0% found this document useful (0 votes)
72 views12 pages

International Program Giaûi Tích 2: Hut - Department of Math. Applied

The document discusses different types of line integrals: 1) Line integrals of the first kind measure the accumulation of a function along a curve using arc length as the parameter. 2) Line integrals can also be evaluated with respect to x and y, known as line integrals of the second kind. 3) Examples are provided to demonstrate how to set up and evaluate line integrals of both the first and second kind for different curves. Parametrization of the curve is important to find the "good" or suitable equation to represent the curve for calculation.

Uploaded by

Bell Pham
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
72 views12 pages

International Program Giaûi Tích 2: Hut - Department of Math. Applied

The document discusses different types of line integrals: 1) Line integrals of the first kind measure the accumulation of a function along a curve using arc length as the parameter. 2) Line integrals can also be evaluated with respect to x and y, known as line integrals of the second kind. 3) Examples are provided to demonstrate how to set up and evaluate line integrals of both the first and second kind for different curves. Parametrization of the curve is important to find the "good" or suitable equation to represent the curve for calculation.

Uploaded by

Bell Pham
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 12

HUT – DEPARTMENT OF MATH.

APPLIED
--------------------------------------------------------------------------------------------------------

INTERNATIONAL PROGRAM
GIAÛI TÍCH 2

LEC 05: LINE INTEGRALS

STEWART: PAGES 1034 – 1061

• PhD. NGUYEÃN QUOÁC LAÂN (October, 2014)


INTEGRAL CALCULUS
------------------------------------------------------------------------------------------------------------------------------------------

Double (2D) Integral ∫∫ f ( x, y )dA


D

Triple (3D) Integral ∫∫∫ f ( x, y, z )dV


E
Highschool :1D Integral
Line Integral along (C) : curve
b

∫ f ( x )dx , [a , b ] ⊂ R 1st kind : ∫ f ( x, y )ds


a (C )

a b
2 nd kind : ∫ P( x, y )dx + Q( x, y )dy
(C )

Surface Integral over (S) : surface.1st kind ∫∫ f ( x, y )dS , 2 nd kind ∫∫ F ⋅ ndS


(S) (σ )
LINE INTEGRAL ALONG THE CURVE (C): 1st KIND
------------------------------------------------------------------------------------------------------------------------------------------

(C) : one arc between A , B & ds : Length

A B ⇒ Line Int. ∫ f ( x, y )ds (1st kind or with


2 3 (C )
respect length). Note : A → B ≡ B → A
a b

⎡ 2
[ ]
⎢ y = y ( x ) ⇒ ds = 1 + y ( x ) dx, x = x( y ) ⇒ ds = 1 + x ( y ) dy
/ / 2
[ ]
⎢ 2
⎣ x = x(t ), y = y (t ) ⇒ ds = x (t ) + y (t ) dt
/ /
[ ] [ ]
2
(C) : α ≤ x ≤ β
β ⎡ A→β
2
[ ]
(C) : y = y ( x ) ⇒ I = ∫ f ( x, y ( x )) 1 + y / ( x ) dx; x = x( y )... Even ⎢B → α :

α
β
β
⎧ x = x(t )
(C) : ⎨
2 2
⇒ I = ∫ f ( x(t ), y (t )) x (t ) + y (t ) dt
/ /
[ ] [ ] ∫ ...ds = ∫ f
⎩ y = y (t ) α
(C ) α
EXAMPLE
------------------------------------------------------------------------------------------------------------------------------------------

Evaluate ∫ 2 xds, where C consists of the arc C1 of parabola y = x 2


C
from (0, 0) to (1, 1) followed by vertical line C 2 from (1, 1) to (1, 2)

