HUT – DEPARTMENT OF MATH.
APPLIED
--------------------------------------------------------------------------------------------------------
                                 GIẢI TÍCH 2
    LEC 7: INFINITE SERIES
                STEWART: PAGES 687 – 723
                    •   PhD. NGUYEÃN QUOÁC LAÂN (November, 2014)
                                                   SUM OF SERIES
    --------------------------------------------------------------------------------------------------------------------------------------
                                                                                                 ∞
Sequence : Infinite term a1 , ... an ... . Series : Sum ∑ an = a1 + ... + an + ...
                                                                                               n =1
 Try to add the terms of 2 following series. Get your remark:
             1 1 1           1
          a / + + +L+ n +L                 b /1 −1 + 1 − L
             2 4 8          2
                                                                1        1 1 3            1
                                                         a/ S1 = , S 2 = + = (= 1 − ),
                                                                2        2 4 4            4
                                                               1 1 1 7             1
                                                         S3 = + + = (= 1 − ) ...
                                                               2 4 8 8             8
                                                                      1          1        1
                                                         ⇒ Sn = 1 − n → 1 ⇒ + L + n + ... = 1
                                                                     2           2        2
                                                                 ⎧1, n = 2k + 1
                                                         b/ Sn = ⎨              ⇒ ∃ lim S n : No sum!
                                                                 ⎩0, n = 2k          n →∞
                                                      DEFINITION
   --------------------------------------------------------------------------------------------------------------------------------------
Summary: To determine whether or not a series Σan has a sum,
we consider the partial sums: S1 = a1, S2 = a1 + a2, Sn = a1 + a2 + a3.
Generally: Sn = a1 + a2 + … + an ⇒ Three cases can happen:
  1/ ∃ lim S n = S : finite number                                      2/ lim S n = ∞                         3/ ∃ lim S n
          n →∞                                                               n →∞                                      n →∞
Series converges & sum = S                                                 Diverges (sum = ∞ or no sum)
  Definition: Given a series Σan = a1 + a2 + … + an + …, let Sn
                                                                                                                      n
  denote its nth partial sum: S n = a1 + a 2 + K + a n = ∑ a k
                                                                                                                    k =1
  If the sequence {Sn} converges and lim Sn = S exits as a finite
  number, the series Σan is called convergent and we write: Σan
  = S, which is called the sum of the series. Otherwise: divergent
                                          GEOMETRIC SERIES
  --------------------------------------------------------------------------------------------------------------------------------------
                                             ∞
 Geometric series:                          ∑ aq n
                                                   = a + aq + aq 2
                                                                   + L + aq n
                                                                              +L
                                            n=0
                                        a        first term
 Convergent ⇔ | q | < 1 and its sum =      =
                                      1 − q 1 − common ration
                                                 ∞
                                                            1
 Remember: q < 1 ⇒ 1 + q + q + L + q + L = ∑ q =
                                  2      n            n
                                                n=0       1− q
                               10 20 40
 Example : Is this series 5 − + − + L geometric? Find its sum
                                3 9 27
                      a      − 10 3 20 9 − 40 27           2
 Answer : Evaluate n+1 :            =        =        =− =q⇒
                       an       5     − 10 3   20 9        3
                          2                                 5
 Geometric series. q = < 1 ⇒ Convergent. Sum S =                   =3
                          3                            1 − (− 2 3)
                         ∞
                                                                   4
Example : Is the series ∑ 2 2 n31−n convergent or divergent? q = : Diver.
