0% found this document useful (0 votes)
73 views21 pages

Y GT2 A Lec 07 Series 1415

This document summarizes different tests to determine if an infinite series converges or diverges, including: 1. The limit of the partial sums. If the limit exists and is finite, the series converges. If the limit is infinite, the series diverges. 2. Geometric series converge if the common ratio is between -1 and 1. The sum is the first term divided by 1 minus the common ratio. 3. The divergence test states that if the limit of the terms is non-zero as n approaches infinity, the series diverges. 4. Examples are provided to demonstrate applying these tests to determine if various series converge or diverge.

Uploaded by

Bell Pham
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
73 views21 pages

Y GT2 A Lec 07 Series 1415

This document summarizes different tests to determine if an infinite series converges or diverges, including: 1. The limit of the partial sums. If the limit exists and is finite, the series converges. If the limit is infinite, the series diverges. 2. Geometric series converge if the common ratio is between -1 and 1. The sum is the first term divided by 1 minus the common ratio. 3. The divergence test states that if the limit of the terms is non-zero as n approaches infinity, the series diverges. 4. Examples are provided to demonstrate applying these tests to determine if various series converge or diverge.

Uploaded by

Bell Pham
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 21

HUT – DEPARTMENT OF MATH.

APPLIED
--------------------------------------------------------------------------------------------------------

GIẢI TÍCH 2

LEC 7: INFINITE SERIES


STEWART: PAGES 687 – 723

• PhD. NGUYEÃN QUOÁC LAÂN (November, 2014)


SUM OF SERIES
--------------------------------------------------------------------------------------------------------------------------------------

Sequence : Infinite term a1 , ... an ... . Series : Sum ∑ an = a1 + ... + an + ...
n =1

Try to add the terms of 2 following series. Get your remark:


1 1 1 1
a / + + +L+ n +L b /1 −1 + 1 − L
2 4 8 2
1 1 1 3 1
a/ S1 = , S 2 = + = (= 1 − ),
2 2 4 4 4
1 1 1 7 1
S3 = + + = (= 1 − ) ...
2 4 8 8 8
1 1 1
⇒ Sn = 1 − n → 1 ⇒ + L + n + ... = 1
2 2 2
⎧1, n = 2k + 1
b/ Sn = ⎨ ⇒ ∃ lim S n : No sum!
⎩0, n = 2k n →∞
DEFINITION
--------------------------------------------------------------------------------------------------------------------------------------

Summary: To determine whether or not a series Σan has a sum,


we consider the partial sums: S1 = a1, S2 = a1 + a2, Sn = a1 + a2 + a3.
Generally: Sn = a1 + a2 + … + an ⇒ Three cases can happen:
1/ ∃ lim S n = S : finite number 2/ lim S n = ∞ 3/ ∃ lim S n
n →∞ n →∞ n →∞

Series converges & sum = S Diverges (sum = ∞ or no sum)

Definition: Given a series Σan = a1 + a2 + … + an + …, let Sn


n
denote its nth partial sum: S n = a1 + a 2 + K + a n = ∑ a k
k =1
If the sequence {Sn} converges and lim Sn = S exits as a finite
number, the series Σan is called convergent and we write: Σan
= S, which is called the sum of the series. Otherwise: divergent
GEOMETRIC SERIES
--------------------------------------------------------------------------------------------------------------------------------------

Geometric series: ∑ aq n
= a + aq + aq 2
+ L + aq n
+L
n=0
a first term
Convergent ⇔ | q | < 1 and its sum = =
1 − q 1 − common ration

1
Remember: q < 1 ⇒ 1 + q + q + L + q + L = ∑ q =
2 n n

n=0 1− q

10 20 40
Example : Is this series 5 − + − + L geometric? Find its sum
3 9 27
a − 10 3 20 9 − 40 27 2
Answer : Evaluate n+1 : = = =− =q⇒
an 5 − 10 3 20 9 3
2 5
Geometric series. q = < 1 ⇒ Convergent. Sum S = =3
3 1 − (− 2 3)

4
Example : Is the series ∑ 2 2 n31−n convergent or divergent? q = : Diver.
n =1 3
THE DIVERGENCE TEST
-----------------------------------------------------------------------------------------------------------------------
∞ ∞
lim a n ≠ 0 ⇒ ∑ a n diverges (But lim a n = 0 : Nothing for ∑ an )
n→∞ n =1 n→ ∞ n =1

n2 n2
Example: Study convergence of ∑ Answer : lim 2 ≠0
n =1 n →∞ n + 4 n2 + 4
⎧ f ( x ) − elementary
Recall for limit : + Substitution : ⎨ ⇒ lim f ( x ) = f (a )
⎩ f (a ) : defined x →a

