0% found this document useful (0 votes)
56 views82 pages

Chuoi So PDF

1. The document outlines a lecture on infinite series, including definitions of convergent and divergent series. 2. Examples are provided to illustrate determining if a series converges or diverges, and calculating the sum of convergent series. 3. Specific topics that will be covered include non-negative series, alternating series, and tests for absolute convergence.

Uploaded by

Bell Pham
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
56 views82 pages

Chuoi So PDF

1. The document outlines a lecture on infinite series, including definitions of convergent and divergent series. 2. Examples are provided to illustrate determining if a series converges or diverges, and calculating the sum of convergent series. 3. Specific topics that will be covered include non-negative series, alternating series, and tests for absolute convergence.

Uploaded by

Bell Pham
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 82

INFINITE SERIES

ELECTRONIC VERSION OF LECTURE

Dr. Lê Xuân Đại


HoChiMinh City University of Technology
Faculty of Applied Science, Department of Applied Mathematics
Email: ytkadai@hcmut.edu.vn

HCMC— 2016.
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 1 / 42
OUTLINE

1 SERIES

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 2 / 42


OUTLINE

1 SERIES

2 NON-NEGATIVE SERIES

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 2 / 42


OUTLINE

1 SERIES

2 NON-NEGATIVE SERIES

3 ALTERNATING SERIES

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 2 / 42


OUTLINE

1 SERIES

2 NON-NEGATIVE SERIES

3 ALTERNATING SERIES

4 ABSOLUTE CONVERGENCE AND THE RATIO AND ROOT TESTS

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 2 / 42


Series Definition

DEFINITION 1.1
The expression of the form
a0 + a1 + a2 + . . . + an + . . . ,

where ai is a real number, i = 0, 1, 2, . . . , n, . . . is


called an infinite series. We denote it by

P
an .
n=0

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 3 / 42


Series Definition

DEFINITION 1.2
n
The sum Sn = ak = a0 + a1 + a2 + . . . + an is
P
k=0
called the n-th partial sums of the series

P
an .
n=0

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 4 / 42


Series Definition

DEFINITION 1.2
n
The sum Sn = ak = a0 + a1 + a2 + . . . + an is
P
k=0
called the n-th partial sums of the series

P
an .
n=0

DEFINITION 1.3

The series an is called convergent, if
P
n=0
lim Sn = S exists as a real number. The
n→∞
number S is called the sum of the series.
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 4 / 42
Series Definition

EXAMPLE 1.1
Consider

1 1 1 X 1
1+ + +...+ n +... = n
.
2 4 2 n=0 2

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 5 / 42


Series Definition

EXAMPLE 1.1
Consider

1 1 1 X 1
1+ + +...+ n +... = n
.
2 4 2 n=0 2

1
1 1 − 2n+1
µ ¶
1 1 1
Sn = 1 + + + . . . + n = = 2 1 − n+1
2 4 2 1 − 21 2

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 5 / 42


Series Definition

EXAMPLE 1.1
Consider

1 1 1 X 1
1+ + +...+ n +... = n
.
2 4 2 n=0 2

1
1 1 − 2n+1
µ ¶
1 1 1
Sn = 1 + + + . . . + n = = 2 1 − n+1
2 4 2 1 − 21 2
µ ¶
1
lim Sn = lim 2 1 − n+1 = 2.
n→∞ n→∞ 2
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 5 / 42
Series Definition

DEFINITION 1.4

The series an is called divergent, if
P
n=0
lim Sn = ∞ or does not exist.
n→∞

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 6 / 42


Series Definition

DEFINITION 1.4

The series an is called divergent, if
P
n=0
lim Sn = ∞ or does not exist.
n→∞

EXAMPLE 1.2

Determine whether the series qn , q ∈ R is
P
n=0
convergent or divergent. If it is convergent,
find its sum.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 6 / 42