                        n =1                                       3
                                       THE DIVERGENCE TEST
            -----------------------------------------------------------------------------------------------------------------------
                                ∞                                                                                                     ∞
     lim a n ≠ 0 ⇒ ∑ a n diverges (But lim a n = 0 : Nothing for                                                                      ∑ an )
     n→∞                      n =1                                          n→ ∞                                                      n =1
                                                                          ∞
                                                                              n2   n2
    Example: Study convergence of ∑                          Answer : lim 2         ≠0
                                               n =1                   n →∞ n + 4 n2 + 4
                                        ⎧ f ( x ) − elementary
    Recall for limit : + Substitution : ⎨                      ⇒ lim f ( x ) = f (a )
                                        ⎩ f (a ) : defined       x →a
                        α                             ⎧ a n
                                                            → +∞
    + n → +∞ ⇒ α > 0 : n → +∞; q < 1 ⇒ q → 0; a > 1 ⇒ ⎨
                                        n
                                                      ⎩log a n → +∞
                    Pn ( x )       a0 x n + ...       a0 x n       Highest
   + Rational : lim          = lim              = lim        = lim
                x→∞ Qm ( x ) x→∞ b x m + ... x→∞ b x m         x→∞ Highest
                                    0                  0
                                                                         ln(1 + x )
               n
       ⎛  1⎞          sin x           1 − cos x 1       e x −1
+ lim ⎜1 + ⎟ = e; lim       = 1; lim           =  ; lim        = 1; lim             =1
  n →∞ ⎝  n⎠      x →0 x         x →0     x 2    2 x →0 x           x →0     x
                                                         EXAMPLE
           -----------------------------------------------------------------------------------------------------------------------
                                          ∞      ∞                                                                      ∞
                               n+2             n 2 + 3n + 4                                                                 n3 + 1
   Study convergence : a/ ∑           b/ ∑ 2                c/                                                         ∑ n2 + 1
                          n =1 2n − 1    n =1 3n − 4n + 7                                                              n =1
       ∞                                   ∞                                ∞                  n                      ∞              n
                n2 + 1        n+2                                             ⎛ 5⎞                                      ⎛ 2n − 1 ⎞
   d/ ∑               e/ ∑ ln                                         f/ ∑ ⎜1 − ⎟                               g/ ∑ ⎜           ⎟
              16n + 1    n =1 3n + 1                                     n =1 ⎝ n⎠                                 n =1 ⎝ 2n + 3 ⎠
                 4
      n =1
       ∞                                   ∞                                                                           ∞
   h/ ∑ n sin
              1
                                     i/ ∑ n 2 ⎛⎜1 − cos ⎞⎟
                                                       2
                                                                                                                               (
                                                                                                                  j/ ∑ n n e − 1     )
      n =1    n                         n =1 ⎝         n⎠                                                             n =1
                                                                              1   1       1     1
Answer : Divergence test as lim an = a/                                         b/ c/ ∞ d/ e/ ln f/ e −5
                                                  n →∞                        2   3       4     3
                                                                             −4n
                          ⎡                                         2 n +3 ⎤ 2 n +3                     −4 n
                        n                                         −                                 lim
        ⎛ 2n − 1 ⎞        ⎢⎛     4                               ⎞ 4 ⎥                             n →∞ 2 n + 3
g/ lim ⎜          ⎟ = lim ⎜1 −        ⎟                                                    =e                     = e −2 h/1 i/2 j/1
   n →∞ ⎝ 2 n + 3 ⎠   n→∞ ⎢⎝   2n + 3 ⎠                                        ⎥
                          ⎣                                                    ⎦
                                                INTEGRAL TEST
--------------------------------------------------------------------------------------------------------------------------------------------
                                         ⎧ f (x ) ≥ 0 ∀ x ≥ N
    Series Σ f(n), where f(x) satisfies: ⎨                                   .
                                         ⎩ f ( x ) is decreasing in [N, + ∞ )
                                                                                                                             +∞
   In this case, the series                        ∑ f (n ) and the improper integral ∫ f ( x )dx
                                                                                                                               A
    will converge or diverge at the same times.
                                                                              Riemann Improper                                   Study
                                                                                               +∞                                       ∞
                                                                                                                                               1
                                                                                                      dx                           a/ ∑
                                                                              Integral           ∫    x p
                                                                                                          is
                                                                                                                                        n =1   n2
                                                                                                 1
                                                                              convergent ⇔ p > 1                                         ∞
                                                                                                                                                  1
                                                                                                                                   b/   ∑      n ln n
                                                                                                                                        n=2
                                                              ANSWER
    --------------------------------------------------------------------------------------------------------------------------------------------
                                              ⎧ f (x ) ≥ 0 ∀ x ≥ N
         Series Σ f(n), where f(x) satisfies: ⎨                                   .