α ⎧ a n
→ +∞
+ n → +∞ ⇒ α > 0 : n → +∞; q < 1 ⇒ q → 0; a > 1 ⇒ ⎨
n

⎩log a n → +∞
Pn ( x ) a0 x n + ... a0 x n Highest
+ Rational : lim = lim = lim = lim
x→∞ Qm ( x ) x→∞ b x m + ... x→∞ b x m x→∞ Highest
0 0

ln(1 + x )
n
⎛ 1⎞ sin x 1 − cos x 1 e x −1
+ lim ⎜1 + ⎟ = e; lim = 1; lim = ; lim = 1; lim =1
n →∞ ⎝ n⎠ x →0 x x →0 x 2 2 x →0 x x →0 x
EXAMPLE
-----------------------------------------------------------------------------------------------------------------------

∞ ∞ ∞
n+2 n 2 + 3n + 4 n3 + 1
Study convergence : a/ ∑ b/ ∑ 2 c/ ∑ n2 + 1
n =1 2n − 1 n =1 3n − 4n + 7 n =1
∞ ∞ ∞ n ∞ n
n2 + 1 n+2 ⎛ 5⎞ ⎛ 2n − 1 ⎞
d/ ∑ e/ ∑ ln f/ ∑ ⎜1 − ⎟ g/ ∑ ⎜ ⎟
16n + 1 n =1 3n + 1 n =1 ⎝ n⎠ n =1 ⎝ 2n + 3 ⎠
4
n =1
∞ ∞ ∞
h/ ∑ n sin
1
i/ ∑ n 2 ⎛⎜1 − cos ⎞⎟
2
(
j/ ∑ n n e − 1 )
n =1 n n =1 ⎝ n⎠ n =1

1 1 1 1
Answer : Divergence test as lim an = a/ b/ c/ ∞ d/ e/ ln f/ e −5
n →∞ 2 3 4 3
−4n
⎡ 2 n +3 ⎤ 2 n +3 −4 n
n − lim
⎛ 2n − 1 ⎞ ⎢⎛ 4 ⎞ 4 ⎥ n →∞ 2 n + 3
g/ lim ⎜ ⎟ = lim ⎜1 − ⎟ =e = e −2 h/1 i/2 j/1
n →∞ ⎝ 2 n + 3 ⎠ n→∞ ⎢⎝ 2n + 3 ⎠ ⎥
⎣ ⎦
INTEGRAL TEST
--------------------------------------------------------------------------------------------------------------------------------------------

⎧ f (x ) ≥ 0 ∀ x ≥ N
Series Σ f(n), where f(x) satisfies: ⎨ .
⎩ f ( x ) is decreasing in [N, + ∞ )
+∞
In this case, the series ∑ f (n ) and the improper integral ∫ f ( x )dx
A
will converge or diverge at the same times.

Riemann Improper Study


+∞ ∞
1
dx a/ ∑
Integral ∫ x p
is
n =1 n2
1
convergent ⇔ p > 1 ∞
1
b/ ∑ n ln n
n=2
ANSWER
--------------------------------------------------------------------------------------------------------------------------------------------

⎧ f (x ) ≥ 0 ∀ x ≥ N
Series Σ f(n), where f(x) satisfies: ⎨ .
⎩ f ( x ) is decreasing in [N, + ∞ )
+∞
⇒ Series ∑ f (n ) & Integral ∫ f ( x )dx : same converge or diverge
A
+∞
∞ 1 dx

⎪ a/ ∑
1 a/ f ( x ) = 2
> 0 & ↓ at [1; + ∞ ) .As ∫ 2
: Riemann, p = 2 > 1

n2 x 1 x
⎪ n =1

⎪ ∞
1 ⇒ Improper integral converges ⇒ Series given converges.



b/ ∑ n ln n 1
+∞
dx
n=2 b/ f ( x ) = > 0, x ≥ 2 & ↓ at [2; + ∞ ). For ∫ : t = ln x
x ln x 2
x ln x
+∞ +∞
dx dt 1
⇒ ∫ = ∫ : p = 1 ⇒ Diverges ⇒ ∑ : Diverges
2
x ln x ln 2 t n ln n
IMPORTANT: p – SERIES (RIEMANN SERIES)
--------------------------------------------------------------------------------------------------------------------------------------------

