0% found this document useful (0 votes)
17 views2 pages

Cal-I 2010

Uploaded by

everywhere.mine
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
17 views2 pages

Cal-I 2010

Uploaded by

everywhere.mine
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 2

RvZxq wek¦we`¨vj‡qi cÖkœcÎ - 2010 1 2 K¨vjKzjvm-I

(Z) mgvKjbxq aª“eK wK? [What is the constant of integration?]


NUH-2010 [Ch-9F: Quiz-3]
(_) Bw›UMÖvj K¨vjKzjv‡mi †gŠwjK Dccv‡`¨i eY©bv `vI| [State the
1| wb‡gœi †h‡Kv‡bv wekwU msw¶ß cÖ‡kœi DËi `vI 1×20=20 fundamental theorem of integral caluclus.] [Ch-10A: Quiz-3]
(K) dvsk‡bi †iÄ- Gi msÁv `vI| [Define range of a function.] (`) r = a (1 + cos θ ) eµ‡iLvwU AsKb Ki| [Sketch the flgure of the
[Ch-1: Quiz-5]
(L) f ( x ) = ln x dvsk‡bi †Wv‡gb KZ? [What is the domain of the curve r = a (1 + cos θ ) .] [Ch-14B: Quiz-6(i)]
(a) mvBK¬‡qW wK? [What is cycloid?] [Ch-14A: Quiz-5]
function f ( x ) = ln x ?] [Ch-1: Quiz-33]
(b) Mvgv dvsk‡bi msÁv `vI [Define Gamma function.]
(M) A‡f` dvskb Kv‡K e‡j? [What is called the identity function?] [Ch-12: Quiz-1]
[Ch-1: Quiz-16] =
(c) r a cos 4θ eµ‡iLvi KqwU duvm Av‡Q? [How many loop’s are in
(N) D`vniYmn †Rvo I we‡Rvo dvskb msÁvwqZ Ki| [Define even and =r a cos 4θ ?] [Ch-14B: Quiz-18]
odd function with Example.] [Ch-1: Quiz-17, 18, 19, 20] (d) cÖ_g †kªYxi AcÖK…Z Bw›UMÖvj Kv‡K e‡j? [What is called the first kind
(O) x = a we›`y‡Z GKwU dvsk‡bi Awew”QbœZvi msÁv `vI| [Define of improper integral?] [Ch-13: Quiz-2]
continuity of a function at x = a .] [Ch-2B: Quiz-1] (e) y = f ( x ) eµ‡iLvi ( x1 , y1 ) we›`y‡Z ¯úk©‡Ki mgxKiYwU wjL| [Write
dy dy
(P) R¨vwgwZKfv‡e wK wb‡`©k Ki? [What is in geometrically?] the equation of tangent of the curve y = f ( x ) at ( x1 , y1 ) .]
dx dx
[Ch-3A: Quiz-3] [Ch7A: Quiz-8]
(f) AveZ©bRwbZ Nbe¯‘ Kv‡K e‡j? [What is called the solid of
(Q) x Gi mv‡c‡¶ y = x n Gi n Zg Aš—iR KZ? [What is the n-th
revolution?] [Ch-16: Quiz-1]
derivative of y = x n with respect to x?] [Ch-3B: Quiz-1] L- wefvM
(R) ‡Kv‡bv eµ‡iLvi mwÜwe›`y ej‡Z wK eySvq? [What are the critical
2| (K) y = x 2 − 7 x + 10 dvsk‡bi †Wv‡gb I †iÄ wbY©q Ki| [Find domain
points of a curve?] [Ch-6B: Quiz-11]
(S) cÖ_g Mogvb Dccv‡`¨i eY©bv `vI| [State the first mean value and range of the function y =
x 2 − 7 x + 10 .] [Ch-1: Ex-2(xi)]
theorem] [Ch-4: Quiz-5] (L) wb‡gœi dvskbwUi ‡jLwPÎ AsKb Ki [Sketch the graph of the
(T) dvsk‡bi Mwiôgvb Kv‡K e‡j? [What is the maximum value of a followeing function]: [Ch-1: Ex -22]
function?] [Ch-6B: Quiz-14] 2 − x hLb ( when ) x > 1
0 
(U) Awb‡Y©q AvKvi ej‡Z wK eyS? [What do you mean by = f ( x) x hLb ( when ) 0 < x ≤ 1
0

0 − x hLb ( when ) x ≤ 0
indeterminate form?] [Ch-8: Quiz-1]
0 3| (K) wjwg‡Ui ( δ,∈) msÁv e¨envi K‡i †`LvI †h, [Using the ( δ,∈)
(V) `yÕwU eµ‡iLvi Aš—M©Z †KvY msÁvwqZ Ki| [Define angle of
x2 − 9
intersection between two curves.] [Ch-7A: Quiz-10] definition of limit to show that] lim = 6 [Ch-2A: Ex -2(vi)]
x →3 x − 3
(W) cÖwZ‡Wwi‡fwUf wK? [What is antiderivatives?] [Ch-9F: Quiz-1]
1 x
(X) AcÖK…Z Bw›UMÖv‡ji msÁv wjL| [Define inproper integral.] (L) sec −1 2 Gi mv‡c‡¶ tan −1 Gi Aš—ixKiY Ki|
[Ch-13: Quiz-1] 2x −1 1 − x2
f ′( x) f ′( x) [Differentiable tan −1
x
with respect to sec −1 2
1
.]
(Y) ∫ dx Gi gvb KZ? [What is the value of ∫ dx .] 2x −1
f ( x) f ( x) 1− x 2