                                              ⎩ f ( x ) is decreasing in [N, + ∞ )
                                                                     +∞
         ⇒ Series           ∑ f (n ) & Integral ∫ f ( x )dx : same converge or diverge
                                                                       A
                                                                                                    +∞
         ∞                                        1                                                       dx
⎧
⎪   a/ ∑
                1             a/ f ( x ) =          2
                                                      > 0 & ↓ at [1; + ∞ ) .As                       ∫      2
                                                                                                              : Riemann, p = 2 > 1
⎪
                n2                                x                                                  1    x
⎪        n =1
⎨
⎪        ∞
                   1 ⇒ Improper integral converges ⇒ Series given converges.
⎪
⎪
⎩
    b/   ∑      n ln n                 1
                                                                           +∞
                                                                               dx
         n=2           b/ f ( x ) =        > 0, x ≥ 2 & ↓ at [2; + ∞ ). For ∫        : t = ln x
                                    x ln x                                  2
                                                                              x ln x
                                    +∞                    +∞
                                           dx        dt                           1
                              ⇒      ∫          = ∫     : p = 1 ⇒ Diverges ⇒ ∑        : Diverges
                                      2
                                          x ln x ln 2 t                        n ln n
             IMPORTANT: p – SERIES (RIEMANN SERIES)
--------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                      ∞
                                                                                                                                               1
    For what values of p, the following series is convergent?                                                                        ∑         np
                                                                                                                                     n =1
                                                      +∞
                                                            dx                                    1
For p > 0 → Integral test :                             ∫   x p
                                                                : converges ⇔ p > 1; p ≤ 0 : lim p ≠ 0.
                                                                                            n →∞ n
                                                        1
                                                                                       ∞
                                                                                               1
    The next series is called p – series:                                             ∑       n p
                                                                                                  converges ⇔ p > 1
                                                                                      n =1
                            1 1               1          1    1       1
Study convergence : a/ 1 + + + ... + 3 + ... b/ 1 + 3 + 3 + ... +        + ...
                                                                    3
                            8 64             n            4    9      n2
               1 1             1
Answer : a/ 1 + + + ... + 3 + ... : p - series, p = 3 > 1 → Converges
               8 64           n
        1   1          1                          2
b/ 1 + 3 + 3 + ... +       + ... : p - series, p = < 1 → Diverges
         4   9       3   2                        3
                       n
         NONNEGATIVE SERIES: COMPARISON TEST 1
  -----------------------------------------------------------------------------------------------------------------------------------
Like improper integral: Nonnegative series → Comparison Test.
                    ∞             ∞
Suppose           ∑ u n , ∑ vn : nonnegativ es series with u n ≥ vn ≥ 0 ∀n ≥ N 0
                  n =1           n =1
         ∞                                                       ∞
 (a)   ∑ u n (BIG) converges ⇒ ∑ vn (SMALL) converges.
       n =1                                                     n =1
       ∞                                                            ∞
 (b) ∑ vn (SMALL) diverges ⇒ ∑ u n (BIG) diverges.
       n =1                                                         n =1
                                                         1
Remark : Compare ∑ un to ∑ q n : Geometric or ∑           p
                                                            : p - series.
                                                        n
                                  ∞                 ∞                  ∞
                                           1                1                1
Example : Study convergence : a/ ∑              b/ ∑               c/ ∑
                                 n =1 3 ⋅ 2 + 1    n =1 2 n − 1       n =1 2 n + 1
                                           n
                                                        ANSWER
   -----------------------------------------------------------------------------------------------------------------------------------
                              ⎧∞                     ∞
                              ⎪ ∑ u n converges ⇒ ∑ v n converges.
                              ⎪ n =1                n =1
      u n ≥ vn ≥ 0 ∀n ≥ N 0 : ⎨
                                 ∞                ∞
                              ⎪ v diverges ⇒
                              ⎪∑ n               ∑ u n diverges.
                              ⎩ n =1             n =1
                                                     ∞             ∞ ∞
                                            1              1               1
 Example : Study convergence : a/ ∑              b/ ∑            c/ ∑
                                  n =1 3 ⋅ 2 + 1    n =1 2 n − 1    n =1 2 n + 1
                                            n
                              ∞
                                            1 ∞ ⎛1⎞
                                                                                                 n
                1     1              1                        1
Answer : a/        <
            3⋅ 2 +1 3⋅ 2
                           & ∑            =   ∑   ⎜ ⎟
                                            3 n=1 ⎝ 2 ⎠
                                                        : q =   < 1 → Converges
                             n =1 3 ⋅ 2
                n        n              n                     2
                ∞
     1      1        1       1                    1     1
b/        >   &∑        : p = < 1 → Diverges c/       <    → ???