1
For what values of p, the following series is convergent? ∑ np
n =1
+∞
dx 1
For p > 0 → Integral test : ∫ x p
: converges ⇔ p > 1; p ≤ 0 : lim p ≠ 0.
n →∞ n
1

1
The next series is called p – series: ∑ n p
converges ⇔ p > 1
n =1

1 1 1 1 1 1
Study convergence : a/ 1 + + + ... + 3 + ... b/ 1 + 3 + 3 + ... + + ...
3
8 64 n 4 9 n2
1 1 1
Answer : a/ 1 + + + ... + 3 + ... : p - series, p = 3 > 1 → Converges
8 64 n
1 1 1 2
b/ 1 + 3 + 3 + ... + + ... : p - series, p = < 1 → Diverges
4 9 3 2 3
n
NONNEGATIVE SERIES: COMPARISON TEST 1
-----------------------------------------------------------------------------------------------------------------------------------

Like improper integral: Nonnegative series → Comparison Test.


∞ ∞
Suppose ∑ u n , ∑ vn : nonnegativ es series with u n ≥ vn ≥ 0 ∀n ≥ N 0
n =1 n =1
∞ ∞
(a) ∑ u n (BIG) converges ⇒ ∑ vn (SMALL) converges.
n =1 n =1
∞ ∞
(b) ∑ vn (SMALL) diverges ⇒ ∑ u n (BIG) diverges.
n =1 n =1

1
Remark : Compare ∑ un to ∑ q n : Geometric or ∑ p
: p - series.
n
∞ ∞ ∞
1 1 1
Example : Study convergence : a/ ∑ b/ ∑ c/ ∑
n =1 3 ⋅ 2 + 1 n =1 2 n − 1 n =1 2 n + 1
n
ANSWER
-----------------------------------------------------------------------------------------------------------------------------------

⎧∞ ∞
⎪ ∑ u n converges ⇒ ∑ v n converges.
⎪ n =1 n =1
u n ≥ vn ≥ 0 ∀n ≥ N 0 : ⎨
∞ ∞
⎪ v diverges ⇒
⎪∑ n ∑ u n diverges.
⎩ n =1 n =1

∞ ∞ ∞
1 1 1
Example : Study convergence : a/ ∑ b/ ∑ c/ ∑
n =1 3 ⋅ 2 + 1 n =1 2 n − 1 n =1 2 n + 1
n


1 ∞ ⎛1⎞
n
1 1 1 1
Answer : a/ <
3⋅ 2 +1 3⋅ 2
& ∑ = ∑ ⎜ ⎟
3 n=1 ⎝ 2 ⎠
: q = < 1 → Converges
n =1 3 ⋅ 2
n n n 2

1 1 1 1 1 1
b/ > &∑ : p = < 1 → Diverges c/ < → ???
2 n − 1 2 n n =1 2 n 2 2 n +1 2 n
NONNEGATIVE SERIES: LIMIT COMPARISON TEST
-----------------------------------------------------------------------------------------------------------------------------------
∞ ∞ Converge
un
∑ u n , ∑ vn : u n , vn > 0 & nlim
→ ∞ vn
= l ≠ 0, + ∞ ⇒ Same
Diverge
n =1 n =1

1
Choose vn = p
(p - series), using the following rules :
n
⎧ Polynomial ao x n + ... : Substitute by a0 x n (highest degree), x → ∞

⎪ x2
⎪Trigonomet ric : sin x , tan x : by x , 1 − cos x : by 2 , x → 0

⎪ Exponentia l : e x − 1, Logarithm ln (1 + x ) : by x , x → 0

⎪ Power (1 + x )α − 1 : by α x , Root n 1 + ax − 1 : by ax , x → 0
⎩ n
∞ ∞ ∞
1 3 n−4 1
Example : Study convergence : a/ ∑ b/ ∑ 2 c/ ∑ n sin 2
n =1 2 n + 1 n =1 2n − n + 1 n =1 n
ANSWER
-----------------------------------------------------------------------------------------------------------------------------------

