Cal-I 2019
Cal-I 2019
NUH-2019 a a
K-wefvM
(T) Kx k‡Z© ∫ −a
f ( x) dx = 2 ∫ f ( x) dx n‡e? [What is the condition
0
a a
1| (K) f ( x) = ln x Gi †Wv‡gb KZ? [What is the domain of for ∫ −a
f ( x) dx = 2 ∫ f ( x) dx ?]
0
[Ch-10A: Quiz-13]
f ( x) = ln x ?] [Ch-1: Quiz-33] (U) r = a sin 2θ Gi Lmov wPÎ AvuK| [Draw a rough sketch of
(L) f ( x) = e Gi wecixZ dvskbwU wjL| [What is the inverse function
x
r = a sin 2θ .] [Ch-14B: Quiz-12]
of f ( x) = e x .] (V) AcÖK…Z Bw›UMÖvj ej‡Z Kx eyS? [What do you mean by improper
integrals?] [Ch-13: Quiz-1]
=
DËi: g‡b Kwi, y f=
( x) e x
GLb y = e x ⇒ ln y =
x ∴x =ln y L-wefvM
−1
myZivs f ( y ) = ln y 2| x = 1 we›`y‡Z f ( x) = | x − 1| + | x − 3 | dvsk‡bi Awew”QbœZv Av‡jvPbv Ki|
(R) nvBcvi‡evwjK †KvmvBb dvskb Kv‡K e‡j? [What is hyperbolic myZivs x = 1 we›`y‡Z f ( x) dvskbwU wew”Qbœ|
cosine function?] x x
DËi: nvBcvi‡evwjK †KvmvBb dvskb wbgœiƒ‡c msÁvwqZ: 3| †`LvI †h, lim we`¨gvb bq| [Show that lim does not exist.]
x→0 | x| x → 0 | x|
1
cosh z ≡ (e z + e − z ) mgvavb: GLv‡b, evgmxgv =lim
x
=lim−
x
; x → 0− ⇒ x < 0 ∴ x =− x
2 x →0 −
x x →0 (− x)
(S) Iqvwji m~ÎwU wjL| [Write down Walle’s formula.]
=lim− ( −1) =−1
[Ch-10C: Quiz-10] x →0
x 32 − x 2 32
3
=8 − 36 + 48 + 15 =35
x
= + sin −1 x = 4 n‡j, f ′′(4) =6 ⋅ 4 − 18 =24 − 18 =6 > 0
2 2 30
x = 4 we›`y‡Z f ( x) Gi jwNôgvb we`¨gvb|
3 32 − 32 32
= + sin −1 1
2 2 ∴ wb‡Y©q jwNôgvb = f (4) = 43 − 9 ⋅ 42 + 24 ⋅ 4 + 15
32 π π 32 = 64 − 144 + 96 + 15 = 31
= ⋅ =
2 2 4 Bb‡d¬Kkb we›`y‡Z, f ′′( x) = 0
π 32
∴ mgMÖ e„‡Ëi †¶Îdj =
4× π 3 eM©GKK
= 2
⇒ 6 x − 18 =
0
4
= 9π eM©GKK| ⇒ 6x =
18
⇒x=
3
M-wefvM x = 3 we›`y‡Z f ′′(3) = 6 ⋅ 3 − 18 = 0
10| f ( x) =x − 9 x + 24 x + 15 dvskbwUi jwNô gvb, Mwiô gvb, mwÜ we›`y I
3 2
Ges f ′′′(3)= 6 ≠ 0
Bb‡d¬Kkb we›`y wbY©q Ki| [Find the maximum value, minimum value,
∴x =3 we›`y‡Z f ( x) Gi Bb‡d¬Kkb we›`y we`¨gvb|
critical points and point of inflection of the function
f ( x) =x 3 − 9 x 2 + 24 x + 15 .] 11| hw` =
y ( x 2 − 1) n nq Z‡e †`LvI †h [If =
y ( x 2 − 1) n then show that],
∫ tan x dx
∴ I6 = 6
tan 5 x tan 3 x
= − − {− tan x − ( x + c)}
5 3
tan 5 x tan 3 x
= − + tan x − x − c
5 3
14| hw` f ( x) = | x − 1| + | x + 3 | nq, Z‡e x = − 3 I x = 1 we›`y‡Z dvskbwUi
Awew”QbœZv I Aš—ixKiY‡hvM¨Zv Av‡jvPbv Ki| [If
f ( x) = | x − 1| + | x + 3 | , then discuss the continuity and
differentiability of the function at x = − 3 and x = 1 .]
[Ch-2C: Prob-2(iv)]
www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info