
Xanthoulea, S.; Blok, M. J.; Romano, A. Next-Generation Sequencing tions in Protein Kinases. Nucleic Acids Res. 2018, 46, W127−W132.
in Oncology: Genetic Diagnosis, Risk Prediction and Cancer (114) Lovera, S.; Sutto, L.; Boubeva, R.; Scapozza, L.; Dölker, N.;
Classification. Int. J. Mol. Sci. 2017, 18, 308−365. Gervasio, F. L. The Different Flexibility of c-Src and c-Abl Kinases
(98) Bettegowda, C.; Sausen, M.; Leary, R. J.; Kinde, I.; Wang, Y.; Regulates the Accessibility of a Druggable Inactive Conformation. J.
Agrawal, N.; Bartlett, B. R.; Wang, H.; Luber, B.; Alani, R. M.; et al. Am. Chem. Soc. 2012, 134, 2496−2499.
AT https://dx.doi.org/10.1021/acs.chemrev.0c00383
Chem. Rev. XXXX, XXX, XXX−XXX