Series Definition

n+1
 1−q

, q 6= 1
Sn = 1 + q + q2 + . . . + qn = 1−q
n + 1, q = 1

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 7 / 42


Series Definition

n+1
 1−q

, q 6= 1
Sn = 1 + q + q2 + . . . + qn = 1−q
n + 1, q = 1

1 − qn+1
1
If |q| 6= 1 then lim Sn = lim =
n→∞ n→∞ 1 − q

 1 , |q| < 1

n+1 ¶
q
µ
1
lim − = 1−q
n→∞ 1 − q 1−q ∞, |q| > 1

2
If q = 1 then lim Sn = lim n + 1 = ∞
n→∞ n→∞
3
If q = −1 then lim S2k+1 = 0, lim S2k = 1.
k→∞ k→∞

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 7 / 42


Series Definition

n+1
 1−q

, q 6= 1
Sn = 1 + q + q2 + . . . + qn = 1−q
n + 1, q = 1

1 − qn+1
1
If |q| 6= 1 then lim Sn = lim =
n→∞ n→∞ 1 − q

 1 , |q| < 1

n+1 ¶
q
µ
1
lim − = 1−q
n→∞ 1 − q 1−q ∞, |q| > 1

2
If q = 1 then lim Sn = lim n + 1 = ∞
n→∞ n→∞
3
If q = −1 then lim S2k+1 = 0, lim S2k = 1.
k→∞ k→∞
∞ 1
If |q| < 1 then the sum of series is qn =
P
·
n=0 1−q
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 7 / 42
Series Definition

EXAMPLE 1.3
∞ 1
Find the sum of the series
P
n=1 n(n + 1)

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 8 / 42


Series Definition

EXAMPLE 1.3
∞ 1
Find the sum of the series
P
n=1 n(n + 1)

1 1 1
Sn = + +...+ ·
1.2 2.3 n(n + 1)

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 8 / 42


Series Definition

EXAMPLE 1.3
∞ 1
Find the sum of the series
P
n=1 n(n + 1)

1 1 1
Sn = + +...+ ·
1.2 2.3 n(n + 1)
1 1 1
= − , n ∈ N·
n(n + 1) n n + 1

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 8 / 42


Series Definition

EXAMPLE 1.3
∞ 1
Find the sum of the series
P
n=1 n(n + 1)

1 1 1
Sn = + +...+ ·
1.2 2.3 n(n + 1)
1 1 1
= − , n ∈ N·
n(n + 1) n n + 1
1 1 1 1 1 1 1
Sn = − + − +...+ − = 1− .
1 2 2 3 n n+1 n+1

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 8 / 42


Series Definition

EXAMPLE 1.3
∞ 1
Find the sum of the series
P
n=1 n(n + 1)

1 1 1
Sn = + +...+ ·
1.2 2.3 n(n + 1)
1 1 1
= − , n ∈ N·
n(n + 1) n n + 1
1 1 1 1 1 1 1
Sn = − + − +...+ − = 1− .
1 2 2 3 n n+1 n+1
µ ¶
1
lim Sn = lim 1 − = 1.
n→∞ n→∞ n+1
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 8 / 42
Series Necessary Condition

THEOREM 1.1 (NECESSARY CONDITION)


+∞
If the series an is covergent then
P
n=1
lim an = 0.
n→+∞

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 9 / 42


Series Necessary Condition

THEOREM 1.1 (NECESSARY CONDITION)


+∞
If the series an is covergent then
P
n=1
lim an = 0.
n→+∞
+∞
PROOF. an converges ⇔ lim Sn = S.
P
n=1 n→∞

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 9 / 42


Series Necessary Condition

THEOREM 1.1 (NECESSARY CONDITION)


+∞
If the series an is covergent then
P
n=1
lim an = 0.
n→+∞
+∞
PROOF. an converges ⇔ lim Sn = S.
P
n=1 n→∞

lim an = lim (Sn − Sn−1 ) =


n→+∞ n→+∞
= lim Sn − lim Sn−1 = S − S = 0
n→+∞ n→+∞

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 9 / 42


Series Necessary Condition

THEOREM 1.1 (NECESSARY CONDITION)


+∞
If the series an is covergent then
P
n=1
lim an = 0.
n→+∞
+∞
PROOF. an converges ⇔ lim Sn = S.
P
n=1 n→∞

lim an = lim (Sn − Sn−1 ) =


n→+∞ n→+∞
= lim Sn − lim Sn−1 = S − S = 0
n→+∞ n→+∞
+∞
Note. If lim an = 0, we can not conclude that an is
P
n→+∞ n=1
convergent.
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 9 / 42
Series Necessary Condition

EXAMPLE 1.4
+∞ 1
Determine whether the series p is convergent or
P
n=1 n
divergent.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 10 / 42


