Solution 1561260
Solution 1561260
Class 11 - Mathematics
Section A
1.
(c) A
Explanation: The set is {a, e, i, o, u}
2.
(b) A ⊆ B
Explanation: A ⊆ B
⇒ since set A is totally contained in Set B.
3.
(b) A
Explanation: (A ∩ B ) = A′
′
⇒ A ∩ (A ∩ B ) = A ∩ A = A
4.
(c) 7, 4
Explanation: Now to find value of m and n
The number of subsets of a set containing x elements is given by 2x
According to question: 2m – 2n = 112
⇒ 2n (2m-n – 1) = 16 × 7
⇒ 2n (2m-n – 1) = 24 × 7
On comparing on both sides 2n = 24 and 2m-n – 1 = 7
⇒ n = 4 and 2m-n = 8
⇒ 2m-n = 23
⇒ m – n = 3
⇒ m – 4 = 3
⇒ m = 7
∴ x2 + y2 = 25 ⇒ x2 = 25 - y2 = 25 - 119
8
= 81
8
−−
⇒ x = ±√ 81
Since we solved equations simultaneously, therefore A ∩ B has four points A has 2 elements & B has 2 elements.
1 / 13
7.
(d) B ⊂ A
c c
Explanation: Let A ⊂ B
To prove Bc ⊂ Ac, it is enough to show that x ∈ Bc ⇒ x ∈ Ac
Let x ∈ Bc
⇒ x ∉ B
⇒ x ∉ A since A ⊂ B
⇒ x ∈ Ac
Hence Bc ⊂ Ac
8.
(b) {3, 6, 9, 12, 18, 21, 24, 27}
Explanation: Since set B represent multiple of 5 so from Set A common multiple of 3 and 5 are excluded.
9.
(d) C - D = E
Explanation: C - D = {a, b, c} - {c, d} = {a, b}
But E = {d}
Hence C - D ≠ E
10.
(b) None of these
Explanation: 4 ∉ A
{4} ⊄ A
B ⊄ A
Therefore, we can say that none of these options satisfy the given relation.
11. (a) C = ϕ
Explanation: ϕ is denoted as null set.
12.
(c) A
Explanation: We have to find (A')' = ?
Now, A = U\A
⇒ (A')' = (U\A)' = U'\A'
⇒ (A')' = U'\(U\A)
⇒ (A')' = U'\(U\A)
⇒ (A')' = A
2 / 13
Clearly,hence S ∪ T ∪ C = S
Section B
16. (a) (6, 8) ∈ R
Explanation: (6, 8) ∈ R
as b - 2 = 8 - 2 = 6 and b>6 .
17.
(c) R – {-2, 3}
2
x +2x+1
Explanation: We have, f(x) = 2
x −x−6
∴ x = -2, 3
∴ Domain of f = R - {-2, 3}
18.
(b) (−∞, 1] ∪ [2, ∞)
Explanation: ∵ f : R → R defined by
−−−−−−−−−
2
f (x) = √x − 3x + 2
Here, x2 - 3x + 2 ≥ 0
(x - 1) (x - 2) ≥ 0
x ≤ 1 or x ≥ 2
∴ Domain of f = (−∞, 1] ∪ [2, ∞)
19.
(d) Domain = R, Range = (−∞, 2]
Explanation: We have, f(x) = 2 − |x − 5|
Clearly, f(x) is defined for all x∈R
∴ Domain of f = R
Now, |x − 5| ≥ 0, ∀x ∈ R
⇒ −|x − 5| ≤ 0
⇒ 2 − |x − 5| ≤ 2
∴ f (x) ≤ 2
∴ Range of f = (−∞, 2]
20.
(d) 0
Explanation: Since f (x) = x 3
−
1
3
x
1 1 1 1 3
f ( )= − = − x
x 3 1 3
x x
3
x
1 1 1
Hence, f (x) + f ( x
)= x
3
−
3
+
3
3
− x = 0
x x
21.
(d) (−∞, −1]
−−−−−
Explanation: f(x) = log (1 - x) + √x − 1 2
Solving inequality,
log (1 - x) ≥ 0
⇒ 1 - x ≥ e0 (log taken to the opposite side of the equation becomes e)
⇒ x ≤ 1 .....(i)
x2 - 1 should be positive
3 / 13
∴ x2 - 1 ≥ 0
and −1 ≤ x ≥ 1 ......(ii)
On taking intersection of equation (i) and (ii), we get
Domain of the f(x) is (-∞ , -1]
22.