   2 n − 1 2 n n =1 2 n      2                  2 n +1 2 n
   NONNEGATIVE SERIES: LIMIT COMPARISON TEST
   -----------------------------------------------------------------------------------------------------------------------------------
   ∞             ∞                                           Converge
                                      un
  ∑ u n , ∑ vn : u n , vn > 0 & nlim
                                  → ∞ vn
                                         = l ≠ 0, + ∞ ⇒ Same
                                                             Diverge
  n =1    n =1
                              1
  Choose vn =                  p
                                 (p - series), using the following rules :
                             n
  ⎧ Polynomial ao x n + ... : Substitute by a0 x n (highest degree), x → ∞
  ⎪
  ⎪                                                        x2
  ⎪Trigonomet ric : sin x , tan x : by x , 1 − cos x : by 2 , x → 0
  ⎨
  ⎪ Exponentia l : e x − 1, Logarithm ln (1 + x ) : by x , x → 0
  ⎪
  ⎪ Power (1 + x )α − 1 : by α x , Root n 1 + ax − 1 : by ax , x → 0
  ⎩                                                         n
                                                  ∞             ∞    ∞
                                        1              3 n−4                1
Example : Study convergence : a/ ∑            b/ ∑ 2             c/ ∑ n sin 2
                                 n =1 2 n + 1    n =1 2n − n + 1    n =1   n
                                                       ANSWER
  -----------------------------------------------------------------------------------------------------------------------------------
                                                                                ∞              ∞
                     un                                                                             ⎡ converges
u n , vn > 0 & lim
               n → ∞ vn
                        = l ∈ (0; + ∞ ) ⇒                                      ∑ u n , ∑ vn : same ⎢⎣diverges
                                                                               n =1    n =1
               ⎧ Polynomial ao x n + ... → Keep highest degree, x → ∞
               ⎪
Rule find vn : ⎨                                                  x2
               ⎪sin x ⇒ Substitute by x for x → 0, 1 − cos x : as    ...
               ⎩                                                  2
                                                  ∞               ∞  ∞
                                        1              3 n−4                1
Example : Study convergence : a/ ∑            b/ ∑ 2             c/ ∑ n sin 2
                                 n =1 2 n + 1    n =1 2n − n + 1    n =1   n
                                   ∞
                          un     1      1       1
Answer : a/vn =    : lim     = 1& ∑        : p = < 1 ⇒ Diverges
                2 n n → ∞ vn      n =1 2 n      2
           3 n       un                              1        un
b/vn =         . lim
              2 n →∞ v
                         = 1 ⇒ converges c/v n = n ⋅    . lim
                                                       2 n →∞ v
                                                                  = 1 ⇒ Diverges.
           2n          n                             n          n
                           ABSOLUTE CONVERGENCE TEST
--------------------------------------------------------------------------------------------------------------------------------------------
Given any series Σan, we can consider the corresponding series
                           ∞
                         ∑ an = a1 + a2 + a3 + K
                         n =1
whose terms are the absolute values of the terms of the Σan.
    Theorem: If Σ|an| is convergent then Σan is convergent
    In this case the series Σan is called absolutely convergent
            1 1 1 1 1                                                                             1
Example: 1 − − + − − + K                                                               ⇒ ∑ an = ∑ 2 : converges
            4 9 16 25 36                                                                         n
The inverse if false! When Σ|an| is divergent, Σan can be
divergent or convergent (conditionally convergent). Ex.: ∑
                                                           ( − 1)n
                                                              n
                    THE RATIO TEST (D’ALAMBERT TEST)
--------------------------------------------------------------------------------------------------------------------------------------------
    Given any series Σan let consider the following limit:
                          ⎡ d < 1 ⇒ ∑ a n is absolutely convergent (and
                          ⎢
        a n +1            ⎢                 therefo re convergent )
    lim                  =⎢
    n→∞ an                  d > 1 or ∞ ⇒ ∑ a n is divergent
                          ⎢
                          ⎢⎣1 : no conclusion ( ∑ a n can converge or diverge)
                                                               an+1
If the series Σan is positive: an > 0 ⇒ We evaluate simply lim
                                                           n →∞ a n
Advise: If an is given with factorial sign (!) ⇒ Apply the ratio test.
