0% found this document useful (0 votes)
71 views14 pages

Y GT2 A Lec 04 Triple Int 1415

This document provides an overview of triple integrals and examples of evaluating triple integrals over different types of regions. It discusses evaluating triple integrals as iterated integrals by integrating first over one variable then the other two, or as a double integral plus a single integral by integrating a double integral over a region and then integrating the result over the remaining variable. Examples are provided of evaluating triple integrals over a box region, cylinder region defined by bounds on z, and "right cylinder" region defined by two equations for the bounds of z.

Uploaded by

Bell Pham
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
71 views14 pages

Y GT2 A Lec 04 Triple Int 1415

This document provides an overview of triple integrals and examples of evaluating triple integrals over different types of regions. It discusses evaluating triple integrals as iterated integrals by integrating first over one variable then the other two, or as a double integral plus a single integral by integrating a double integral over a region and then integrating the result over the remaining variable. Examples are provided of evaluating triple integrals over a box region, cylinder region defined by bounds on z, and "right cylinder" region defined by two equations for the bounds of z.

Uploaded by

Bell Pham
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 14

HUT – DEPARTMENT OF MATH.

APPLIED
--------------------------------------------------------------------------------------------------------

INTERNATIONAL PROGRAM
GIAÛI TÍCH 2

LEC 4: TRIPLE INTEGRAL

STEWART: PAGES 990 – 1010

• PhD. NGUYEÃN QUOÁC LAÂN (October, 2014)


TRIPLE INTEGRAL ON BOX = ITERATED INTEGRAL
--------------------------------------------------------------------------------------------------------------------------------------

B is some box in Oxyz: B = {(x,y,z) | a ≤ x ≤ b, c ≤ y ≤ d, r ≤ z ≤ s}


bd s

∫∫∫ f ( x, y, z )dV = ∫ ∫ ∫ f ( x, y, z )dzdydx : Inside first z → y → x


B acr
Remember : 3 = 1 + 1 + 1 (Triple Integral = Single + Single + Single).

Example : Evaluate ∫∫∫ xyz 2 dV , B = {0 ≤ x ≤ 1, − 1 ≤ y ≤ 2, 0 ≤ z ≤ 3}


B
Choose any of the 6 possible orders of integration: x – y – z (or …)
x =1 y =2
3 2
⎡ x yz 2 2⎤
yz ⎡y z 3 2 3 2
3z 2 27
3 2 2⎤
I = ∫ ∫⎢ ⎥ dydz = ∫ ∫ dydz = ∫ ⎢ ⎥ dz = ∫ dz =
0 −1⎣
2 ⎦ −
2 ⎣ 4 ⎦ 4 4
x =0 0 1 0 y = −1 0
1 2 3
27
Remark : f ( x, y, z ) and B are separable ⇒ I = ∫ xdx ⋅ ∫ ydy ⋅ ∫ z 2 dz =
0 −1 0
4
TRIPLE INTEGRAL: DOUBLE + SINGLE (3 = 2 + 1)
--------------------------------------------------------------------------------------------------------------------------------------

“Cylinder” E = {(x,y,z) | u1(x, y) ≤ z ≤ u1(x, y), (x, y) ∈ D ⊆ Oxz }


⎡u 2 ( x , y ) ⎤
∫∫∫ f ( x, y, z )dV = ∫∫ ⎢⎢ ∫ f ( x, y, z )dz ⎥⎥ dA : Inside first z → Double
E D ⎣ u1 ( x , y ) ⎦
Remember : 3 = 2 + 1 (Triple Integral = Double (out) + Single (in) ).