Series Necessary Condition

EXAMPLE 1.4
+∞ 1
Determine whether the series p is convergent or
P
n=1 n
divergent.
Necessary Condition is satisfied:
1
lim an = lim p = 0. But the series is divergent.
n→+∞ n→+∞ n

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 10 / 42


Series Necessary Condition

EXAMPLE 1.4
+∞ 1
Determine whether the series p is convergent or
P
n=1 n
divergent.
Necessary Condition is satisfied:
1
lim an = lim p = 0. But the series is divergent.
n→+∞ n→+∞ n

1 1 1 p
Sn = 1 + p + . . . + p Ê n · p = n, n ∈ N
2 n n

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 10 / 42


Series Necessary Condition

EXAMPLE 1.4
+∞ 1
Determine whether the series p is convergent or
P
n=1 n
divergent.
Necessary Condition is satisfied:
1
lim an = lim p = 0. But the series is divergent.
n→+∞ n→+∞ n

1 1 1 p
Sn = 1 + p + . . . + p Ê n · p = n, n ∈ N
2 n n
p
lim Sn Ê lim n = +∞ ⇒ lim Sn = +∞
n→+∞ n→+∞ n→+∞
1 +∞
Therefore, the series p is divergent.
P
n=1 n
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 10 / 42
Series Necessary Condition

COROLLARY 1.1 (TEST FOR DIVERGENCE)


If lim an does not exist or if lim an 6= 0 then
n→∞ n→∞
+∞
the series an is divergent.
P
n=1

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 11 / 42


Series Necessary Condition

COROLLARY 1.1 (TEST FOR DIVERGENCE)


If lim an does not exist or if lim an 6= 0 then
n→∞ n→∞
+∞
the series an is divergent.
P
n=1

EXAMPLE 1.5
µ ¶3n+2
+∞ 2n + 3
Show that the series n5
P
n=1 2n + 1
diverges.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 11 / 42


Series Necessary Condition

µ ¶3n+2 µ ¶ 2n+1 . 2(3n+2)


5 2n + 3 2 2 2n+1
an = n = n5 . 1 +
2n + 1 2n + 1
n→∞
⇒ an −−−→ ∞
So the series diverges by the Test for
Divergence.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 12 / 42


Series Some properties of convergent series
+∞
10 The series an is convergent if and only
P
n=1
+∞
if the series an , (n0 > 1) is convergent.
P
n=n0

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 13 / 42


Series Some properties of convergent series
+∞
10 The series an is convergent if and only
P
n=1
+∞
if the series an , (n0 > 1) is convergent.
P
n=n0
+∞
P nP
0 −1 +∞
P
an = an + an
n=1 n=1 n=n0
+∞
20 If the series an is convergent then the
P
n=1
+∞
series α.an (α ∈ R) is also convergent.
P
n=1
+∞ +∞
α.an = α.
P P
an .
n=1 n=1
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 13 / 42
Series Some properties of convergent series

+∞ +∞
0
3 If the series an and the series bn are
P P
n=1 n=1
convergent and have the sums S1, S2
+∞
respectively then the series (an + bn ) is
P
n=1
also convergent and has the sum S1 + S2.
+∞
X +∞
X +∞
X
(an + bn ) = an + bn .
n=1 n=1 n=1

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 14 / 42


Non-negative series Definition

DEFINITION 2.1
+∞
The series an is called the non-negative
P
n=1
series if an Ê 0, n ∈ N.
Remarks.
1. For the non-positive series
+∞ +∞
an , (an Ê 0, n ∈ N).
X X
(−an ) = −
n=1 n=1

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 15 / 42


Non-negative series Definition

2. The sequence of partial sums of


+∞
non-negative series an is not decreasing,
P
n=1
since Sn+1 − Sn = an+1 Ê 0. The sequence
n o∞ +∞
has a finite limit (i.e. the series
P
Sn an
n=1 n=1
n o∞
is convergent) if and only if Sn is
n=1
bounded above.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 16 / 42


Non-negative series Definition

2. The sequence of partial sums of


+∞
non-negative series an is not decreasing,
P
n=1
since Sn+1 − Sn = an+1 Ê 0. The sequence
n o∞ +∞
has a finite limit (i.e. the series
P
Sn an
n=1 n=1
n o∞
is convergent) if and only if Sn is
n=1
bounded above.
+∞
3. The series an is divergent if and only if
P
n=1
n o∞
the sequence Sn is not bounded above,
n=1
i.e. lim Sn = +∞.
n→∞
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 16 / 42
Non-negative series The Integral Test