Answer : C = C1 U C2 ⇒ ∫ fds = ∫ fds + ∫ fds


C C1 C2
1
C1 : y = x 2 , 0 ≤ x ≤ 1 ⇒ I1 = ∫ 2 x 1 + 4 x 2 dx
0

u = 1 + 4 x 2 ⇒ du = 8 xdx ⇒ I1 = (5 5 − 1) 6

⎧ x = 1 2
C2 : ⎨ , 1 ≤ y ≤ 2 ⇒ I 2 = ∫ 2 0 2 + 12 dy = 2
⎩y = y 1
Remark: Line Integral between A & B depends on path AB.
EXAMPLE
------------------------------------------------------------------------------------------------------------------------------------------

Important: Find the “good” (suitable) equation to represent C

( )
Evaluate ∫ 2 + x 2 y ds, where C is upper half of circle x 2 + y 2 = 1
C

Parametric equation : y = 1 − x 2
→ Complicated for calculation y / !
⎧ x = cos t
Better (polar!) : ⎨ , t ∈ [0, π ]
⎩ y = sin t
π
( )
I = ∫ 2 + cos 2 t sin t sin 2 t + cos 2 t dt
0
π π 1
2
I = ∫ 2dt + ∫ cos t sin tdt. Change u = cos t → ∫ u du ⇒ I = 2π +
2 2

0 0 −1
3
LINE INTEGRAL IN SPACE
------------------------------------------------------------------------------------------------------------------------------------------

(C): space curve x = x(t), y = y(t), z = z(t), a ≤ t ≤ b. Along (C):

[x (t )] + [y (t )] + [z (t )]
b
2 2 2
∫ f ( x, y, z )ds = ∫ f ( x(t ), y(t ), z(t ))
/ / /
dt
C a

Evaluate ∫ y sin zds, where C is x = cos t , y = sin t , z = t , t ∈ [0, 2π ]


C

Answer : ∫ y sin zds = ∫ sin t ⋅ sin t ⋅ sin 2
t + cos 2
t + 1dt
C 0
2π 2π
2 2⎡ 1 ⎤ = 2π
=
2 ∫ [1 − cos 2t ]dt = t
2 ⎢⎣ 2
− sin 2t ⎥⎦
0
0
LINE INTEGRAL WITH RESPECT TO x AND TO y: 2nd KIND
-----------------------------------------------------------------------------------------------------------------------------------------------------

Given two functions of two variables


P( x, y ), Q( x, y ) & (C ) from A to B ⇒
⇒ Line Integral of 2 nd kind along (C)
B
A
Δxi from A to B : ∫ P( x, y )dx + Q( x, y )dy
(C )

Distinguish with ∫ f ( x, y )ds : Line integral with respect to arc length


C
A→x=a
[ ]
b
(C) : y = y ( x ), ⇒ ∫ Pdx + Qdy = ∫ P( x, y ( x )) + Q K y / dx
B→ x=b C:A →B a

( )
= → =
( )
b
⎧ x x t A t a
(C) : ⎨ , ⇒ ∫ Pdx + Qdy = ∫ P( x(t ), y (t )) ⋅ x / + Q K ⋅ y / dt
⎩ y = y (t ) B → t = b C a
EXAMPLE
------------------------------------------------------------------------------------------------------------------------------------------

Evaluate ∫ y 2 dx + xdy : (a) C = C1 is the line segment from (− 5,−3)


C

to (0,2 ) and (b) : C = C 2 is the arc of x = 4 − y 2 from (− 5,−3) to (0,2 )

⎧ y (− 5) = −3
(a) y = ax + b ⇒ ⎨ ⇒ y = x+2
⎩ y (0 ) = 2
⎧y = x + 2
[ ]
0
C1 : ⎨ ⇒ I1 = ∫ ( x + 2 )2 + x ⋅1 dx
⎩ x : −5 → 0 −5
Result : I1 = − 5 6
⎧x = 4 − y 2
[ ( )]
2
245
(b) C 2 : ⎨ ⇒ I 2 = ∫ y 2 ⋅ (− 2 y ) + 4 − y 2 dy =
⎩ y : −3 → 2 −3
6

The value of a line integral depends on the endpoints and path!