∞ ∞
un ⎡ converges
u n , vn > 0 & lim
n → ∞ vn
= l ∈ (0; + ∞ ) ⇒ ∑ u n , ∑ vn : same ⎢⎣diverges
n =1 n =1
⎧ Polynomial ao x n + ... → Keep highest degree, x → ∞

Rule find vn : ⎨ x2
⎪sin x ⇒ Substitute by x for x → 0, 1 − cos x : as ...
⎩ 2
∞ ∞ ∞
1 3 n−4 1
Example : Study convergence : a/ ∑ b/ ∑ 2 c/ ∑ n sin 2
n =1 2 n + 1 n =1 2n − n + 1 n =1 n

un 1 1 1
Answer : a/vn = : lim = 1& ∑ : p = < 1 ⇒ Diverges
2 n n → ∞ vn n =1 2 n 2
3 n un 1 un
b/vn = . lim
2 n →∞ v
= 1 ⇒ converges c/v n = n ⋅ . lim
2 n →∞ v
= 1 ⇒ Diverges.
2n n n n
ABSOLUTE CONVERGENCE TEST
--------------------------------------------------------------------------------------------------------------------------------------------

Given any series Σan, we can consider the corresponding series



∑ an = a1 + a2 + a3 + K
n =1

whose terms are the absolute values of the terms of the Σan.

Theorem: If Σ|an| is convergent then Σan is convergent


In this case the series Σan is called absolutely convergent

1 1 1 1 1 1
Example: 1 − − + − − + K ⇒ ∑ an = ∑ 2 : converges
4 9 16 25 36 n
The inverse if false! When Σ|an| is divergent, Σan can be
divergent or convergent (conditionally convergent). Ex.: ∑
( − 1)n
n
THE RATIO TEST (D’ALAMBERT TEST)
--------------------------------------------------------------------------------------------------------------------------------------------

Given any series Σan let consider the following limit:


⎡ d < 1 ⇒ ∑ a n is absolutely convergent (and

a n +1 ⎢ therefo re convergent )
lim =⎢
n→∞ an d > 1 or ∞ ⇒ ∑ a n is divergent

⎢⎣1 : no conclusion ( ∑ a n can converge or diverge)

an+1
If the series Σan is positive: an > 0 ⇒ We evaluate simply lim
n →∞ a n

Advise: If an is given with factorial sign (!) ⇒ Apply the ratio test.

n! 5 n (n!)2
Example: Study Σan: a / a n = (− 1)n b / an =
nn (2 n )!
ANSWER
--------------------------------------------------------------------------------------------------------------------------------------------

⎡ d < 1 ⇒ ∑ a n is absolutely convergent (and



a n +1 ⎢ therefo re convergent )
lim =⎢
n→∞ an d > 1 or ∞ ⇒ ∑ a n is divergent

⎢⎣1 : no conclusion ( ∑ a n can converge or diverge)

n! 5 n (n!)2
Example: Study Σan: a / a n = (− 1) n
b / an =
nn (2 n )!
an+1 (n + 1)! n n 1 1
Answer : a/ lim = lim ⋅ = lim = <1
n→∞ an n→∞ (n + 1)n +1 n! n→∞ ⎛ 1 ⎞ n e
⎜1 + ⎟
⎝ n⎠
an+1 5(n + 1)2 5
⇒ Converges. b/ lim = lim = > 1 ⇒ Diverges.
n →∞ a n n→∞ (2n + 1)(2n + 2 ) 4
THE ROOT TEST (CAUCHY TEST)
--------------------------------------------------------------------------------------------------------------------------------------------

Given any series Σan let consider the following limit:


⎡ q < 1 ⇒ ∑ a n is absolutely convergent (and

⎢ therefo re convergent )
lim n an = ⎢
n→∞ q > 1 or ∞ ⇒ ∑ a n is divergent

⎢⎣1 : no conclusion ( ∑ a n can converge or diverge)

If the series Σan is positive: an > 0 ⇒ We evaluate simply lim n an


n →∞

Advise: If an is given in power form of n ⇒ Apply the root test.