                                                                              n!                      5 n (n!)2
Example: Study Σan: a / a n = (− 1)n                                                         b / an =
                                                                              nn                        (2 n )!
                                                          ANSWER
--------------------------------------------------------------------------------------------------------------------------------------------
                          ⎡ d < 1 ⇒ ∑ a n is absolutely convergent (and
                          ⎢
       a n +1             ⎢                 therefo re convergent )
   lim                   =⎢
   n→∞ an                   d > 1 or ∞ ⇒ ∑ a n is divergent
                          ⎢
                          ⎢⎣1 : no conclusion ( ∑ a n can converge or diverge)
                                                                                n!                     5 n (n!)2
Example: Study Σan: a / a n = (− 1)                                         n
                                                                                              b / an =
                                                                                nn                       (2 n )!
                an+1        (n + 1)! n n             1      1
Answer : a/ lim      = lim             ⋅   = lim          =   <1
            n→∞ an     n→∞ (n + 1)n +1   n! n→∞ ⎛ 1 ⎞   n   e
                                                 ⎜1 + ⎟
                                                 ⎝ n⎠
                                           an+1          5(n + 1)2      5
⇒ Converges.                        b/ lim      = lim                  = > 1 ⇒ Diverges.
                                       n →∞ a n   n→∞ (2n + 1)(2n + 2 ) 4
                           THE ROOT TEST (CAUCHY TEST)
--------------------------------------------------------------------------------------------------------------------------------------------
    Given any series Σan let consider the following limit:
                       ⎡ q < 1 ⇒ ∑ a n is absolutely convergent (and
                       ⎢
                       ⎢                 therefo re convergent )
     lim      n   an = ⎢
    n→∞                  q > 1 or ∞ ⇒ ∑ a n is divergent
                       ⎢
                       ⎢⎣1 : no conclusion ( ∑ a n can converge or diverge)
If the series Σan is positive: an > 0 ⇒ We evaluate simply lim n an
                                                                                                                                 n →∞
Advise: If an is given in power form of n ⇒ Apply the root test.
                                                               ∞                                       n            ∞                          n2
                                                                             n +1 ⎛   n +1 ⎞                                1 ⎛ 1⎞
Study the convergence of:                                    ∑ (− 1)               ⎜        ⎟
                                                                                   ⎝ 2n + 5 ⎠
                                                                                                                  ∑          n⎜
                                                                                                                                1+ ⎟
                                                                                                                           2 ⎝ n⎠
                                                             n =1                                                 n =1
                                                         EXAMPLE
 --------------------------------------------------------------------------------------------------------------------------------------------
                        ⎡ q < 1 ⇒ ∑ a n is absolutely convergent (and
                        ⎢
                        ⎢                 therefo re convergent )
      lim      n   an = ⎢
     n→∞                  q > 1 or ∞ ⇒ ∑ a n is divergent
                        ⎢
                        ⎢⎣1 : no conclusion ( ∑ a n can converge or diverge)
                                                                ∞                                       n            ∞                          n2
                                                                              n +1 ⎛   n +1 ⎞                                1 ⎛ 1⎞
Study the convergence of:                                     ∑ (− 1)               ⎜        ⎟
                                                                                    ⎝ 2n + 5 ⎠
                                                                                                                   ∑          n⎜
                                                                                                                                 1+ ⎟
                                                                                                                            2 ⎝ n⎠
                                                              n =1                                                 n =1
                                                                              n
                                               ⎛ n +1 ⎞           n +1 1
Answer : a/ lim                 n   an = lim ⎜
                                             n          ⎟ = lim         = < 1 ⇒ Converges.
                      n→∞                n →∞ ⎝ 2 n + 5 ⎠   n →∞ 2 n + 5 2
                                                              n2                                  n
                                         1 ⎛ 1⎞                      1      ⎛ 1⎞  e
b/ lim n an = lim                    n
                                          n⎜
                                             1+ ⎟                   = lim ⎜1 + ⎟ = > 1 ⇒ Diverges.