THE INTEGRAL TEST

THEOREM 2.1
Suppose f (x) is a continuous, positive, decreasing
function on [1, +∞) and let an = f (n). Then the series

f (n) is convergent if and only if the improper
P
n=1 Z ∞
integral f (x)dx is convergent.
1

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 17 / 42


Non-negative series The Integral Test

THE INTEGRAL TEST

THEOREM 2.1
Suppose f (x) is a continuous, positive, decreasing
function on [1, +∞) and let an = f (n). Then the series

f (n) is convergent if and only if the improper
P
n=1 Z ∞
integral f (x)dx is convergent.
Z ∞ 1

If f (x)dx is convergent, then f (n) is
1
P
1 n=1
convergent.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 17 / 42


Non-negative series The Integral Test

THE INTEGRAL TEST

THEOREM 2.1
Suppose f (x) is a continuous, positive, decreasing
function on [1, +∞) and let an = f (n). Then the series

f (n) is convergent if and only if the improper
P
n=1 Z ∞
integral f (x)dx is convergent.
Z ∞ 1

If f (x)dx is convergent, then f (n) is
1
P
1 n=1
convergent.
Z ∞ ∞
If f (x)dx is divergent, then f (n) is divergent.
2
P
1 n=1

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 17 / 42


Non-negative series The Integral Test

EXAMPLE 2.1
∞ 1 ∞ 1
Test the series , and the series for
P P
2
n=2 n ln n n=2 n ln n
convergence or divergence.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 18 / 42


Non-negative series The Integral Test

EXAMPLE 2.1
∞ 1 ∞ 1
Test the series , and the series for
P P
2
n=2 n ln n n=2 n ln n
convergence or divergence.

Z∞ Z∞
dx d(ln x) h i∞
= = ln ln x = +∞
x ln x ln x 2
2 2

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 18 / 42


Non-negative series The Integral Test

EXAMPLE 2.1
∞ 1 ∞ 1
Test the series , and the series for
P P
2
n=2 n ln n n=2 n ln n
convergence or divergence.

Z∞ Z∞
dx d(ln x) h i∞
= = ln ln x = +∞
x ln x ln x 2
2 2
Z∞ Z∞
dx d(ln x) 1 ∞
· ¸
1
= = − =
x ln2 x 2
ln x ln x 2 ln 2
2 2

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 18 / 42


Non-negative series The Integral Test

EXAMPLE 2.1
∞ 1 ∞ 1
Test the series , and the series for
P P
2
n=2 n ln n n=2 n ln n
convergence or divergence.

Z∞ Z∞
dx d(ln x) h i∞
= = ln ln x = +∞
x ln x ln x 2
2 2
Z∞ Z∞
dx d(ln x) 1 ∞
· ¸
1
= = − =
x ln2 x 2
ln x ln x 2 ln 2
2 2
∞ ∞
X 1 X 1
is divergent, 2
is convergent
n=2 n ln n n=2 n ln n

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 18 / 42


Non-negative series Some Basic Series

SOME BASIC SERIES

+∞
qn is convergent if |q| < 1 and is
1
P
n=1
divergent if |q| Ê 1.
+∞ 1
is convergent if α > 1 and is
2
P
α
n=1 n
divergent if α É 1.
+∞ 1
is convergent if α > 1 or if
3
P
α β
n=2 n ln n
α = 1, β > 1 and is divergent if α < 1 or if
α = 1, β É 1.
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 19 / 42
Non-negative series The Comparision Test

THEOREM 2.2 (THE COMPARISION TEST )


+∞ +∞
Suppose that an and bn are series with
P P
n=1 n=1
non-negative terms:
0 É an É bn , ∀n Ê n0
+∞ +∞
If bn is convergent, then an is also
1
P P
n=1 n=1
convergent.
+∞ +∞
If an is divergent, then bn is also
2
P P
n=1 n=1
divergent.
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 20 / 42
Non-negative series The Comparision Test

EXAMPLE 2.2
5 + (−1)n .3 +∞
Determine whether the series
P
n=1 2n+3
converges or diverges.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 21 / 42


Non-negative series The Comparision Test

EXAMPLE 2.2
5 + (−1)n .3 +∞
Determine whether the series
P
n=1 2n+3
converges or diverges.

