Solution 1352842
Solution 1352842
PRACTICE PAPER
Class 12 - Mathematics
1.
     (b) [-1, 2)
     Explanation: Let f(x) = cos-1[x]
     Now, domain of g(x) = cos-1x is the set
     - 1 ≤ x ≤ 1} = [-1, 1]
     ∴ Domain of given function is {x : -1 ≤ [x] ≤ 1}
                 ⎧ −1                    if        −1 ≤ x ≤ 0
                 ⎪
     [x] = ⎨             0               if        0 ≤ x ≤ 1
           ⎩
           ⎪
                         1               if        1 ≤ x < 2
                                                                                                               my
2.
     (c)         1
√1+x2
     Explanation: cot                         −1
                                                   x = θ ⇒ x = cot θ ⇒ cot θ =
                                                                                              x
                                                                                                             de
                                                            P erp.         1
                     −1
     sin(co t                x) = sin θ =                            =              .
                                                            Hyp.         √x2 +1
           −π
3.   (a)     4
                        –
     ⇒ cosec x = − √2
                                                                                        –
     ⇒     cosec x =-cosec (                        π
                                                        ) (∵ cosec (
                                                                               π
                                                                                   ) = √2)
                                                                                         th
4 4
⇒ cosec x = cosec (− π
                                                        4
                                                            )   (∵ - cosec (θ) = cosec (-θ))
     ⇒     x=−           π
                                                                    rar
4.
     (b) [0, π] − {                  π
                                     2
                                         }
     From the graph, it is clear that the range of sec-1(x) is restricted to interval
                             π
     [0, π] − {                  }
                             2
5.   (a) 0.96
     Explanation: Let sin–1 (0.6) = θ, i.e, sin θ =0.6
     Now, sin (2θ) = 2 sinθ cosθ = 2 (0.6) (0.8) = 0.96
                         −1
6. Let cot  −1
                     (           ) = θ
                         √3
                                                                                                                                       1/9
                                                                                    Er.anurag sir's classes
                       −1
   cot θ =
                      √3
              2π
   θ=
              3
                                                                                                   −1
   Therefore, principal value of cot                                                  −1
                                                                                              (            ) =
                                                                                                                     2π
                                                                                                                        3
                                                                                                   √3
 7. The domain of sin-1x is [-1,1] and that of cos x is R. Therefore, domain of f(x) = sin-1x + cos x is [-1, 1] ∩ R = [-1, 1].
 8. Let sin        −1
                           (
                                   1
                                           ) = θ
                               √2
                                           1
    ⟹             sin θ =
                                       √2
                                                        −π          π
   We know that θ ∈ [                                      2
                                                               ,
                                                                    2
                                                                        ]
                                                   π
    ⟹             sin θ = sin
                                                   4
                            π
    ⟹             θ=
                            4
                                                                                                                    4
                                                                                                  √2
                                                                                                                                                                    my
                                                                                                                                                  2       2
   tan-1(1) = ( An angle θ ∈ (−
                                                                                 π        π
                                                                                      ,       ) such that tan θ = 1)
                                                                                 2        2
       π
   =
          4
                                                    √3
10. sin   −1
               [cos(sin
                                           −1
                                                       2
                                                               )]
                                                                                                                                                                  de
               −1                          π
   = sin               [cos(                   )]
                                           3
               −1          1                   π
   = sin               [       ] =
                           2                   6
θ ∈ [0, π]
                                                   π
   cos θ = cos(π −                                      )
                                                                                                                             th
              2π
   θ=
              3
   Principal value is                              2π
                                                                                     rar
                               2
                                       )=
                                                                                      2
                                                                                              )   =y
                               − √3                                              −1
   ⇒      sin x = (                2
                                            )      and cos y =                    2
   we know that the range of the principal value branch of sin-1 (                                                                                                    and cos-1 is (0, π)
                                                                                                                                                  −π
                                                                                  ast
                                                                                                                                                              π
                                                                                                                                                          ,       )
                                                                                                                                                      2       2
                                                               −π               − √3                                                 −1
   We also know that sin                                           3
                                                                        =(        2
                                                                                          )   and cos (               2π
                                                                                                                        3
                                                                                                                             )   =       2
                                                                                                                                                          √3
14. Using the principal values, we have to find the value of sin                                                                             −1
                                                                                                                                                  (−
                                                                                                                                                              2
                                                                                                                                                                  ).