(d) (−∞, 1] ∪ (4, ∞)
−−−
x−1
Explanation: f(x) = √ x+4
−−−
x−1
domain of the function can be defined for √ x+4
≥ 0
−−−
x−1
⇒ √ ≥ 0
x+4
x−1
⇒ ≥ 0
x+4
⇒ x-1≥0
⇒ x ≥ 1 and x ≠ 4
This function is well defined for all real numbers other than 3.
∴ Its domain is R - {3}
|x−3|
Now, f(x) = x−3
x−3
⎧ : x > 3
x−3 1 : x > 3
= ⎨ = {
−(x−3)
⎩ −1 : x < 3
: x < 3
x−3
2
(1− x )
2
(1− x )
⇒ y - yx2 = 1
⇒ yx2 = y - 1
x2 =
y−1
⇒
y
−−−
y−1
⇒ x=√ y
−−−
y−1
⇒ √ ≥ 0
y
⇒ y≥1
Hence, Range of the f(x) = [1, ∞ )
26.
(c) Domain = [1, ∞) , Range = [0, ∞)
−−−−−
Explanation: We have, f(x) = √x − 1
Clearly, f(x) is defined if x − 1 ≥ 0
4 / 13
⇒ x ≥ 1
∴ Domain of f = [1, ∞)
Now for x ≥ 1, x − 1 ≥ 0
−−−−−
⇒ √x − 1 ≥ 0
⇒ Range of f = [0, ∞)
27. (a) ϕ
Explanation: For function to be defined,
x−2
≥ 0, x ≠ −2
x+2
x−1
≤ 0
x+1
x ∈ (−1, 1] … (2)
1 1
= {25 − (25 − x 4
)} 4
= (x 4
) 4
=x
∴ f (f ( )) =
1 1
2 2
= 2-1
29.
(d) {1, 5, 9}
Explanation: The set of elements related to 1 is {1, 5, 9}.
Since, |1 - 1| = 0 is multiple of 4
|5 - 1| = 4 is a multiple of 4
and |9 - 1| = 8 is a multiple of 4
30. (a) R - { - 1 / 2 ,1 }
2
Explanation: Let y = x −x
2
x +2x
y(x2+2x)= x2-x
yx(x+2)= x(x-1)
y(x+2)= x-1
x(y − 1) = −(1 + 2y)
(1+2y)
x = −
y−1
⇒ (x - 3)(x - 2) = 0
∴ A = {2, 3}; Also, B = {2, 4}, c = {4, 5}
Now, B ∩ C = {4}
∴ A × B ∩ C = {2, 3} × {4}
5 / 13
2
33. (a) 2 n
Explanation: The number of elements in A × A is n × n = n2. Hence, the number of relations on A = number of subsets of A
A = 2n× n = 2 .
2
n
×
3 + x > 0 ⇒ x > -3
3 + x ≠ 1 ⇒ x ≠ -2
Therefore, domain of the function f(x) = (-3, -2) ∪ (-2, -1) ∪ (1, ∞ )
Section C
36.
(c) ± 1
√3
Explanation: 7 sin 2
θ + 3 cos
2
θ= 4
⇒ 7 tan
2
θ + 3 = 4 sec
2
θ [dividing by cos2θ]
θ) + 3 = 0
2 2
⇒ 7 tan θ − 4 (1 + tan
2 2 2
⇒ 7 tan θ − 4 tan θ −1 = 0 ⇒ 3 tan θ= 1
2 1 1
⇒ tan θ= ⇒ tan θ = ±
3 √3
37.
3
(d) 2
25
⇒ cos θ = − √
16
25
=
5
−5 −4 −4
∴ sec θ =
4
and cot θ = cos θ
sin θ
=
5
×
5
3
=
3
(−5) (−4) −5 3
∴ (2 sec θ − 3 cot θ) = {2 × − 3 × }= ( + 4) =
4 3 2 2
(7x +5x )
2
(7x −5x )
=
sin x
cos x
= tan x
2 cos cos
2 2
39.
(d) tan x
(1−cos 2x)+sin 2x 2
2 sin x+2 sin x cos x
Explanation: Given exp. = =
2
(1+cos 2x)+sin 2x 2 cos x+2 sin x cos x
cos x
= tan x.
2 cos x(cos x+sin x)
40.