Example : Evaluate ∫∫∫ xyzdV , E = 0 ≤ z ≤ x 2 + y 2 , 0 ≤ x, y ≤ 1}{


E
Answer: D = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1} (square) ⇒
x2 + y 2
[ ] ( )
11
xy 2 z = x2 + y 2 1 2 2 7
I = ∫∫ ∫ xyzdzdA = ∫∫ 2 z z =0 dA = ∫ ∫ xy x + y dydx =
2

D 0 D
200 48
1 1 x2 + y2
⎧ x = r cos θ
Remark : 1/ Direct I = ∫ ∫ ∫ xyzdzdydx 2/ D : disk ⇒ Polar ⎨
00 0 ⎩ y = r sin θ
SOLID E: “RIGHT CYLINDER” RESPECT TO Z
------------------------------------------------------------------------------------------------------------------------------------------

“Right cylinder” respect to z: E


= {(x, y, z) | (x,y) ∈ D, u1(x,y) ≤ z
≤ u2(x,y)}. Key: 1/ Recognize 2
equations z = u1(x,y), z = u2(x,y).
2/ Add intercep. u1(x,y) = u2(x,y).

⎡u 2 ( x , y ) ⎤
∫∫∫ f ( x, y, z )dV = ∫∫ ⎢⎢ ∫ fdz ⎥⎥ dA
E D ⎣ u1 ( x , y ) ⎦
D : a ≤ x ≤ b, g1 ( x ) ≤ y ≤ g 2 ( x ) ⇒
b g 2 ( x ) u2 ( x , y )

∫∫∫ f ( x, y, z )dV = ∫ ∫ ∫ fdzdydx


E a g1 ( x ) u1 ( x , y )
EXAMPLE
------------------------------------------------------------------------------------------------------------------------------------------

Example : ∫∫∫ zdV , E : bounded by x = 0, y = 0, z = 0, x + y + z = 1


E

Two equations for z: z = 0 & z = 1 – x – y. Domain D: x = 0, y = 0


is unfinite! Add interception : 1 – x – y = 0 ⇒ x + y = 1 → D.
⎧( x, y ) ∈ D
E:⎨
⎩0 ≤ z ≤ 1 − x − y
⎧0 ≤ x ≤ 1
D:⎨
⎩0 ≤ y ≤ 1 − x
1 1− x 1− x − y
⇒I=∫ ∫ ∫ zdzdydx
0 0 0
1 1− x z =1− x − y 1 1− x
⎡z 2⎤
1 1 1
1
=∫ ∫ dydx = ∫ ∫ (1 − x − y ) dydx = 6 ∫ (1 − x ) dx = 24
2 3
⎢ ⎥
0 0 ⎣ 2 ⎦ z =0 20 0 0
OTHER CASES
------------------------------------------------------------------------------------------------------------------------------------------

Cylinder respect to y, ( x, z ) ∈ D ⊆ Oxz


⎧u1 ( x, z ) ≤ y ≤ u2 ( x, z )
Solid E : ⎨
⎩( x, z ) ∈ D ⊆ Oxz
⎡u 2 ( x , z ) ⎤
⇒ ∫∫∫ fdV = ∫∫ ⎢ ∫ f ( x, y, z )dy ⎥ dA
D⎣ ⎢ u ( x, z ) ⎥
E 1 ⎦

Cylinder respect to x, ( y, z ) ∈ D ⊆ Oyz


⎧u1 ( y, z ) ≤ x ≤ u2 ( y, z )
Solid E : ⎨
⎩( y, z ) ∈ D ⊆ Oyz
⎡u 2 ( y , z ) ⎤
⇒ ∫∫∫ fdV = ∫∫ ⎢ ∫ f ( x, y, z )dx ⎥ dA
E D⎢ ⎣ u1 ( y , z ) ⎥⎦
EXAMPLE
------------------------------------------------------------------------------------------------------------------------------------------

Evaluate ∫∫∫ x 2 + z 2 dV , E : bounded by y = x 2 + z 2 and y = 4.


