0% found this document useful (0 votes)
20 views2 pages

Cal-I 2022

Uploaded by

everywhere.mine
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
20 views2 pages

Cal-I 2022

Uploaded by

everywhere.mine
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 2

RvZxq wek¦we`¨vj‡qi cÖkœcÎ - 2022 1 2 K¨vjKzjvm-I

a
NUH-2022 (U) †Kvb k‡Z©  a
f ( x) dx  0 n‡e? [What is the condition for
K-wefvM a
 a
f ( x) dx  0 ?] [Ch-10A: Quiz-14]
1| (K) y  f ( x) Øviv Kx †evSvq? [What is meant by y  f ( x) ?]
(V) r  a Kx wb‡`©k K‡i? Bnvi wPÎ AvuK| [What is denoted by r  a ?
[Ch-1: Quiz-1] Draw its graph.]
1
(L) f ( x)  dvsk‡bi †Wv‡gb I †iÄ KZ? [What is the domain L-wefvM
x 1
2| hw` f ( x)  x  16 Ges g ( x)  x nq Z‡e ( g  f ) ( x) wbY©q Ki|
2
1
and range of the function f ( x)  ?] AZtci ( g  f ) ( x) Gi †Wv‡gb wbY©q Ki| [If f ( x)  x 2  16 and
x 1
(M) †Kvb e¨ewa‡Z f ( x)  ln x dvskbwU Aš—ixKiY‡hvM¨? [Which is the g ( x)  x then find ( g  f ) ( x ) . Hence find domain of
( g  f ) ( x ) .]
interval where the functions f ( x)  ln x is differentiable?]
x3  1
dy dy 3| wjwg‡Ui (   ) msÁv e¨envi K‡i †`LvI †h, lim  3 | [Using
x 1 x  1
(N) R¨vwgwZKfv‡e Øviv Kx †evSvq? [What is is geometrically?]
dx dx x3  1
[Ch-3A: Quiz-3] the (   ) definition of limit to show that, lim  3 .]
x 1 x  1

(O) x Gi mv‡c‡¶ y  e ax Gi n -Zg Aš—iR KZ? [What is the n -th [Ch-2A: Prob-2(ii)]
2t 2t dy
derivative of y  e ax with respect to x ?] 4| tan y  Ges sin x  n‡j, wbY©q Ki| [If
1 t 2
1 t 2
dx
(P) y  f ( x) eµ‡iLvi Dci¯’ ( x, y ) we›`y‡Z Awfj‡¤^i mgxKiY †jL| 2t 2t dy
tan y  and sin x  then find .]
[Write down the equation of normal at ( x, y ) of the curve 1 t 2
1 t 2
dx
[Ch-3A: Exercise-D(2)]
y  f ( x ) .] [Ch-7A: Quiz-9]
5| y  x  2 x  1 eµ‡iLvi (1, 4) we›`y‡Z ¯úk©K Ges Awfj‡¤^i mgxKiY
2

(Q) y  f ( x) Ges y  g ( x) eµ‡iLvØq j¤^ nIqvi kZ© Kx? [What is the wbY©q Ki| [Find the equations of tangent and normal of the curve
condition of perpendicularity of two curves y  f ( x) and y  x 2  2 x  1 at (1, 4) .] [Ch-7A: Prob-1(ii)]
y  g ( x) ?] 1 1
 tan x  x  tan x  x
6| lim   Gi gvb wbY©q Ki| [Find the value of lim   .]
x 0  x  x 0  x 
1 1
(R) lim e Gi gvb KZ? [What is the value of lim e ?]
x x
x  0 x  0 [Ch-8: Exercise-23]
7|  Gi jNy KiY m~ Î cÖ w Zôv Ki|
n
(S) GKwU e¨ewa‡Z µgea©gvb dvskb ej‡Z Kx eyS? [What do you mean sin x dx [Find the reduction formula

 sin
n
by increasing function in a interval?] [Ch-6A: Quiz-5] for x dx .] [Ch-10C: Art-10C.2(vii)]
 1 
(T) e  ln x   dx Gi gvb KZ? [What is the value of
x

 x 8| gvb wbY©q Ki [Find the value of]:  0


4
tan x sec4 x dx

 1 1
e
x
 ln x   dx ?] 9| †`LvI †h [Show that],      [Ch-12: Abywm×vš—-1]
 x 2
www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info
RvZxq wek¦we`¨vj‡qi cÖkœcÎ - 2022 3 4 K¨vjKzjvm-I
M-wefvM  p 1  q 1
    

10| x  we›`y‡Z dvskbwUi Awew”QbœZv I Aš—ixKiY‡hvM¨Zv Av‡jvPbv Ki| 15| †`LvI †h [Show that],  02 sin p  cos q  d   2   2 
2  pq2
2  
  2 
[Discuss the continuity and differentiability at x  of the
2 [Ch-12: Th-18]
function] 16| Bw›UMÖvj K¨vjKzjv‡mi †gŠwjK Dccv`¨ eY©bv I cÖgvY Ki| [State and prove
 the fundamental theorem of integral calculus.][Ch-10A: Art-10A.5]

 1 ; hLb [when] x  0
17| x3  y 3  3axy †iLvi GKwU duv‡mi †¶Îdj wbY©q Ki| [Find the area of
 
f  x    1  sin x ; hLb [when] 0  x 
2 a loop of the curve x3  y 3  3axy .] [Ch-14B: Prob-2(ii)]

  
2

2   x   ; hLb [when] x 
  2 2
----------
[Ch-2C: Prob-4(i)]
11| †iv‡ji Dccv`¨ eY©bvmn cÖgvY Ki| [State and prove Rolle’s theorem.]
[Ch-4: Art-4.2]

12| hw` y  A ( x  x 2  1)m  B ( x  x 2  1) m nq Z‡e †`LvI †h [If

y  A ( x  x 2  1)m  B ( x  x 2  1) m then show that],

(1  x 2 ) yn  2  (2n  1) xyn 1  (n2  m2 ) yn  0

[Ch-3C: Exercise-5]
13| (0, 9) e¨ewa‡Z f ( x)  x3  18 x 2  96 x dvskbwUi m‡e©v”P I me©wbgœ gvb
wbY©q Ki| [Find the maximum and minimum values of the function
f ( x)  x3  18 x 2  96 x in the interval (0, 9) .] [Ch-6B: Prob-2(iv)]
14| gvb wbY©q Ki [Evaluate]:
x3
(i)  x 1
dx [Ch-9B: Prob-1(i)]


dx
(ii)  0
2

1  cot x
[Ch-10B: Prob-1(v)]

www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info www.scienceview.info

You might also like