                                                       √3
   We have, sin                    −1
                                           (−
                                                           2
                                                               ) = sin
                                                                                 −1
                                                                                      (− sin
                                                                                                           π
                                                                                                           3
                                                                                                               )
                   π               √3
   [∵ sin               =                  ]
                   3               2
               −1                              π
   = sin              [sin(−                       )] [∵ − sin θ = sin(−θ)]
                                               3
              π                        −1                                                          π       π
   = −             [∵ sin                      (sin θ) = θ; ∀θ ∈ [−                                    ,       ]]
              3                                                                                    2       2
                                               √3
   Hence, sin              −1
                                   (−
                                                   2
                                                        ) = −
                                                                            π
                           √3                                                                 √3
15. If cos     −1
                       (
                               2
                                   ) = θ                , then cos θ =                        2
                                                                                                   .
                                                                                                                                                              √3
   Since, we are considering principal branch, θ ∈ [0, π] . Also, since                                                                                           2
                                                                                                                                                                      > 0   , θ being in the first quadrant, hence
                      √3
   cos
          −1
                  (
                       2
                               ) =
                                               π
                                               6
                                                   .
              –                                                    π
   ⇒ cot x = √3 = cot(                                                 )
                                                                   6
                                                                                                                                                                                                                     2/9
                                                                                                                    Er.anurag sir's classes
                 π
   ⇒ x =
                     6
                                                                        –
   ∴   Principal value of cot                                    −1
                                                                      (√3)         is      π
                                                                                           6
                                                                                                .
17. Let sec      −1
                         (
                                 2
                                      ) = y
                             √3
                                 2
   ⇒ sec y =
                             √3
                                         π
   ⇒ sec y = sec
                                         6
                                                                                                                      6
                                                                                                                          .
                                                                                                   √3
                                                                                                                                                −π
18. We have, tan                 −1
                                          (−
                                                         1
                                                                 ) + cot
                                                                                  −1
                                                                                        (
                                                                                                   1
                                                                                                        ) + tan
                                                                                                                              −1
                                                                                                                                   [sin(
                                                                                                                                                2
                                                                                                                                                        )]      .
                                                         √3                                    √3
                                         5π                                             π
   = tan
                −1
                     (tan
                                         6
                                                 ) + cot
                                                                      −1
                                                                              (cot
                                                                                        3
                                                                                               ) + tan
                                                                                                                     −1
                                                                                                                              (−1)     .
                −1                                       π                         −1                        π                         −1                                    π
   = tan             [tan(π −                                )] + cot                      [cot(                 )] +tan                       [tan(π −                          )]
                                                         6                                                   3                                                               4
                                                                                                                                                                                                               π        π
                                                                                                                                                                                  −1
                                                                                                                                                            ⎡ ∵ tan                    (tan x) = x, x ∈ (−          ,       )   ⎤
                                                                                                                                                                                                               2        2
                −1                               π                        −1                   π                          −1                        π     ⎢                                                                     ⎥
   = tan             (− tan                          ) + cot                      (cot              ) + tan                    (− tan                   ) ⎢                        −1                                           ⎥
                                                 6                                             3                                                    4     ⎢                  cot        (cot x) = x, x ∈ (0, π)                 ⎥
                                                                                                                                                            ⎣                              −1                  −1               ⎦
                                                                                                                                                                               my
                                                                                                                                                                                 and tan        (−x) = − tan        x
            π            π               π               −2π+4π−3π
   = −           +               −               =
            6            3               4                        12
       −5π+4π                        −π
   =                      =
            12                       12
                                                                                                                 2
                                                                                                                     )
                                                                                                                                                                             de
   Lets cos-1            1
                         2
                                 = θ
        1
   ⇒
        2
             = cos θ
   ⇒ cos
                 π
                         = cos θ
   ⇒ θ=
                 3
                     π                                                                                                              a
                                                                                                                                 ac
                     3
                                                              3
                                                                  ) = tan
                                                                                       −1
                                                                                               tan(π −
                                                                                                                          π
                                                                                                                          3
                                                                                                                              )
                −1                               π                            −1                                          −1
   = tan             (− tan                          ) [∵ tan                      (−x) = − tan                                x]
                                                 3
                −1                       −π                           π                     −1                                                      −π              π
                                                                                                                              th
                                                                                           2π                    2π
   Note: Remember that, tan                                           −1
                                                                              (tan
                                                                                            3
                                                                                                    ) ≠
                                                                                                                 3
                tan-1(tan
                                                                                     rar
Since, x) = x, if x ∈ (− π
                                                                                    2
                                                                                        ,
                                                                                            π
                                                                                               2
                                                                                                    )   and          2π
                                                                                                                      3
                                                                                                                              ∉ (
                                                                                                                                    −π
                                                                                                                                       2
                                                                                                                                           ,
                                                                                                                                                π
                                                                                                                                                2
                                                                                                                                                    )
                                                                      4
                                                                          .
