0% found this document useful (0 votes)
26 views4 pages

Cal-I 2019

Uploaded by

everywhere.mine
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
26 views4 pages

Cal-I 2019

Uploaded by

everywhere.mine
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

RvZxq wek¦we`¨vj‡qi cÖkœcÎ - 2019 1 2 K¨vjKzjvm-I

NUH-2019 a a

K-wefvM
(T) Kx k‡Z© ∫ −a
f ( x) dx = 2 ∫ f ( x) dx n‡e? [What is the condition
0

a a
1| (K) f ( x) = ln x Gi †Wv‡gb KZ? [What is the domain of for ∫ −a
f ( x) dx = 2 ∫ f ( x) dx ?]
0
[Ch-10A: Quiz-13]
f ( x) = ln x ?] [Ch-1: Quiz-33] (U) r = a sin 2θ Gi Lmov wPÎ AvuK| [Draw a rough sketch of
(L) f ( x) = e Gi wecixZ dvskbwU wjL| [What is the inverse function
x
r = a sin 2θ .] [Ch-14B: Quiz-12]
of f ( x) = e x .] (V) AcÖK…Z Bw›UMÖvj ej‡Z Kx eyS? [What do you mean by improper
integrals?] [Ch-13: Quiz-1]
=
DËi: g‡b Kwi, y f=
( x) e x
GLb y = e x ⇒ ln y =
x ∴x =ln y L-wefvM
−1
myZivs f ( y ) = ln y 2| x = 1 we›`y‡Z f ( x) = | x − 1| + | x − 3 | dvsk‡bi Awew”QbœZv Av‡jvPbv Ki|

PjK y Gi cwie‡Z© x ewm‡q cvB, f −1 ( x) = ln x | [Discuss the continuity of f ( x) = | x − 1| + | x − 3 | at x = 1 .]


mgvavb: cÖ`Ë dvskb, f ( x) = | x − 1| + | x − 3 |
∴ f ( x) =
e x Gi wecixZ dvskb ln x |
 x − 1 + x − 3 hLb x ≥ 1
(M) dvsk‡bi Aš—ixKiY‡hvM¨Zvi msÁv `vI| [Define differentiability of 
=  x − 1 − x + 3 hLb 0 ≤ x < 1
any function.] [Ch-2C: Art-2C.2(a)] − x + 1 − x + 3 hLb x < 0
(N) Ae‡klmn †UBj‡ii avivwU wjL| [Write down Taylor’s series with 

remainder.] [Ch-5: Quiz-1]  2x − 4 hLb x ≥ 1



(O) µgea©gvb Ges µgn«vmgvb dvsk‡bi msÁv `vI| [Define increasing =  2 hLb 0 ≤ x < 1
− 2 x + 4 hLb x < 0
and decreasing function.] [Ch-1: Quiz-23, 24] 
(P) Mvgv dvskb Ges weUv dvsk‡bi g‡a¨ m¤úK©wU wjL| [What is the x = 1 we›`y‡Z Awew”QbœZv hvPvB:
relation between gamma function and beta function?] Wvbmxgv =lim f ( x) =lim (2 x − 4) =
−2
x →1 + x →1 +
[Ch-12: Quiz-16]
= lim =
evgmxgv =
f ( x) lim 2 2
x →1 − x →1 −
(Q) †cvjvi ¯’vbvs‡K ds 2 KZ? [What is ds 2 in Polar co-ordinates?]
[Ch-15B: Quiz-3] †h‡nZz lim f ( x) ≠ lim f ( x)
x →1 + x →1 −

(R) nvBcvi‡evwjK †KvmvBb dvskb Kv‡K e‡j? [What is hyperbolic myZivs x = 1 we›`y‡Z f ( x) dvskbwU wew”Qbœ|
cosine function?] x x
DËi: nvBcvi‡evwjK †KvmvBb dvskb wbgœiƒ‡c msÁvwqZ: 3| †`LvI †h, lim we`¨gvb bq| [Show that lim does not exist.]
x→0 | x| x → 0 | x|
1
cosh z ≡ (e z + e − z ) mgvavb: GLv‡b, evgmxgv =lim
x
=lim−
x
;  x → 0− ⇒ x < 0 ∴ x =− x 
2 x →0 −
x x →0 (− x) 
(S) Iqvwji m~ÎwU wjL| [Write down Walle’s formula.]
=lim− ( −1) =−1
[Ch-10C: Quiz-10] x →0