E

z= y − x2
E : z = − y − x2
⎧− 2 ≤ x ≤ 2
D:⎨ 2
E : Cylindre respect z ⎩x ≤ y ≤ 4
⇒ Complicated.
y = x2 + z 2
E : cylinder respect y ⇒ E : ⇒ D : x 2 + y 2 = 4 → D : Disk
y=4
( )
4
128π
I = ∫∫ ∫ x + z dydA = ∫∫ 4 − x − z
2 2 2 2
x + z dA. Polar ⇒ I =
2 2
15
D 2 2x +z D
APPLICATION: VOLUME OF SOLID E
------------------------------------------------------------------------------------------------------------------------------------------

Let f ( x, y, z ) ≡ 1 ∀ M ∈ E ⇒ ∫∫∫ dV = VE : volume of E


E

Example: Find the volume of the solid bounded by x = y2, x = z,


z = 0, x = 1.
⎧z = x ⎧x = y 2 ⎧− 1 ≤ y ≤ 1
Answer : E : ⎨ ⇒ D:⎨ : Finite. y = 1 ⇒ D : ⎨ 2
2
.
⎩z = 0 ⎩x = 1 ⎩y ≤ x ≤1
VE = ∫∫∫ dV =
E
x
= ∫∫∫ dzdA = ∫∫ xdA
D 0 D
1 1
4
∫ ∫ xdxdy = 5
−1 y 2
CYLINDRICAL COORDINATES (PAGE 1000)
------------------------------------------------------------------------------------------------------------------------------------------

A point P(x, y, z) ∈ R3 is represented


by the triple (r, θ, z), where r and θ
are polar coord. of P’ = Projec.OxyP

P/ ⎧ x = r cos θ y
⎨ ⇒ r = x 2
+ y 2
, tan θ =
⎩ y = r sin θ x

P Example: (a) Plot the point with cylin.


coor. (2, 2π/3, 1) and find its rec. coor.
P/ (b) Find cylin. coor. of M(3, –3, –7)
∈ Oxy 2π
Answer : (a) x = 2 cos L ⇒ P(− 1, 3, 1)
3
π
(b) r = 3 2, tanθ = −1 ⇒ M⎛⎜ 3 2,− ,−7 ⎞⎟
⎝ 4 ⎠
POLAR IN Oxy & z ⇒ CYLINDRICAL COORDINATES
------------------------------------------------------------------------------------------------------------------------------------------

Triple Integral ( x, y, z ) : 3 = 2 + 1 & D : disk, circle ⇒ Polar (r , θ )


u2 ( x , y )
I = ∫∫∫ f ( x, y, z )dV = ∫∫ ∫ fdzdA = ∫∫ g ( x, y )dA = ∫∫ g (r , θ )rdrdθ .
E D u1 ( x , y ) D Drθ

⎧ x = r cos θ , = r sin θ
Combine 2 steps into 1 step : ⎨ ⇒ Cylindrical.
⎩z = z

E = {(x,y) ∈ D, u1(x,y) ≤ z ≤ u2(x,y)},


where D in polar: {α ≤ θ ≤ β, h1(θ) ≤ r
≤ h2(θ)} ⇒ Triple Integral I = ∫∫∫ f dV:
β h2 (θ )u2 (r ,θ )
I=∫ ∫ ∫ f (r cosθ , r sin θ , z )rdzdrdθ
α h1 (θ ) u1 (r ,θ )
EXAMPLE
------------------------------------------------------------------------------------------------------------------------------------------

( )
Evaluate I = ∫∫∫ x 2 + y 2 dV , E = x 2 + y 2 ≤ 4, x 2 + y 2 ≤ z ≤ 2 { }
E

⎧⎪( x, y ) ∈ D : x 2 + y 2 ≤ 4 : Circle
E:⎨ & f = x 2 + y 2 ⇒ Cylind. coor.
⎪⎩u1 ( x, y ) = x 2 + y 2 ≤ z ≤ u2 = 2
⎧ x = r cos θ , y = r sin θ
Answer : Cylind. ⎨
⎩z = z
⎧0 ≤ r ≤ 2 ⎧(r , θ ) ∈ D
⇒ D:⎨ &E:⎨
⎩0 ≤ θ ≤ 2π ⎩r ≤ z ≤ 2
⎡ 2 ⎤ 2π 2 2
( )
⇒ I = ∫∫ ⎢ ∫ x 2 + y 2 dz ⎥ dS = ∫ ∫ ∫ r 3dzdrdθ
⎢ ⎥
D ⎢ x2 + y2 ⎥⎦
⎣ 0 0r
2π 2
1 4 1 5 ⎤ 16π
2