    n →∞                    n →∞         2 ⎝ n⎠                      2 n →∞ ⎝ n ⎠ 2
             ALTERNATIVE SERIES – ALTERNATING TEST
--------------------------------------------------------------------------------------------------------------------------------------------------
     The terms are alternately positive and negative. Examples:
       1 1 1      ∞
                      (− 1)n −1                                               1 1 1       ∞
                                                                                             (− 1)n
     1− + − +K = ∑                                                         −1+ − + + K = ∑ 2
       2 3 4     n =1     n                                                   4 9 16     n =1 n
                                                                       ∞                                 ∞
    General alternative series: ∑ (    )           ∑ (    )
                                        n −1
                                    − 1      bn or     − 1 n
                                                             bn , bn > 0
                                                                      n =1                              n =1
                                                                  ∞
    If the alternating series                                   ∑ ( − 1)n −1
                                                                             bn = b1 − b2 + K , bn > 0
                                                                n =1
                              ⎧⎪bn +1 ≤ bn ∀ n ⇔ {bn } is decreasing
    satisfies two conditions:
                               ⎨ lim b = 0
                               ⎪⎩ n → ∞ n
    then the series is convergent
                                                         EXAMPLE
 --------------------------------------------------------------------------------------------------------------------------------------------
               1 1       ∞
                             ( − 1)n−1                                                                  1 ⎧bn :↓
 Example 1: 1 − + − K = ∑                                                                         ⇒ bn = : ⎨
               2 3      n =1      n                                                                     n ⎩bn → 0
 This test applied only for ALTERNATING. Positive Σ1/n: Wrong.
 Example 2: Study absolute convergence, conditional convergence:
                                          a/∑
                                                 ∞
                                                      (− 1)n+1 n 2 b/             ∞
                                                                                        (− 1)n 3n
                                                          n +1
                                                             3                   ∑       4n − 1
                                               n =1                              n =1
                                                                                         ∞
                                                n2   1
Answer : a/ Absolute convergence : ∑ an = ∑ 3 & vn = ⇒ Not Abso.
                                          n =1 n + 1 n
                   n2
Alternating & bn = 3
                                               x2
                       ⇒ lim bn = 0; f ( x ) = 3 : f / =
                                                         x 2 − x 3
                                                                   <0
                                                                                                                             (            )
                  n + 1 n →0                  x +1        x3 + 1
                                                                 2
                                                                                                                         (            )
∀ x > 3 2 ⇒ bn ↓, n ≥ 2 ⇒ Conditional conver. b/ lim an ≠ 0 ⇒ Diverges
                                                                                                     n →∞
                                  NUMERIC SERIES REVIEW
    ----------------------------------------------------------------------------------------------------------------------------------
                                                                ∞
Evaluate sum of series: S = ∑ a n = lim S n , S n = a1 + a 2 + K + a n
                                                              n =1              n→∞
                  ∞                                                              ∞
                 1                                                                     1         ⎡ p > 1 ⇒ Convergenc e
Geomet. : ∑ q =      , q < 1; p - series
                          n
                                                                                  ∑ np          :⎢
          n=0   1− q                                                              n =1           ⎣ p ≤ 1 ⇒ Divergence
  Divergence Test:                           lim a n ≠ 0 or ∃ lim a n ⇒ ∑ a n is divergent
                                             n→∞                              n→∞
         ⎡∞                  ∞
                                                                                ⎡∞
Positive ⎢ ∑ f (n ), f ↓→ ∫ f ( x )dx                                           ⎢∑     ( −  )  bn : bn ↓ & → 0
                                                                                             n
                                                                                           1
         ⎢ n =1               1                                                 ⎢ n =1
Series: ⎢                                                                       ⎢
            a (small ) ≤ bn (big)                                                            ⎡∑ an
         ⎢ n                                                                    ⎢
Σan, an ⎢                                                                                    ⎢
            lim
                  an
                     ∈ (0; + ∞ )                                                ⎢∑ an : ⎢           a n +1
≥0       ⎢                                                                      ⎢              lim         or lim n a n
         ⎢⎣
            n → ∞ bn                                                                         ⎢n→∞ a           n→∞
                                                                                ⎣            ⎣         n