                                 −1                               −1
   ∴        cot[ sin                     {cos(tan                         1)}]
                                                                                  ast
                          −1                         π                                      −1          1                          π
   = cot{sin                     (cos                    )} = cot(sin                                        ) = cot                   = 1
                                                     4                                                  √2                         4
                           –
22. Let cot      −1
                         (√3) = y
              –
   ⇒ cot y = √3
                                         π
                                                              Sh
   ⇒ cot y = cot
                                         6
                                                                                                                     6
                 –                         –
23. tan   −1
                √3 − sec
                         −1
                            (−2) = tan
                                       −1
                                          √3 − [π − sec
                                                        −1
                                                           2]
       π                                 −1              1
   =        − π + cos                                (       )
       3                                                 2
            2π            π                      π
   = −           +               = −
            3                3                   3
                                                             − √3                  π
24. We have, cos[ cos                            −1
                                                         (
                                                                  2
                                                                          ) +
                                                                                   6
                                                                                       ]
                 −1                                      π                π
   cos[ cos               ( − cos                            ) +              ]
                                                         6                6
                         −1                          5π                   π
   = cos[ cos                        (cos                    ) +              ]
                                                     6                    6
                 5π                  π                            −1
   = cos(                 +              ){∵ cos                          cos x = x, x ∈ [0, π]}
                     6               6
                 6π
   = cos(                )
                     6
= cos(π) = −1
25. The domain of sin-1 x is [-1,1]. Therefore, f(x) = sin-1 (-x2) is defined for all x satisfying -1 ≤ -x2 ≤ 1
                             2
   ⇒        1 ≥ x                    ≥ −1
                                                                                                                                                                                                                                    3/9
                                                                                                                     Er.anurag sir's classes
                     2
   ⇒ 0 ≤ x               ≤ 1
           2
   ⇒ x          ≤ 1
           2
   ⇒ x          − 1 ≤ 0
   ⇒      (x - 1)(x + 1) ≤ 0
   ⇒ −1 ≤ x ≤ 1
                                                                                                                                       4
                                                                                                                                           ) = cos(π −
                                                                                                                                                         π
                                                                                                                                                         4
                                                                                                                                                             ) = cos(
                                                                                                                                                                              3π
                                                                                                                                                                              4
                                                                                                                                                                                   )   .
                           √2                                                             √2
We know that the range of the principal value branch of cos-1 is [0, π ] and cos( 3π
                                                                                                                                                                       4
                                                                                                                                                                            ) = −
                                                                                                                                                                                       1
√2
                                                                                                                   4
                                                                                                                           .
                                                                                          √2
                              –
27. Let cos ec       −1
                          (− √2) = y
                  –
   ⇒ cos ecy = − √2
                                           −π
   ⇒ cos ecy = cos ec
                                               4
                                                                                                               2
                                                                                                                   ,
                                                                                                                       π
                                                                                                                        2
                                                                                                                               ]   .
                                                                                 –                             −π
   Therefore, principal value of cos ec                              −1
                                                                             (− √2)                   is               .
                                                                                                                                                                        y
                                                                                                               4
28. sin   −1
               (sin(− 600 )) = sin
                                   ∘                     −1
                                                              {sin(−600 ×
                                                                                                   π
                                                                                                  180
                                                                                                           )}
                                                                                                                                                 m
               −1                   10π                        −1                     10π
   = sin            {sin(−                 )} = sin                 (− sin                        )
                                       3                                                  3
               −1                                  π                 −1                                        π
   = sin            {− sin(3π +                         )} = sin             {− (− sin                             )}
                                                                                                                                              de
                                                    3                                                          3
               −1          π               π
   = sin            (sin       ) =
                           3               3
                             –
29. Let tan      −1
                         (− √3) = y                                                                                                         ca
                –
   ⇒ tan y = − √3
                                       π
   ⇒ tan y = − tan
                                       3
                                           π
                                                                                             ha
   ⇒ tan y = tan(−                             )
                                           3
                                                                                                       2
                                                                                                           ,
                                                                                                               π
                                                                                                               2
                                                                                                                    ]   .