www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info


RvZxq wek¦we`¨vj‡qi cÖkœcÎ - 2019 3 4 K¨vjKzjvm-I
x x myZivs (1, − 1) we›`y‡Z x 2 + 2 y 2 =
3 eµ‡iLvi Xvj n‡jv
= lim= lim  x → 0+ ⇒ x > 0 ∴
Wvbmxgv + +
= x x 
x →0 x x →0 x
dy 1 1
=
− =
= lim
= +
(1) 1
x →0
dx (1, −1) 2(−1) 2
(1, − 1) we›`y‡Z x 2 + 2 y 2 =
3 eµ‡iLvi ¯úk©‡Ki mgxKiY n‡jv,
∴ evgmxgv ≠ Wvbmxgv
 dy  1
x =
y − y1   ( x − x1 ) ⇒ y +=
1 ( x − 1)
 lim we`¨gvb bq|  ( x1 , y1 )
dx 2
x →0 x
∴x − 2y − 3 =0
4| †`LvI †h [Show that], lim(cos x)cot x = 1
x→0 (1, − 1) we›`y‡Z x 2 + 2 y 2 =
3 eµ‡iLvi Awfj‡¤^i mgxKiY n‡jv,
cot x
mgavb: GLv‡b, lim(cos x)cot x = lim eln (cos x )  dy  1
x→0 x→0   ( y − y1 ) + ( x − x1 ) =
0 ⇒ ( y + 1) + ( x − 1) =
0
 dx ( x1 , y1 ) 2
= lim ecot x ln (cos x )
x→0 ∴ 2x + y −1 = 0
ln (cos x ) 6| [0,1] e¨ewa‡Z f ( x) =+ (1 x) (3 − x) dvsk‡bi Rb¨ ga¨gvb Dccv`¨wUi
= lim e tan x
x→0 mZ¨Zv hvPvB Ki| [Verify Mean-value theorem for
ln (cos x ) f ( x) =+
(1 x) (3 − x) at the interval [0,1] .] [Ch-4: Prob-4(i)]
lim 0 
= e x →0 tan x
 0 AvKvi  ∞ y n −1
7| †`LvI †h [Show that], β (m, n) = ∫ dy [Ch-12: Th-11]
− sin x
0 (1 + y ) m + n
lim cos2x r a (1 − cos θ ) KvwW©q‡Wi †¶Îdj wbY©q Ki| [Find the area bounded
8| =
= e x →0 sec x
by the cardioide=r a (1 − cos θ ) .] [Ch-14B: Prob-6(i)]
= e0
9| x 2 + y 2 =
9 e„‡Ëi †¶Îdj wbY©q Ki| [Find the area of the circle
=1
x2 + y 2 =
9 .]
∴ lim(cos x)cot x =
1
x→0
mgvavb: cÖ`Ë e„ËwU, x 2 + y 2 =
9
5| x + 2y =
2
3 eµ‡iLvi (1, − 1) we›`y‡Z Dnvi ¯úk©K I Awfj‡¤^i mgxKiY
2
⇒ y= 32 − x 2 (1)
wbY©q Ki| [Find the equations of tangent and normal of x + 2 y =
3 2 2

at the point (1, − 1) .] Y

mgvavb: cÖ`Ë eµ‡iLvi mgxKiY, x 2 + 2 y 2 =


3 B (0, 3)

mgxKiYwU‡K x Gi mv‡c‡¶ Aš—ixKiY K‡i cvB,


=y 32 − x 2
dy
2x + 4 y =
0 X
dx O A (3, 0)
dy 2x x
∴ =
− =

dx 4y 2y

www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info


RvZxq wek¦we`¨vj‡qi cÖkœcÎ - 2019 5 6 K¨vjKzjvm-I
cÖ`Ë e„‡Ëi †K›`ª (0, 0) Ges e¨vmva© r = 3 ⇒ x2 − 4 x − 2 x + 8 =
0
m¤ú~Y© e„‡Ëi †¶Îdj = 4 × cÖ_g PZzf©v‡Mi †¶Îdj ⇒ x ( x − 4) − 2( x − 4) =
0
A_©vr OABO Gi †¶Îdj ⇒ ( x − 4) ( x − 2) =
0
A Ges B Gi ¯’vbvsK h_vµ‡g (3, 0) Ges (0, 3) |
⇒x=2, 4
OABO Gi †¶Îdj (1) eµ‡iLv, x -A¶ Ges= x 0,=
x 3 †iLv Øviv
mwÜ we›`ymg~n n‡jv x = 2 Ges x = 4
Ave×|
3 x = 2 n‡j, f ′′(2) =
6 ⋅ 2 − 18 =
12 − 18 =
−6 < 0
GLb, OABO Gi †¶Îdj = ∫ 0 y dx
x = 2 we›`y‡Z f ( x) Gi Mwiôgvb we`¨gvb|
3
= ∫ 3 − x dx
2 2
0
∴ wb‡Y©q Mwiôgvb =f (2) =23 − 9.22 + 24.2 + 15