(b) π
4
tan A+tan B
Explanation: tan (A + B) = 1−tan A tan B
a 1
+
a+1 2a+1
= a
1−
(a+1)(2a+1)
2
2a +a+a+1
=
2
2a +3a+1−a
6 / 13
2
2a +2a+1
=
2
2a +2a+1
=1
Therefore, A + B = = tan −1
(1) =
π
41.
(b) π
∴ 3a + 3d = π
∴ 3(a + d) = π
π
∴ a+ d =
3
42.
(b) 6.6 cm
Explanation: Angle traced by the minute hand in 60 min = (2π) c
c r
60
× 45) = (
3π
2
)
c
3π
∴ r = 1.4 cm and θ = ( 2
)
⇒ l = rθ = (1.4 ×
3π
2
) cm = (1.4 ×
3
2
×
22
7
) cm = 6.6 cm
43.
(b) - cot θ
Explanation: cos(π + θ) = − cos θ , cos(−θ) = cos θ , cos(π − θ) = − cos θ , cos( π
2
+ θ) = − sin θ
(− cos θ)(cos θ)
∴ given exp. = = − cot θ
(− cos θ)(− sin θ)
44.
(c) r2
Explanation: (x2 + y2 + z2) = r 2
cos
2
α cos
2
β + r
2
cos
2
α sin
2
β + r
2
sin
2
α
2 2 2 2 2 2
= r cos α (cos β+ sin β) + r sin α
2 2 2 2 2 2 2 2
= r cos α + r sin α = r (cos α + sin α) = r
45.
(c) sin 4β
Explanation: Given tan α = 1
7
and tan β = 1
[as tan α = 1
7
is given]
2
1
1−( )
7
cos 2α =
2
1
1+( )
7
49−1
=
49+1
48 24
= =
50 25
Hence cos 2α = 24
25
The same value is obtained for sin 4β. [By sin 2x = 2 sin x cos x]
sin 4α = 2 sin 2α cos 2α
2
2 tan x 1− tan x
[using sin 2x = 2
and cos 2x = 2
]
1+ tan x 1+ tan x
We have
2
2 tan β 1− tan β
sin 4β = 2 ( )( )
1+ tan2 β 1+ tan2 β
7 / 13
As tan β = 1
3
2
1 1
2( ) 1−( )
3 3
sin 4β = 2 ( )( )
2 2
1 1
1+( ) 1+( )
3 3
6 9−1
= 2( )( )
9+1 9+1
48 48 24
= 2( ) = =
100 50 25
47.
−1
(d)
√2
√2
48.
(c) 1
Explanation: 2 cos 5π
12
cos
π
12
= cos(
5π
12
+
π
12
) + cos(
5π
12
−
12
π
) [ using 2cosAcosB= cos (A + B) + cos (A - B) ]
π π 1 1
= (cos + cos ) = (0 + )=
2 3 2 2
49.
(c) tan( π
4
+
x
2
)
− −−− −− −−− 1
π π x 1
2 2
−−−−− 1−cos( +x) 2 sin ( + )
1+sin x
Explanation: √
2 4 2 2 π x 2 π x
= = { } = {tan ( + )} = tan( + )
1−sin x π π x 4 2 4 2
⎷ 1+cos( +x) 2 cos
2
( + )
2 4 2
50. (a) 1
sin θ 4 5 −4 −3
∴ tan θ = = × = ⇒ cot θ =
cos θ 5 (−3) 3 4
−5
cosec θ =
1
sin θ
=
5
4
and sec θ = 1
cos θ
=
3
(−3) 5 (−4)
{5× }+(4× )+{3× }
(5 cos θ+4 cosec θ+3 tan θ) 5 4 3
∴ =
(4 cot θ+3 sec θ+5 sin θ) (−3) (−5) 4
{4× }+{3× }+{ 5× }
4 3 5
(−3+5−4) −2 1
= = =
(−3−5+4) −4 2
51.
(c) cot x
sin 2x 2 sin x cos x cos x
Explanation: 1−cos 2x
=
2
=
sin x
= cot x
2 sin x
52.
√3
(b) 2
31π π π √3
Explanation: sin( 3
)= sin(10π +
3
) = sin
3
=
2
53.
√3
(c) 2
4
) =
4
8 / 13
−
−
3 √3
⇒ cos x = − √ = −
4 2
(−1) (− √3) √3
∴ sin 2x = 2sin x cos x = 2 × 2
×
2
=
2
54.