5 + (−1)n .3 8 1
0 É an = É = = bn , n Ê 1.
2n+3 2n+3 2n
P 1
+∞ 1/2 +∞
We know that so bn is
P
n
= = 1
n=1 2 1 − 1/2 n=1
+∞
convergent. Therefore, an is convergent.
P
n=1
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 21 / 42
Non-negative series The Limit Comparison Test

THEOREM 2.3
+∞ +∞
Suppose that an and
bn are series with
P P
n=1 n=1
an
non-negative terms, K = lim
n→+∞ bn
+∞ +∞
K = 0. If bn is convergent then an is
1
P P
n=1 n=1
convergent.
+∞ +∞
K > 0. Either both series an and bn converge
2
P P
n=1 n=1
or both diverge.
+∞ +∞
K = +∞. If bn is divergent then an is
3
P P
n=1 n=1
divergent.
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 22 / 42
Non-negative series The Limit Comparison Test

DEFINITION 2.2
The functions f (x) and g(x) are called
equivalent as x → a if

f (x)
lim =1 (1)
x→a g(x)

We denote the equivalent functions by


x→a
f (x) ∼ g(x).

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 23 / 42


Non-negative series The Limit Comparison Test

SOME BASIC EQUIVALENT FUNCTIONS I

As x → 0 the following functions are


equivalent:
1
1
sin x ∼ x, tan x ∼ x, 1 − cos x ∼ x2
2
2
arctan x ∼ x, arcsin x ∼ x
3
ax − 1 ∼ x. ln a, (a > 0, a 6= 1), ex − 1 ∼ x
x
4
loga (1 + x) ∼ x loga e = , (a > 0, a 6= 1),
ln a
ln(1 + x) ∼ x

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 24 / 42


Non-negative series The Limit Comparison Test

SOME BASIC EQUIVALENT FUNCTIONS II

p x
5
(1 + x)µ − 1 ∼ µ.x, (µ ∈ R), 1 + x − 1 ∼ ,
p 2
x
1 + x − 1 ∼ , (n ∈ N)
n

n
x2
6
sinh x ∼ x, cosh x − 1 ∼
2

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 25 / 42


Non-negative series The Limit Comparison Test

THEOREM 2.4
If (
u(x) → 0 as x → a
f (x) ∼ g(x) as x → 0
then f (u(x)) ∼ g(u(x)) as x → a.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 26 / 42


Non-negative series The Limit Comparison Test

THEOREM 2.4
If (
u(x) → 0 as x → a
f (x) ∼ g(x) as x → 0
then f (u(x)) ∼ g(u(x)) as x → a.
THEOREM 2.5
If g(x) → A 6= 0 and f (x) ∼ f (x) as x → a, then
f (x).g(x) ∼ A.f (x) as x → a

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 26 / 42


Non-negative series The Limit Comparison Test

THEOREM 2.6
If f (x) ∼ f (x) and g(x) ∼ g(x) as x → a, then

f (x) x→a f (x)


∼ (2)
g(x) g(x)

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 27 / 42


Non-negative series The Limit Comparison Test

EXAMPLE 2.3
+∞ e n + n3
Determine whether the series
P
3
n=1 2n + ln n
converges or diverges.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 28 / 42


Non-negative series The Limit Comparison Test

EXAMPLE 2.3
+∞ e n + n3
Determine whether the series
P
3
n=1 2n + ln n
converges or diverges.
We have
en ³ e ´n
e n + n3 n→∞
an = ∼ n= = bn .
2n + ln3 n 2 2
+∞ +∞
We know that bn is divergent, thus
P P
an
n=1 n=1
is divergent.
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 28 / 42
Non-negative series The Limit Comparison Test

EXAMPLE 2.4
ln 1 + sin n1
¡ ¢
+∞
Determine whether the series
P
n=1 n + ln2 n
converges or diverges.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 29 / 42


Non-negative series The Limit Comparison Test

EXAMPLE 2.4
ln 1 + sin n1
¡ ¢
+∞
Determine whether the series
P
n=1 n + ln2 n
converges or diverges.
We have
ln(1 + sin n1 ) n→∞ sin n1 n→∞ 1
an = ∼ ∼ 2 = bn .
n + ln2 n n n
+∞ +∞
We know that bn is convergent, thus
P P
an
n=1 n=1
is convergent.
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 29 / 42
Non-negative series The Limit Comparison Test