[Ch-9F: Quiz-24] [Ch-3A: Ex-7(viii)]

www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info


RvZxq wek¦we`¨vj‡qi cÖkœcÎ - 2010 3 4 K¨vjKzjvm-I
dy dy π
4| (K) y = x x n‡j wbY©q Ki| [Find when y = x x .] (L) y = ln ( sec x ) †iLvi x = 0 nB‡Z x = ch©š— Pvc ˆ`N©¨ wbY©q Ki|
dx dx 4
[Ch-3A: Ex -3(ii)] π
[Find the length of the arc of the line y = ln ( sec x ) x = 0 to x = .]
(L)= sin y x sin ( a + y ) n‡j cÖgvY Ki †h,
dy
=
sin 2
( a + y ) [Show 4
[Ch-15A: Ex -4(1)]
dx sin a
dy sin ( a + y ) M-wefvM
2

that = , when= sin y x sin ( a + y ) .] π


dx sin a 10| wb‡gœi dvsk‡bi x = 0 Ges x = we›`y‡Z Awew”QbœZv I Aš—ixKiY‡hvM¨Zv
[Ch-3A: Ex-8(ii)] 2
5| (K) Mogvb Dccv‡`¨i R¨vwgwZK e¨vL¨v `vI| [Give the geometrical cix¶v Ki [Test continuity and differentiability of the following
interpretation of the mean value theorem.] [Ch-4: Art-4.6] π
function at x = 0 and x = ]
e −e
x sin x
e x − esin x 2
(L) lim dx Gi gvb wbY©q Ki| [Evaluate lim dx ]
x → 0 x − sin x x → 0 x − sin x  1 ; hLb ( when ) x < 0
[Ch-8: Ex-4(viii)] 
π
1 − sin x dx f ( x ) = 1 + sin x ; hLb ( when ) 0 ≤ x ≤ [Ch-2C-Ex -4(i)]
6| (K) mgvKjb Ki: [integrate] ∫ dx A_ev ∫  2
x + cos x (1 + x ) 1 − x2
2

2 +  x − π  ; hLb ( when ) x ≥ π
2

[Ch-9C: Ex-8(ii)]   2  2
π
11| ‡iv‡ji Dccv`¨wU eY©bv I cÖgvY Ki| Dnvi R¨vwgwZK e¨vL¨v `vI| [State
(L) gvb wbY©q Ki [Evaluate] t ∫ 2
ln ( sin x ) dx [Ch-10B: Ex -4(i)] and prove Rolle’s theorem. Also give its geometrical
0
π interpretation.] [Ch-4: Art-4.2, 4.3]
A_ev, ∫
0
x ln sin xdx [Ch-10B: Ex -4(v)]
12| hw` y = ( sinh −1 x ) nq Z‡e †`LvI [If y = ( sinh −1 x ) then show that]
2 2

7| (K) ∫ sin n xdx Gi jNyKiY m~Î cÖwZôv Ki| [Find the reduction formula
(1 + x ) y
2
n+2 + ( 2n + 1) xyn +1 + n 2 yn =
[Ch-3C-Ex -10(iii)]
0
for ∫ sin xdx .]n
[Ch-10C: Art-10C Gi (vii)] 13| j¨vMÖvÄ AvKv‡ii Ae‡klmn †Uj‡ii Dccv‡`¨i eY©bv I cÖgvY `vI| [State
and prove Taylor’s theorem with Langrange’s form of remainder.]
(L) cÖgvY Ki [Prove that] : Γ (1 / 2 ) =π [Ch-12: Art-12.6, Cor-1] [Ch-5-Art-5.1]
8| (K) x + y =
2 2
a e„ËwUi cwimxgv wbY©q Ki| [Find the perimeter of the
2
14| wb‡gœi dvskbwUi Mwiôgvb I jwNô gvb wbY©q Ki t [Find the maximum
and minimum value of the following function]
circle x 2 + y 2 =
a 2 .] [Ch-15A: Ex -1]
2 2
f ( x ) = x3 − 6 x 2 + 9 x + 5 [Ch-6B-Ex -1(vi)]
x y
(L) + = 1 Dce„ËwU x A‡¶i Pvwiw`‡K Nyi‡j Drcbœ Nbe¯‘wUi AvqZb π
a 2 b2
wbY©q Ki| [Find the volume of the solid generated by revolving the
15| Walle Gi m~Î eY©bv Ki| Bnvi mvnv‡h¨ ∫
0
2
sin 7 xdx Gi gvb wbY©q Ki
π

x2 y 2
ellipse 2 + 2 = 1 about the x-asis.] [Ch-16: Ex-2(i)]
[State Walle’s formula. Using the formula evaluate ∫
0
2
sin 7 xdx ]
a b [Ch-10C: Art-10C.3, Ex-1]
9| (K) ∫
1 dx
Gi Awfm„wZ cix¶v Ki| [Test the convergent of 16| r = a (1 + cos θ ) KvwW©I‡qW‡K Avw` †iLvi mv‡c‡¶ AveZ©b Ki‡j Drcbœ
( )
0 x 1+ x
Nbe¯‘i Z‡ji †¶Îdj I AvqZb wbY©q Ki| [Find the area of rhe surface
1 dx and the volume of the solid obtainde by revolving the cardioide
∫0 x (1 + x )
] [Ch-13: Ex -3(i)] r = a (1 + cos θ ) about the initial line.] [Ch-16: Ex-9(i)]

www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info

You might also like