                                                                             –
   Therefore, principal value of tan                            −1
                                                                         (− √3)                   is − .   π
                          3π               3π            3π         −π
30. tan                                            as                        π
                                                                                          art
          −1
                (tan           ) ≠                            ∉ (        ,       )
                           π                   4         4           2       2
               −1              3π                       −1                            π
   ∵ tan             (tan           ) = tan                   [tan(π −                    )]
                               4                                                      4
                −1                     π
   = tan             [− tan(               )]
                                                                  r
           π
   = −
                                                               ast
                                                                              2
                                                                                  ,
                                                                                      π
                                                                                      2
                                                                                              ]
                                                                                                                                                    −π
32. From Fig. we note that tan x is an increasing function in the interval (                                                                        2
                                                                                                                                                         ,
                                                                                                                                                             π
                                                                                                                                                             2
                                                                                                                                                                 )   , since 1 >       π
                                                                                                                                                                                       4
                                                                                                                                                                                           ⇒ tan 1 > tan
                                                                                                                                                                                                           π
                                                                                                                                                                                                           4
                                                                                                                                                                                                               . This gives
   tan 1 > 1
                                   π
   ⇒ tan 1 > 1 >
                                   4
                                           −1
   ⇒ tan 1 > 1 > tan                               (1)
                                                                                                                                                                                                                              4/9
                                                                                              Er.anurag sir's classes
33. cosec-1x represents an angle in [−                                                 π
                                                                                          2
                                                                                              , 0) ∪ (0,
                                                                                                                π
                                                                                                                2
                                                                                                                    ]   whose cosent is x.
   Let x = cosec-1(-2)
                                                                              π
   ⇒ cosec x = −2 = cosec (−                                                      )
                                                                              6
                         π
   ⇒ x = −
                         6
34. Principal value branch of cos-1 x is [0, π ] and its graph is shown here,
                                                                                                                                                  my
35. Let cosec-1 (−√2) = y . Then, cosec y = −√2 = −cosec (
                                             –                                                              –                           π
                                                                                                                                        4
                                                                                                                                            ) = cosec (−
                                                                                                                                                           π
                                                                                                                                                           4
                                                                                                                                                               )   .
   We know that the range of the principal value branch of
                                                                                                                                                de
   cosec-1 is [−
                                                                                                                  –
                                     π
                                     2
                                         ,
                                             π
                                             2
                                                 ] − {0}                 and cosec (−                  π
                                                                                                       4
                                                                                                           ) = − √2                 .
                                 9π
36. tan    −1
                (tan
                                 8
                                         )
                                                                                                                          a
                                                                                                                       ac
                −1                                   π
   = tan             tan(π +                             )
                                                     8
                −1                           π
   = tan             (tan(                       ))
                                             8
        π
   =
        8
                                                                                                                    th
                             −1
37. Let sin     −1
                         (
                                 2
                                         ) = y
                                     1
   ⇒ sin y = −
                                     2
                                                                                 rar
                                                 π
   ⇒ sin y = − sin
                                                 6
                                                 π
   ⇒ sin y = sin(−                                   )
                                                 6
2 2
                                                                                              −1
   Therefore, principal value of sin                                              −1
                                                                                          (
                                                                                               2
                                                                                                   )   is − .   π
                                              −−−−−
38. Let y =      sin-1(2x                    √1 − x2                 )
    let x = cos θ
                                                             Sh
⇒ θ = cos-1 x θ ≤ θ ≤ π
                                                                 4
                                                      −−−−− −− −
   ⇒    y=      sin-1(2cos θ                         √1 − sin 2 θ                 )
   =   sin-1 sin
             2θ
   = 2θ [θ ≤ θ ≤                         π
                                         4
                                                 ⇒ θ ≤               2θ ≤         π
                                                                                  2
                                                                                      ]
   ⇒ 2cos-1 x
   Hence Proved
39. We have, cos-1(                                  = cos-1(cos
                                             1                                    π
                                                 )                                    )
                                             2                                    3
= π
       3
            [∵
                    π
                     3
                         ∈ [0, π]]
Also sin-1(− 1
                                 2
                                         )   = sin-1 (-sin                π
                                                                          6
                                                                              )
   =   sin-1 (sin(− π ))                     6
=- π
        6
            [∵ −
                             π
                             6
                                     ∈ [−
                                                     π
                                                     2
                                                         ,
                                                             π
                                                             2
                                                                 ]]
∴ cos-1( 1
                     2
                         )   - 2sin-1(−                      1
                                                             2
                                                                 )    =   π
                                                                          3
                                                                              - 2(−            π
                                                                                               6
                                                                                                   )
= π
       3
            +   π
                3
                     =       2π
                                                                                                                                                                       5/9
                                                                                                           Er.anurag sir's classes
40. tan   −1
               (−
                            1
                                 ) + cot
                                                −1
                                                       (
                                                               1
                                                                       ) + tan
                                                                                     −1
                                                                                          (sin(−
                                                                                                                  π
                                                                                                                  2
                                                                                                                      ))
                        √3                                     √3
           π            π                  −1
   = −          +               + tan           (−1)
           6            3
           π            π            π
   = −          +               −
           6            3            4
           π
   = −
           12
                                               1               π
41. We know that sin                      −1
                                               2
                                                   =
                                                               6
                                                                   .