= ∫ dθ ∫ r (2 − r )dr = 2π ⎢ r − r ⎥ =
3

0 0
⎣2 5 ⎦0 5
SIMPLIFY SPHERE: SPHERICAL COORDINATES (P. 1005)
------------------------------------------------------------------------------------------------------------------------------------------
0 ≤φ ≤π
P(x, y, z) ∈ R3 ↔ (ρ, θ, φ), ρ = OP ≥ 0,
θ: cylindrical angle, φ: angle (Oz, OP)
ρ cos φ ⎧ x = ρ sin φ cos θ
⎪ ⎧
⎪ ρ 2
= x 2
+ y 2
+ z 2
⎨ y = ρ sin φ sin θ ⇒ ⎨ 2 2
ρ sin φ ⎪ z = ρ cos φ ⎪
⎩ ρ sin φ = x 2
+ y 2

Example: (a) Plot the point with sphe.


coor. (2, π/4, π/3) and find its rec. coor.
(b) Find cylin. coor. of M (0,2 3,−2 )
π π
(a) ρ = 2, θ = ,φ = ⇒ P( 3 2, 3 2, 1)
4 3
(b) ρ = x 2 + y 2 + z 2 = 4 ⇒ M(4, π 2 , 2π 3)
TRIPLE INTEGRAL IN SPHERICAL COORDINATES
------------------------------------------------------------------------------------------------------------------------------------------

x2 + y2 + z 2 = R2 Ball: x2 + y2 + z2 ≤ R2 in spherical
coordinate: 0 ≤ ρ ≤ R, 0 ≤ θ ≤ 2π, 0 ≤ φ
≤ π ⇒ Triple integral ∫∫∫fdxdydz on B:
π 2π R

ρ=R ∫∫∫ fdV = ∫ ∫∫ f ( ρ ,θ , φ )ρ 2 sin φdρdθdφ


B 0 0 0

φ = c,
π
<c
2

x = y ⇔θ =π 4 φ = c, 0 < c < π 2
EXAMPLE
------------------------------------------------------------------------------------------------------------------------------------------

Evaluate I = ∫∫∫ e (x )
2 2 232
+ y +z
dV , B is the unit ball : x 2 + y 2 + z 2 ≤ 1
B

⎧ x = ρ sin φ cos θ ⎧0 ≤ ρ ≤ 1
⎪ ⎪
Answer : Spherical coordinate ⎨ y = ρ sin φ sin θ ⇒ B : ⎨0 ≤ θ ≤ 2π
⎪ z = ρ cos φ ⎪0 ≤ φ ≤ π
⎩ ⎩

As x 2 + y 2 + z 2 = ρ 2 ⇒ I = ∫
π 2π 1
(ρ )
232
∫ ∫ e ρ 2 sin φdρdθdφ =
0 0 0
π 2π 1 ρ =1
⎡ 1 ρ3 ⎤ 4π
= ∫ sin φdφ ∫ dθ ∫ ρ e dρ = [− cos φ ]φ =0 (2π )⎢ e ⎥
2 ρ φ =π 3
= (e − 1)
0 0 0
⎣3 ⎦ ρ =0 3

⎧⎪− 1 ≤ x ≤ 1,− 1 − x 2 ≤ y ≤ 1 − x 2
2
1 1− x L
In Oxyz, B : ⎨ ⇒∫ ∫ ∫ eL
:?
⎪⎩− 1 − x 2 − y 2 ≤ z ≤ 1 − x 2 − y 2 −1− 1− x 2 − L

You might also like