EXAMPLE 2.5
Determine whether
´ the series
P p 3³
+∞ π
n cosh − 1 converges or diverges.
n=1 n

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 30 / 42


Non-negative series The Limit Comparison Test

EXAMPLE 2.5
Determine whether
´ the series
P p 3³
+∞ π
n cosh − 1 converges or diverges.
n=1 n

We have
p
3
π n→∞ 3/2 1 π
³ ´2 1 π2
an = n (cosh −1) ∼ n . = = bn .
n 2 n 2 n1/2
+∞ +∞
We know that bn is divergent, thus
P P
an
n=1 n=1
is divergent.
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 30 / 42
Alternating Series

DEFINITION 3.1
+∞
The series (−1)n an , (an Ê 0, ∀n Ê n0 or
P
n=1
an É 0, ∀n Ê n0 ) is called the alternating series.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 31 / 42


Alternating Series

DEFINITION 3.1
+∞
The series (−1)n an , (an Ê 0, ∀n Ê n0 or
P
n=1
an É 0, ∀n Ê n0 ) is called the alternating series.

THEOREM 3.1 (ALTERNATING SERIES TEST )


+∞
If the alternating series (−1)n an satisfies
P
n=1
1
lim an = 0
n→+∞
2
an+1 É an , ∀n Ê n0 ,
then the series is convergent.
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 31 / 42
Alternating Series

EXAMPLE 3.1
+∞ ln n
Test the series (−1)n+1 p for convergence
P
n=1 n
or divergence.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 32 / 42


Alternating Series

EXAMPLE 3.1
+∞ ln n
Test the series (−1)n+1 p for convergence
P
n=1 n
or divergence.
ln n ln x 2 − ln x
an = p , f (x) = p , f 0 (x) = p < 0, ∀x > e2 .
n x 2x x
1
lim an = 0
n→+∞
n o+∞
2
the sequence an is decreasing.
n=8
+∞
(−1)n+1 an is convergent by the Alternating
P
n=1
Series Test.
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 32 / 42
Absolute Convergence and the Ratio and Root Tests Absolute Convergence

DEFINITION 4.1
+∞
A series an is called absolutely convergent
P
n=1
+∞
if the series of absolute values |an | is
P
n=1
convergent.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 33 / 42


Absolute Convergence and the Ratio and Root Tests Absolute Convergence

DEFINITION 4.1
+∞
A series an is called absolutely convergent
P
n=1
+∞
if the series of absolute values |an | is
P
n=1
convergent.

THEOREM 4.1
+∞
If a series |an | is convergent then the series
P
n=1
+∞
an is convergent.
P
n=1

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 33 / 42


Absolute Convergence and the Ratio and Root Tests Absolute Convergence

DEFINITION 4.2
+∞
A series an is called conditionally
P
n=1
+∞
convergent if the series an is convergent,
P
n=1
+∞
but the series |an | is divergent.
P
n=1

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 34 / 42


Absolute Convergence and the Ratio and Root Tests Absolute Convergence

EXAMPLE 4.1
arctan(−n)n +∞
Test the series for the
P
p
4
n=1 2n6 + 3n + 1
convergence or divergence.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 35 / 42


Absolute Convergence and the Ratio and Root Tests Absolute Convergence

EXAMPLE 4.1
arctan(−n)n +∞
Test the series for the
P
p
4
n=1 2n6 + 3n + 1
convergence or divergence.
arctan(−n)n
We have an = p 4
. Consider |an | =
6
2n + 3n + 1
| arctan(−n)n | π/2 n→∞ π/2
p4
É p
4
∼ p4
= bn .
6 6 2n 6/4
2n + 3n + 1 2n + 3n + 1

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 35 / 42


Absolute Convergence and the Ratio and Root Tests Absolute Convergence

EXAMPLE 4.1
arctan(−n)n +∞
Test the series for the
P
p
4
n=1 2n6 + 3n + 1
convergence or divergence.
arctan(−n)n
We have an = p 4
. Consider |an | =
6
2n + 3n + 1
| arctan(−n)n | π/2 n→∞ π/2
p4
É p4
∼ p4
= bn .
6 6 2n 6/4
2n + 3n + 1 2n + 3n + 1
+∞
We know that bn is convergent, thus
P
n=1
+∞ +∞
|an | is convergent, an is convergent.
P P
n=1 n=1
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 35 / 42
Absolute Convergence and the Ratio and Root Tests The Ratio Test

THEOREM 4.2 ¯ ¯
+∞ ¯ an+1 ¯
For
P
an , D = lim ¯¯ ¯.
n=1 n→+∞ an ¯
+∞
If D < 1, then the series an is absolutely
1
P
n=1
convergent and therefore convergent.
+∞
If D > 1 or D = +∞, then the series an is
2
P
n=1
divergent.
3
If D = 1, the Ratio Test is inconclusive.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 36 / 42


Absolute Convergence and the Ratio and Root Tests The Ratio Test

Note. If D = 1, the test gives no information.