INDEPENDENCE OF PATH
------------------------------------------------------------------------------------------------------------------------------------------

C1 Definition : ∫ Pdx + Qdy is INDEPENDENT OF PATH


A
C2
B if ∫ Pdx + Qdy = ∫ Pdx + Qdy for any two path C1, C2
C1 C2
with the same initial point A and terminal point B

Theorem : ∫ Pdx + Qdy is independent of path in D ⇔ ∫ Pdx + Qdy = 0


C
for every closed path C in D ⇔ Py = Qx in D. In this case, if we find
u ( x, y ) : u x = P & u y = Q ⇒ ∫ Pdx + Qdy = [u ]B
A = u ( B ) − u ( A)
A→ B

⎧u x = P ⇒ u = ∫ Pdx = L + C ( y )

Find u ( x, y ) : ⎨
⎪⎩ y
u = Q ⇒ C /
( y) = L ⇒ C( y) = L
EXAMPLE
------------------------------------------------------------------------------------------------------------------------------------------

(
a/ Show that ∫ (3 + 2 xy )dx + x 2 − 3 y 2 dy is independent of path )
b/ Find a function u ( x, y ) : u x = 3 + 2 xy & u y = x 2 − 3 y 2
⎧ =
( )
t
⎪ x e sin t
c/ Evaluate ∫ (3 + 2 xy )dx + x − 3 y dy, C : ⎨
2 2
,t :0 →π
C ⎪⎩ y = e cos t
t

∂P ∂Q
Answer : a/ P = 3 + 2 xy, Q = x − 3 y ⇒ = 2x & = 2 x : OK
2 2
∂y ∂x
b/ u x = 3 + 2 xy. Integrate res. to x : u = ∫ (3 + 2 xy )dx = 3 x + yx 2 + C ( y )

Differentiate u with respect to y : u y = x 2 + C / ( y ) = x 2 − 3 y 2


⇒ C ( y ) = − ∫ 3 y 2 dy = − y 3 + C ⇒ u ( x, y ) = 3 x + x 2 y − y 3

(
c/ t = 0 ⇒ A(0, 1), t = π ⇒ B 0,−eπ ⇒ I = u 0,−eπ − u (0,1) = e3π + 1 ) ( )
GREEN’S THEOREM
------------------------------------------------------------------------------------------------------------------------------------------
Consider a simple closed curve C which
bounds the plane region D. Convention:
The positive orientation of the curve C is
counterclockwise direction of C. It means
the region D is always on the left.

Green theorem: C - positively oriented,


simple closed curve; D – bounded by C
⎡ ∂Q ∂P ⎤
∫ P( x, y )dx + Q( x, y )dy = ∫∫ ⎢⎣ ∂x − ∂y ⎥⎦ dA
C D

If C is closed & Line integral along C: difficult → Double Integral


EXAMPLE
------------------------------------------------------------------------------------------------------------------------------------------

Evaluate ∫ x 4 dx + xydy, where C is the triangular curve consisting


C
of the line segments from (0, 0) → (1, 0) → (0, 1) → (0, 0)

B

Green : ∫ x 4 dx + xydy = ∫∫ ⎢
∂ ( xy )

∂ x 4
( )⎤⎥ dxdy
C D⎣
∂x ∂y ⎦
1 1− x 1
1 1
=∫ ∫ ydydx = 2 ∫ (1 − x ) dx = 6
2
A
0 0 0

( ) (
Evaluate ∫ 3 y − esin x dx + 7 x + y 4 + 1 dy, C is circle x 2 + y 2 = 9 )
C

I= ∫∫ ⎢
(
⎡ ∂ 7 x + y 4 + 1 ∂ 3 y − esin x

) ( )⎤⎥ dxdy =
∫∫ 4dxdy = 4S D = 36π
2 2 ⎢⎣ ∂x ∂y ⎥⎦
x + y ≤9 D

You might also like