                 −1                                    −1          1
   ∴      tan               {2 cos(2 sin                               )}
                                                                   2
               −1                                  π
   = tan            {2 cos(2 ×                         )}
                                                   6
               −1                     π                        −1               1                     −1                      π
   = tan            (2 cos                ) = tan                      (2 ×         ) = tan                   1 =
                                      3                                         2                                             4
                                                                                                          π
42. Let cos     −1
                        (
                            1
                            2
                                 )= x      . Then, cos x =                      1
                                                                                2
                                                                                     = cos(
                                                                                                          3
                                                                                                              )       .
           −1           1             π
   ∴ cos         (          )=
                        2             3
   Let sin      −1
                     (
                            1
                            2
                                )= y       . Then, sin y =                      1
                                                                                2
                                                                                    = sin(
                                                                                                      π
                                                                                                      6
                                                                                                          )       .
           −1        1                π
   ∴ sin        (           )=
                     2                6
           −1           1                      −1          1            π           2π           π            π                   2π
   ∴ cos         (          ) + 2 sin                  (       ) =          +            =            +               =
                        2                                  2            3           6             3               3               3
                                                                                                                                                                   y
43. First of all we need to find the principal value for cosec–1(–2)
    Let,
                                                                                                                                                        m
   cosec–1(-2 )=Y
     cosec y = –2
                                                                                                                                                     de
   ⇒
   ⇒ –cosec y = 2
   ⇒ –cosec    =2           π
                −π
   cosec (       6
                            )    = –2
                                                                                         6
                                                                                              .
   ∴ Now, the question changes to
                                                                                                 art
   Sin–1[cos
                     −π
                         6
                                 ]
   Cos(–θ) = cos(θ)
                                                                           r
Sin–1[cos ] π
   Let,
   Sin–1(
                √3
                        )       =Y
                2
                                                       Sh
                            √3
   ⇒   sin y =               2
⇒ Y= π
                                                                                             2
                                                                                                  ,
                                                                                                      π
                                                                                                      2
                                                                                                              )   and sin (                π
                                                                                                                                           3
                                                                                                                                               ) =
                                                                                                                                                            2
                                                                            Sin–1( ) is
                                                                                  √3
   Therefore, the principal value of                                                      2
                                                                                                              π
                                                                                                                          π
   Hence, the principal value of the given equation is                                                                    3
   = 2θ
   = 2 cos-1 x
45. We know that the range of principal value of cosec-1 is [
                                                                                                                                       −π
                                                                                                                                       2
                                                                                                                                               ,
                                                                                                                                                   π
                                                                                                                                                   2
                                                                                                                                                       ]   - [0]
   Let cosec-1 (-1) = θ. Then we have, cosec θ = -1
                                                                             −π
   cosec θ = -1 = -cosec = cosec ( )               π
2 2
                                                                                                                                                                       6/9
                                                                                                      Er.anurag sir's classes
             −π            −π
   ∴ θ=
              2
                   ∈ [
                               2
                                   ,
                                       π
                                       2
                                            ]       - [0]
   Hence, the principal value of cosec-1 (-1) is equal to
                                                                                                            −π
                                                                              2
                                                                                  )∪ (
                                                                                           π
                                                                                           2
                                                                                               , π]         and its graph is shown below.
                                                                                                                               my
                                           π
   ⇒ tan y = tan(−                             )
                                           4
                                                                                               2
                                                                                                    ,
                                                                                                        π
                                                                                                        2
                                                                                                            ]   .