∞ n ∞ n2
n +1 ⎛ n +1 ⎞ 1 ⎛ 1⎞
Study the convergence of: ∑ (− 1) ⎜ ⎟
⎝ 2n + 5 ⎠
∑ n⎜
1+ ⎟
2 ⎝ n⎠
n =1 n =1
EXAMPLE
--------------------------------------------------------------------------------------------------------------------------------------------

⎡ q < 1 ⇒ ∑ a n is absolutely convergent (and



⎢ therefo re convergent )
lim n an = ⎢
n→∞ q > 1 or ∞ ⇒ ∑ a n is divergent

⎢⎣1 : no conclusion ( ∑ a n can converge or diverge)

∞ n ∞ n2
n +1 ⎛ n +1 ⎞ 1 ⎛ 1⎞
Study the convergence of: ∑ (− 1) ⎜ ⎟
⎝ 2n + 5 ⎠
∑ n⎜
1+ ⎟
2 ⎝ n⎠
n =1 n =1
n
⎛ n +1 ⎞ n +1 1
Answer : a/ lim n an = lim ⎜
n ⎟ = lim = < 1 ⇒ Converges.
n→∞ n →∞ ⎝ 2 n + 5 ⎠ n →∞ 2 n + 5 2

n2 n
1 ⎛ 1⎞ 1 ⎛ 1⎞ e
b/ lim n an = lim n
n⎜
1+ ⎟ = lim ⎜1 + ⎟ = > 1 ⇒ Diverges.
n →∞ n →∞ 2 ⎝ n⎠ 2 n →∞ ⎝ n ⎠ 2
ALTERNATIVE SERIES – ALTERNATING TEST
--------------------------------------------------------------------------------------------------------------------------------------------------

The terms are alternately positive and negative. Examples:


1 1 1 ∞
(− 1)n −1 1 1 1 ∞
(− 1)n
1− + − +K = ∑ −1+ − + + K = ∑ 2
2 3 4 n =1 n 4 9 16 n =1 n
∞ ∞
General alternative series: ∑ ( ) ∑ ( )
n −1
− 1 bn or − 1 n
bn , bn > 0
n =1 n =1


If the alternating series ∑ ( − 1)n −1
bn = b1 − b2 + K , bn > 0
n =1

⎧⎪bn +1 ≤ bn ∀ n ⇔ {bn } is decreasing


satisfies two conditions:
⎨ lim b = 0
⎪⎩ n → ∞ n

then the series is convergent


EXAMPLE
--------------------------------------------------------------------------------------------------------------------------------------------

1 1 ∞
( − 1)n−1 1 ⎧bn :↓
Example 1: 1 − + − K = ∑ ⇒ bn = : ⎨
2 3 n =1 n n ⎩bn → 0
This test applied only for ALTERNATING. Positive Σ1/n: Wrong.

Example 2: Study absolute convergence, conditional convergence:

a/∑

(− 1)n+1 n 2 b/ ∞
(− 1)n 3n
n +1
3 ∑ 4n − 1
n =1 n =1

n2 1
Answer : a/ Absolute convergence : ∑ an = ∑ 3 & vn = ⇒ Not Abso.
n =1 n + 1 n
n2
Alternating & bn = 3
x2
⇒ lim bn = 0; f ( x ) = 3 : f / =
x 2 − x 3
<0
( )
n + 1 n →0 x +1 x3 + 1
2
( )
∀ x > 3 2 ⇒ bn ↓, n ≥ 2 ⇒ Conditional conver. b/ lim an ≠ 0 ⇒ Diverges
n →∞
NUMERIC SERIES REVIEW
----------------------------------------------------------------------------------------------------------------------------------

Evaluate sum of series: S = ∑ a n = lim S n , S n = a1 + a 2 + K + a n
n =1 n→∞
∞ ∞
1 1 ⎡ p > 1 ⇒ Convergenc e
Geomet. : ∑ q = , q < 1; p - series
n
∑ np :⎢
n=0 1− q n =1 ⎣ p ≤ 1 ⇒ Divergence

Divergence Test: lim a n ≠ 0 or ∃ lim a n ⇒ ∑ a n is divergent


n→∞ n→∞

⎡∞ ∞
⎡∞
Positive ⎢ ∑ f (n ), f ↓→ ∫ f ( x )dx ⎢∑ ( − ) bn : bn ↓ & → 0
n
1
⎢ n =1 1 ⎢ n =1
Series: ⎢ ⎢
a (small ) ≤ bn (big) ⎡∑ an
⎢ n ⎢
Σan, an ⎢ ⎢
lim
an
∈ (0; + ∞ ) ⎢∑ an : ⎢ a n +1
≥0 ⎢ ⎢ lim or lim n a n
⎢⎣
n → ∞ bn ⎢n→∞ a n→∞
⎣ ⎣ n

You might also like