 x 32 − x 2 32
3
=8 − 36 + 48 + 15 =35
x
=  + sin −1  x = 4 n‡j, f ′′(4) =6 ⋅ 4 − 18 =24 − 18 =6 > 0
 2 2 30
x = 4 we›`y‡Z f ( x) Gi jwNôgvb we`¨gvb|
3 32 − 32 32
= + sin −1 1
2 2 ∴ wb‡Y©q jwNôgvb = f (4) = 43 − 9 ⋅ 42 + 24 ⋅ 4 + 15
32 π π 32 = 64 − 144 + 96 + 15 = 31
= ⋅ =
2 2 4 Bb‡d¬Kkb we›`y‡Z, f ′′( x) = 0
π 32
∴ mgMÖ e„‡Ëi †¶Îdj =
4× π 3 eM©GKK
= 2
⇒ 6 x − 18 =
0
4
= 9π eM©GKK| ⇒ 6x =
18
⇒x=
3
M-wefvM x = 3 we›`y‡Z f ′′(3) = 6 ⋅ 3 − 18 = 0
10| f ( x) =x − 9 x + 24 x + 15 dvskbwUi jwNô gvb, Mwiô gvb, mwÜ we›`y I
3 2
Ges f ′′′(3)= 6 ≠ 0
Bb‡d¬Kkb we›`y wbY©q Ki| [Find the maximum value, minimum value,
∴x =3 we›`y‡Z f ( x) Gi Bb‡d¬Kkb we›`y we`¨gvb|
critical points and point of inflection of the function
f ( x) =x 3 − 9 x 2 + 24 x + 15 .] 11| hw` =
y ( x 2 − 1) n nq Z‡e †`LvI †h [If =
y ( x 2 − 1) n then show that],

mgvavb: cÖ`Ë dvskb, f ( x) =x3 − 9 x 2 + 24 x + 15 ( x 2 − 1) yn + 2 + 2 xyn +1 − n (n + 1) yn =


0
∴ f ′( x) = 3 x 2 − 18 x + 24 dn 2 dn 2
=
Avevi u ( x − 1) n
n‡j †`LvI †h =
[Again if u ( x − 1) n ,
f ′′( x=
) 6 x − 18 Ges f ′′′( x) = 6 dx n dx n
GLb, f ′( x) = 0 show that],
⇒ 3 x 2 − 18 x + 24 =
⇒ x − 6x + 8 =
2
0
0 d
dx {
(1 − x 2 )
du
dx}+ n (n + 1) u =
0 [Ch-3C: Prob-7(iii)]

www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info


RvZxq wek¦we`¨vj‡qi cÖkœcÎ - 2019 7 8 K¨vjKzjvm-I
12| x 2/3 + y 2/3 =
a 2/3 eµ‡iLvi †h‡Kv‡bv we›`y‡Z AswKZ ¯úk©K Ges A¶Øq p +1 q +1
π /2
Øviv MwVZ wÎfy‡Ri †¶Îdj wbY©q Ki| [Find the area of triangle formed 15| †`LvI †h [Show that], ∫ 0
sin p x cos q x dx = 2
p+q+2
2
2
by axes and tangent line at any point of the curve, x 2/3
+y 2/3
=2/3
a .] 2
[Ch-7A: Prob-4(ii)] [Ch-12: Th-18]
16| x 2/3
+y 2/3
= eµ‡iLvi cwimxgvi ˆ`N©¨ wbY©q Ki| [Find the
2/3
13| ∫ tan x dx Gi jNyKiY m~ÎwU wbY©q Ges ∫ tan x dx Gi gvb wbY©q Ki| a
n 6

perimeter of the curve x 2/3 + y 2/3 =


a 2/3 .] [Ch-15: Prob-3(i)]

n
[Find the reduction formula of tan x dx and then evaluate
17| hw` r = f (θ ) eµ‡iLvi †Kv‡bv we›`y‡Z ¯úk©K I e¨vmva© †f±‡ii Aš—M©Z
∫ tan
6
x dx .] dθ dθ dr
†h, tan φ r=
†KvY φ nq, Z‡e †`LvI= , sin φ r Ges cos φ = ,
mgvavb: cÖ_g Ask: Ch-10C: Art-10C.2(ix) dr ds ds
†hLv‡b s n‡jv Pvc ˆ`N©¨ civwgwZ| [If φ is the angle between the
wØZxq Ask: GLb jNyKiY m~Î n‡Z cvB,
tangent and the radius vector of the curve r = f (θ ) at a point, then
tan 5 x
=I6 − I4 dθ dθ dr
5 show =that tan φ r= , sin φ r and cos φ = , where s is the
dr ds ds
tan 3 x
=I4 − I2 arc length parameter.] [Ch-7B: Art-7B.3]
3
=
I 2 tan x − I 0

I 0= ∫ tan x dx= ∫ dx= x+c


0

∫ tan x dx
∴ I6 = 6

tan 5 x  tan 3 x 
= − − {− tan x − ( x + c)}
5  3 
tan 5 x tan 3 x
= − + tan x − x − c
5 3
14| hw` f ( x) = | x − 1| + | x + 3 | nq, Z‡e x = − 3 I x = 1 we›`y‡Z dvskbwUi
Awew”QbœZv I Aš—ixKiY‡hvM¨Zv Av‡jvPbv Ki| [If
f ( x) = | x − 1| + | x + 3 | , then discuss the continuity and
differentiability of the function at x = − 3 and x = 1 .]
[Ch-2C: Prob-2(iv)]
www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info

You might also like