   Therefore, principal value of tan-1(-1) is − .                                     π
                                                                                                                             de
                                                                                                                         −π       π
                                                                                                                              ,       )
                                                                                                                         2        2
       tan-1 (√3)= θ
               –
   Let             , Then, we have,
            –                          π                    π        −π       π
   tan θ = √3 = tan ⇒ θ = ∈ (                                             ,       )
                                                                       –
                                                                     (√3)
                                                                              2
                                                                                  is equal to
                                                                                                          a π
                                                                                                       ac
                                                                                                            3
                       2
                               ) = y
                           1
   ⇒ cos y = −
                           2
                                       π
   ⇒ cos y = − cos
                                                                                                    th
                                                π               2π
   ⇒ cos y = cos(π −                                ) = cos
                                                3               3
                                                                          −1
   Therefore, principal value of cos                            −1
                                                                     (
                                                                          2
                                                                                  )   is   2π
                                                                                           3
                                                                                                .
       −1
    cot
              π
   = π −
              6
       5π
   =
       6
                     –
            −1                             5π
                                                .
                                                    Sh
   ∴ cot         (− √3) =
                                           6
51. Principal value branch of cot-1 x is (0, π ) and its graph is shown below.
                                                                          2
                                                                              ,
                                                                                  π
                                                                                  2
                                                                                      ]
                                                                                                                                            7/9
                                                                                          Er.anurag sir's classes
   And its graph is given here
                                                                                                                   2
                                                                                                                       , 0) ∪ (0,
                                                                                                                                      π
                                                                                                                                      2
                                                                                                                                          ]   and its graph is given below.
                                                                                                                                        my
                                                                                                                                      de
54. Given sin          −1
                            (
                                1
                                3
                                     ) − cos
                                                          −1
                                                                  (−
                                                                           1
                                                                           3
                                                                               )
              −1       1                                  −1           1
   = sin           (       ) − π + cos                             (       )
                       3                                               3
              −1       1                         −1       1
   = sin           (       ) + cos                    (       ) − π
                       3                                  3
                                                                                                              th
       π
   =         − π
         2
             π
   = −
             2
                                                                              rar
   Therefore we have,
         −1       1                      −1               1                    π
   sin        (       ) − cos                    (−           ) = −
                  3                                       3                    2
                            √3
55. Let cos       −1
                       (
                            2
                                 ) = y
                                                                           ast
                           √3
   ⇒ cos y =
                            2
                                     π
   ⇒ cos y = cos
                                     6
                  π
   ⇒ y =
                                                      Sh
                                                                                                      6
                                                                                                          .
                                                                                                                              2
                                                                                                                                  ,
                                                                                                                                      π
                                                                                                                                      2
                                                                                                                                          ]
   Let cos        −1
                       (−
                             1
                             2
                                 )= y
                       1                                      π                     2π
   cos y = −           2
                            = cos(π −
                                                              3
                                                                  ) = cos(
                                                                                        3
                                                                                            )
         sin-1 (− ) =
                 1
   Let                      2
                                             z
                                π                                 π
   sin z = − sin                     = sin(−                          )
                                 6                                6
                                                                                                                             2
                                                                                                                                  ,
                                                                                                                                      π
                                                                                                                                      2
                                                                                                                                          ]
                                                                                                                                                                              8/9
                                                                                                  Er.anurag sir's classes
      Thus, sin-1 (−                 1
                                     2
                                         )= −
                                                    π
      Now,we have
              −1                         −1         1                        1
      tan          (1) + cos                  (−        ) + sin(−                )
                                                    2                        2
                                                 3π+8π−2π
      =   π
          4
              +
                    2π
                    3
                         −
                             π
                                 6
                                     =
                                                    12
                                                                    =
                                                                        9π
                                                                        12
                                                                             =
                                                                                     3π
                         2
                                 )
Explanation: tan-1( 1
                                                    2
                                                         )
                             3
                                 )
Explanation: tan-1 ( 4
                                                        3
                                                            )
          (b) tan-1 (
                             11
59.                          2
                                     )
Explanation: tan-1 ( 11
                                                        2
                                                                )
                             8
                                 )
          Explanation: tan-1 (                          1
                                                            )
                                                                                                               my
                                                        8
61. (b) R, (− π
                             2
                                 ,
                                         π
                                         2
                                             )
                                                        π       π
          Explanation: R, (−                            2
                                                            ,
                                                                2
                                                                    )
                                                                                                   a         de
                                                                                                ac
                                                                                             th
                                                                           rar
                                                                        ast
                                                    Sh
                                                                                                                    9/9
                                                                                          Er.anurag sir's classes