RvZxq wek¦we`¨vj‡qi cÖkœcÎ - 2022 1 2 K¨vjKzjvm-I
a
NUH-2022 (U) †Kvb k‡Z© a
f ( x) dx 0 n‡e? [What is the condition for
K-wefvM a
a
f ( x) dx 0 ?] [Ch-10A: Quiz-14]
1| (K) y f ( x) Øviv Kx †evSvq? [What is meant by y f ( x) ?]
(V) r a Kx wb‡`©k K‡i? Bnvi wPÎ AvuK| [What is denoted by r a ?
[Ch-1: Quiz-1] Draw its graph.]
1
(L) f ( x) dvsk‡bi †Wv‡gb I †iÄ KZ? [What is the domain L-wefvM
x 1
2| hw` f ( x) x 16 Ges g ( x) x nq Z‡e ( g f ) ( x) wbY©q Ki|
2
1
and range of the function f ( x) ?] AZtci ( g f ) ( x) Gi †Wv‡gb wbY©q Ki| [If f ( x) x 2 16 and
x 1
(M) †Kvb e¨ewa‡Z f ( x) ln x dvskbwU Aš—ixKiY‡hvM¨? [Which is the g ( x) x then find ( g f ) ( x ) . Hence find domain of
( g f ) ( x ) .]
interval where the functions f ( x) ln x is differentiable?]
x3 1
dy dy 3| wjwg‡Ui ( ) msÁv e¨envi K‡i †`LvI †h, lim 3 | [Using
x 1 x 1
(N) R¨vwgwZKfv‡e Øviv Kx †evSvq? [What is is geometrically?]
dx dx x3 1
[Ch-3A: Quiz-3] the ( ) definition of limit to show that, lim 3 .]
x 1 x 1
(O) x Gi mv‡c‡¶ y e ax Gi n -Zg Aš—iR KZ? [What is the n -th [Ch-2A: Prob-2(ii)]
2t 2t dy
derivative of y e ax with respect to x ?] 4| tan y Ges sin x n‡j, wbY©q Ki| [If
1 t 2
1 t 2
dx
(P) y f ( x) eµ‡iLvi Dci¯’ ( x, y ) we›`y‡Z Awfj‡¤^i mgxKiY †jL| 2t 2t dy
tan y and sin x then find .]
[Write down the equation of normal at ( x, y ) of the curve 1 t 2
1 t 2
dx
[Ch-3A: Exercise-D(2)]
y f ( x ) .] [Ch-7A: Quiz-9]
5| y x 2 x 1 eµ‡iLvi (1, 4) we›`y‡Z ¯úk©K Ges Awfj‡¤^i mgxKiY
2
(Q) y f ( x) Ges y g ( x) eµ‡iLvØq j¤^ nIqvi kZ© Kx? [What is the wbY©q Ki| [Find the equations of tangent and normal of the curve
condition of perpendicularity of two curves y f ( x) and y x 2 2 x 1 at (1, 4) .] [Ch-7A: Prob-1(ii)]
y g ( x) ?] 1 1
tan x x tan x x
6| lim Gi gvb wbY©q Ki| [Find the value of lim .]
x 0 x x 0 x
1 1
(R) lim e Gi gvb KZ? [What is the value of lim e ?]
x x
x 0 x 0 [Ch-8: Exercise-23]
7| Gi jNy KiY m~ Î cÖ w Zôv Ki|
n
(S) GKwU e¨ewa‡Z µgea©gvb dvskb ej‡Z Kx eyS? [What do you mean sin x dx [Find the reduction formula
sin
n
by increasing function in a interval?] [Ch-6A: Quiz-5] for x dx .] [Ch-10C: Art-10C.2(vii)]
1
(T) e ln x dx Gi gvb KZ? [What is the value of
x
x 8| gvb wbY©q Ki [Find the value of]: 0
4
tan x sec4 x dx
1 1
e
x
ln x dx ?] 9| †`LvI †h [Show that], [Ch-12: Abywm×vš—-1]
x 2
www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info
RvZxq wek¦we`¨vj‡qi cÖkœcÎ - 2022 3 4 K¨vjKzjvm-I
M-wefvM p 1 q 1
10| x we›`y‡Z dvskbwUi Awew”QbœZv I Aš—ixKiY‡hvM¨Zv Av‡jvPbv Ki| 15| †`LvI †h [Show that], 02 sin p cos q d 2 2
2 pq2
2
2
[Discuss the continuity and differentiability at x of the
2 [Ch-12: Th-18]
function] 16| Bw›UMÖvj K¨vjKzjv‡mi †gŠwjK Dccv`¨ eY©bv I cÖgvY Ki| [State and prove
the fundamental theorem of integral calculus.][Ch-10A: Art-10A.5]
1 ; hLb [when] x 0
17| x3 y 3 3axy †iLvi GKwU duv‡mi †¶Îdj wbY©q Ki| [Find the area of
f x 1 sin x ; hLb [when] 0 x
2 a loop of the curve x3 y 3 3axy .] [Ch-14B: Prob-2(ii)]
2
2 x ; hLb [when] x
2 2
----------
[Ch-2C: Prob-4(i)]
11| †iv‡ji Dccv`¨ eY©bvmn cÖgvY Ki| [State and prove Rolle’s theorem.]
[Ch-4: Art-4.2]
12| hw` y A ( x x 2 1)m B ( x x 2 1) m nq Z‡e †`LvI †h [If
y A ( x x 2 1)m B ( x x 2 1) m then show that],
(1 x 2 ) yn 2 (2n 1) xyn 1 (n2 m2 ) yn 0
[Ch-3C: Exercise-5]
13| (0, 9) e¨ewa‡Z f ( x) x3 18 x 2 96 x dvskbwUi m‡e©v”P I me©wbgœ gvb
wbY©q Ki| [Find the maximum and minimum values of the function
f ( x) x3 18 x 2 96 x in the interval (0, 9) .] [Ch-6B: Prob-2(iv)]
14| gvb wbY©q Ki [Evaluate]:
x3
(i) x 1
dx [Ch-9B: Prob-1(i)]
dx
(ii) 0
2
1 cot x
[Ch-10B: Prob-1(v)]
www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info