+∞ 1
For instance, for the divergent series
P
¯ ¯ n=1 n
¯ an+1 ¯
we have D = lim ¯¯ ¯ = lim n = 1
n→+∞ an ¯ n→+∞ n + 1
P 1
+∞
Whereas for the convergent series 2
we
n=1 n
n2
¯ ¯
¯ an+1 ¯
have D = lim ¯¯ ¯ = lim = 1.
n→+∞ an ¯ n→+∞ (n + 1)2

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 37 / 42


Absolute Convergence and the Ratio and Root Tests The Ratio Test

EXAMPLE 4.2
3n .n! +∞
Test the series for the convergence or
P
n
n=1 n
divergence.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 38 / 42


Absolute Convergence and the Ratio and Root Tests The Ratio Test

EXAMPLE 4.2
3n .n! +∞
Test the series for the convergence or
P
n
n=1 n
divergence.
3n .n!
We have an = n · Consider
n
¯ an+1 ¯ 3n+1 .(n + 1)! nn
¯ ¯ ³ n ´n
n→∞ 3
¯ ¯= · = 3. −−−→ > 1
¯ a ¯
n (n + 1)n+1 3n .n! n+1 e
+∞
Therefore an is divergent by the Ratio
P
n=1
Test.
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 38 / 42
Absolute Convergence and the Ratio and Root Tests The Ratio Test

EXAMPLE 4.3
Test the convergence of the series
+∞
P 2.5.8 . . . (3n − 1)
·
n=1 1.6.11 . . . (5n − 4)

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 39 / 42


Absolute Convergence and the Ratio and Root Tests The Ratio Test

EXAMPLE 4.3
Test the convergence of the series
+∞
P 2.5.8 . . . (3n − 1)
·
n=1 1.6.11 . . . (5n − 4)
¯ ¯
2.5.8 . . . (3n − 1) ¯ an+1 ¯
an = . Consider ¯¯ ¯=
1.6.11 . . . (5n − 4) an ¯
2.5.8 . . . (3n − 1)(3n + 2) 1.6.11 . . . (5n − 4)
= =
1.6.11 . . . (5n − 4)(5n + 1) 2.5.8 . . . (3n − 1)
3n + 2 n→∞ 3
= −−−→ < 1.
5n + 1 5
+∞
Therefore an is convergent by the Ratio
P
n=1
Test.
Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 39 / 42
Absolute Convergence and the Ratio and Root Tests The Root Test

THEOREM 4.3
+∞ p
n
For
P
an , C = lim |an |.
n=1 n→+∞
+∞
If C < 1, then the series an is absolutely
1
P
n=1
convergent and therefore convergent.
+∞
If C > 1 or D = +∞, then the series an is
2
P
n=1
divergent.
3
If C = 1, the Ratio Test is inconclusive.

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 40 / 42


Absolute Convergence and the Ratio and Root Tests The Root Test

EXAMPLE 4.4
Test the
µ convergence for the series
¶ n
+∞
P 5 3n + 2
n .
n=1 4n + 3

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 41 / 42


Absolute Convergence and the Ratio and Root Tests The Root Test

EXAMPLE 4.4
Test the
µ convergence for the series
3n + 2 n

+∞
P 5
n .
n=1 4n + 3
µ ¶n
3n + 2
an = n5 . Consider
4n + 3
pn
p
n 3n + 2 n→∞ 3
|an | = n5 · −−−→ < 1.
4n + 3 4
+∞
Thus an converges by the Root Test.
P
n=1

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 41 / 42


Absolute Convergence and the Ratio and Root Tests The Root Test

THANK YOU FOR YOUR ATTENTION

Dr. Lê Xuân Đại (HCMUT-OISP) INFINITE SERIES HCMC— 2016. 42 / 42

You might also like