(b) 1
Explanation: sin θ + sin 2
θ = 1 ⇒ sin θ = (1 − sin
2
θ) = cos
2
θ ⇒ sin
2
θ = cos
4
θ
∴ 1 − cos
2
θ = cos
4
θ ⇒ cos
2
θ + cos
4
θ= 1 .
(2+ √3)
55. (a) 2
Explanation: 2 sin 5π
12
cos
π
12
= sin(
5π
12
+
π
12
) + sin(
5π
12
−
π
12
) [ using 2sinASin B= sin (A + B) + sin (A - B) ]
π π √3 (2+ √3)
= (sin + sin ) = (1 + ) =
2 3 2 2
56.
(b) 2
π
Explanation: α + β =
4
√3
57. (a) 2
58.
( √5+1)
(b) 4
( √5+1)
Explanation: sin 54° = sin (90° - 36°) = cos 36° = 4
59.
(d) 8
Explanation: We have:
2 ∘ ∘
∘
cosec 30
2 ∘
sec 45 cot 30
2
2 ( √3) ×(2)
1 1
⇒ x × ( ) × ( ) =
√2 2 2
( √2)×( √3)
x 6
⇒ =
4√2 3√2
– 6
⇒ x = (4√2) [ ]
(3√2)
⇒ 4(2)
⇒ x = 8
60.
(d) tan 55o
∘ ∘
cos 10 +sin 10
Explanation: ∘
cos 10 −sin 10
∘
9 / 13
= tan (45o + 10o) [ Using
tan A+tan B
tan(A + B) = ]
1−tan A tan B
= tan 55o
Section D
61.
(b) (6, 8),(8, 10), (10, 12)
Explanation: Let the consecutive even positive integers be x and x + 2.
By data, x > 5 and x + (x + 2) < 23
Now x + (x + 2) < 23
⇒ 2x + 2 < 23
⇒ 2x < 21
⇒ x < = 10
21 1
2 2
So we have the least possible value of x is 6 and the maximum value of x is 10.
Therefore the possible pairs of consecutive even positive integers are (6, 8), (8, 10), (10, 12).
62.
(d) {0, 1, 2, 3}
Explanation: Given 2(x - 1) < 3x - 1
⇒ 2x - 2 < 3x - 1
⇒ 2x - 2 + 2 < 3x - 1 + 2
⇒ 2x < 3x + 1
⇒ 2x - 3x < 3x + 1 - 3x
⇒ -x < + 1
⇒ x > -1 but x ∈ Z
Hence A = {0, 1, 2, 3, 4, ....}
Now 4x - 3 ≤ 8 + x
⇒ 4x - 3 + 3 ≤ 8 + x + 3
⇒ 4x ≤ 11 + x
⇒ 4x - x ≤ 11 + x - x
⇒ 3x ≤ 11
3x 11
⇒ ≤
3 3
⇒ x≤ 11
⇒ x ≤ 3 , but x ∈ Z
2
64.
(c) null set
2x−1
Explanation: 3
−
3x
5
+ 1 < 0
2x−1
⇒ 15 ⋅
3
− 15 ⋅
3x
5
+ 15 < 0 [Multiply the inequality throughout by the L.C.M]
⇒ 5(2x - 1) -3(3x) + 15 < 0
⇒ 10x - 5 - 9x + 15 < 0
⇒ x + 10 < 0
⇒ −9 − 2 ≤ x + 2 − 2 ≤ 9 − 2
10 / 13
⇒ −11 ≤ x ≤ 7
xϵ [−11, 7]
⇒ x ∈ (5, ∞)
2x−4
Now x+2
<2
2x−4
x+2
-2<0
2x−4−2(x+2)
⇒
x+2
<0
2x−4−2x−4
⇒
x+2
<0
−8
⇒
x+2
<0
⇒ x + 2 > 0 [∵ a
b
< 0, a < 0 ⇒ b > 0]
⇒ x > -2
⇒ x ∈ (−2, ∞)
x+7
⇒ − 2 > 0
x−8
x+7−2(x−8)
⇒
x−8
>0
x+7−2x+16
⇒
x−8
>0
(23−x) a
⇒
x−8
> 0 [∵ b
> 0 ⇒ (a > 0 and b > 0) or (a < 0 and b < 0)]
⇒ (23 - x > 0 and x - 8 > 0) or (23 - x < 0 and x - 8 < 0)
⇒ (x < 23 and x > 8) or (x > 23 and x < 8)
⇒ xϵ (8, 23)
2x+1
Now 7x−1
>5
2x+1
⇒
7x−1
-5>0
2x+1−5(7x−1)
⇒
7x−1
>0
2x+1−35x+5
⇒
7x−1
>0
(6−33x)
⇒
7x−1
> 0 [∵ a
b
> 0 ⇒ (a > 0 and b > 0) or (a < 0 and b < 0)]
⇒ (6 - 33x > 0 and 7x - 1 > 0) or (6 - 33x < 0 and 7x - 1 < 0)
⇒ (x < and x > ) or (x > and x < )
6 1 2 1
33 7 11 7
1 2
⇒ < x <
7 11
⇒ x ∈ (
1
7
,
2
11
) [Since x > 2
11
and x < 1
7
is not possible]
x+7 2x+1
Hence, the solution of the system x−8
> 2,
7x−1
> 5 will be (8, 23) ∩ ( 1
7
,
2
11
) = ϕ
68.
