0% found this document useful (0 votes)
20 views2 pages

1er Formulario - Lopez Michelini

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
20 views2 pages

1er Formulario - Lopez Michelini

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 2

UNIVERSIDAD NACIONAL DE TUMBES

DEPARTAMENTO ACADÉMICO
DE MATEMÁTICA E INFORMÁTICA

Formulario integral indefinida


Semestre académico 2022−II
Docente: Mg. Oswaldo Rafael López Michelini
Curso: Matemática II
Derivadas Integrales
d
dx
( x ) =    dx =  x + k
d
dx 
cos ( x ) = −sen ( x )  sen ( x ) dx = − cos ( x ) + k
d
dx 
sen ( x ) = cos ( x )  cos ( x ) dx = sen ( x ) + k
d
tg ( x ) = sec2 ( x )  sec ( x ) dx = tg ( x ) + k
2

dx
d
ctg ( x ) = − csc2 ( x )  csc ( x ) dx = −ctg ( x ) + k
2

dx
d
dx 
csc ( x ) = − csc ( x )  ctg ( x )  csc ( x )  ctg ( x ) dx = − csc ( x ) + k
d
dx 
sec ( x ) = sec ( x )  tg ( x )  sec ( x )  tg ( x ) dx = sec ( x ) + k
d x
dx
( )e = ex e
x
dx = ex + k

d m+1 x m+1
dx
( x ) = ( m + 1) x m  x dx =
m

m +1
+ k , m  − −1

d 1 1
arc cos ( x )  = −  dx = − arc cos ( x ) + k
dx 1 − x2 1 − x2
d 1 1
arc sen ( x )  =  dx = arc sen ( x ) + k
dx 1 − x2 1 − x2
d 1 1
arc tg ( x ) =  1 + x2 dx = arc tg ( x ) + k
dx 1 + x2
d 1 1
arc ctg ( x ) = −  1 + x2 dx = −arc ctg ( x ) + k
dx 1 + x2
d 1 1
arc sec ( x ) =  x x2 − 1 dx = arc sec ( x ) + k
dx x x2 − 1
Derivadas Integrales
d 1 1
arc csc ( x ) = −  dx = − arc csc ( x ) + k
dx  x x2 − 1 x x2 − 1
d 1 1
ln ( x ) =  x dx = ln x +k
dx x
d
dx 
ln sec ( x ) + tg ( x )  = sec ( x )
  sec ( x ) dx = ln sec ( x ) + tg ( x ) +k

d
dx 
ln csc ( x ) − ctg ( x )  = csc ( x )
  csc ( x ) dx = ln csc ( x ) − ctg ( x ) + k

d
dx 
ln sen ( x )  = ctg ( x )
  ctg ( x ) dx = ln sen ( x ) +k

d
dx 
ln sec ( x )  = tg ( x )
  tg ( x ) dx = ln sec ( x ) +k

You might also like