(b) -23 < x ≤ 2
3(x−2)
Explanation: −15 < 5
≤ 0
3(x−2)
5 5 5
⇒ −15 ⋅ < ⋅ ≤ 0 ⋅
3 5 3 3
⇒ -25 < (x - 2) ≤ 0 + 2
⇒ -25 + 2 < x - 2 + 2 ≤ 2
⇒ -23 < x ≤ 2
69.
(d) x ∈ (– ∞ , – 4] ∪ [3, ∞ )
Explanation: Common solution of the inequalities is from – ∞ to – 4 and 3 to ∞
{(– ∞ , – 4] ∪ [3, ∞ )} ∩ {(– ∞ , – 3] ∪ [1, ∞ )} = (– ∞ , – 4] ∪ [3, ∞ )
11 / 13
70.
(c) ( 3
2
,
9
2
)
2(3−x)
Explanation: ∣∣ 5
∣
∣
<
3
2(3−x)
3 3
⇒ − < <
5 5 5
3 5 2(3−x) 5 3 5
⇒ − ⋅ < ⋅ < ⋅
5 2 5 2 5 2
3 3
⇒ − < 3 − x <
2 2
3 3
⇒ − − 3 < 3 − x − 3 < − 3 [∵ |x| < a ⇔ −a < x < a]
2 2
9 −3
⇒ − < −x <
2 2
9 3
⇒ > x >
2 2
3 9
⇒ x ∈ ( , )
2 2
71.
(d)
Explanation:
72.
(d) 8 ≤ x ≤ 22
Explanation: Let the length of the shortest piece be x cm. Then we have the length of the second and third pieces are x + 3 and
2x centimeters respectively.
According to the question,
x + (x + 3) + 2x ≤ 91
⇒ 4x + 3 ≤ 91
⇒ 4x ≤ 88
⇒ x ≤ 22
Also 2x ≥ (x + 3) + 5
⇒ 2x ≥ x + 8
⇒ x ≥ 8
⇒ 8 ≤ x ≤ 22
Hence the shortest piece may be atleast 8 cm long but it cannot be more than 22cm in length.
73. (a) no solution
Explanation: We have given: 4x + 3 ≥ 2x + 17
⇒ 4x − 2x ≥ 17 − 3 ⇒ 2x ≥ 1
⇒ x ≥
14
2
[Dividing by 2 on both sides]
⇒ x ≥ 7 ..... (i)
⇒ x < 1
On combining (i) and (ii), we see that solution is not possible because nothing is common between these two solutions.(i.e., x <
1, x ≥ 7)
74.
(b) ac < bc
Explanation: The sign of the inequality is to be reversed (< to > or > to <) if both sides of an inequality are multiplied by the
same negative real number.
12 / 13
75.
(b) (−∞, −2) ∪(−1, 1) ∪(2, ∞)
|x|−1
Explanation: Given ≥ 0, x ≠ ±2
|x|−2
|x|−1
≥ 0
|x|−2
b
≥ 0 ⇒ (a ≥ 0 and b ≥ 0) or (a ≤ 0 and b ≤ 0)]
⇒ |x| ≥ 1 and |x| ≥ 2 or |x| ≤ 1 and |x| ≤ 2
⇒ |x| ≥ 2 or |x| ≤ 1 [∵ |x| ≥ a ⇒ x ≥ a or x ≤ -a and |x| ≤ a ⇒ −a ≤ x ≤ a ]
⇒ x ≥ 2 or x ≤ -2 or −1 ≤ x ≤ 1
⇒ x ∈ (2, ∞) or x ∈ (−∞, −2) or xϵ(−1, 1)
13 / 13