0% found this document useful (0 votes)
11 views5 pages

Solution 1471568

The document contains solutions to a Class 11 Mathematics test, covering various topics including set theory, functions, limits, and inequalities. Each problem is presented with a detailed explanation of the steps taken to arrive at the solution. The answers include specific values, ranges, and conditions based on mathematical principles.

Uploaded by

gannuchaubey25
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
11 views5 pages

Solution 1471568

The document contains solutions to a Class 11 Mathematics test, covering various topics including set theory, functions, limits, and inequalities. Each problem is presented with a detailed explanation of the steps taken to arrive at the solution. The answers include specific values, ranges, and conditions based on mathematical principles.

Uploaded by

gannuchaubey25
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

Solution

CLASS 11 MATHEMATICS TEST

Class 11 - Mathematics

1. (a) N
Explanation: We have,A′ ∪ (A ∪ B) ∩ B′
= A′ ∪ [(B’ ∩ A) ∪ (B’ ∩ B)] {∵ Distributive property of set: (A ∩ B) ∪ (A ∩ C) = A ∩ (B ∪ C)}
= A′ ∪ [(A ∩ B’) ∪ Φ] {∵ (B’ ∩ B) = ϕ}
= A′ ∪ (A ∩ B’) = (A’ ∪ A) ∩ (A’ ∪ B’) {∵ Distributive property of set: (A ∪ B) ∩ (A ∪ C) = A ∪ (B ∩ C)}
= Φ ∩ (A’ ∪ B’) {∵ (A’ ∩ A) = ϕ}
= (A’ ∪ B’) = (A ∩ B)’ {∵ (A’ ∪ B’)
= (A ∩ B)’} A′ ∪ (A ∪ B) ∩ B′ = (A ∩ B)’
A contains all odd numbers and B contains all even numbers
Therefore, A ∩ B = ϕ
⇒ A′ ∪ (A ∪ B) ∩ B′ = {ϕ}’
⇒ A′ ∪ (A ∪ B) ∩ B′ = N
2.
(c) A ∩ Bc
Explanation: A ∩ Bc
A and B are two sets.
A ∩ B is the common region in both the sets.
(A ∩ Bc) is all the region in the universal set except A ∩ B
Now, A ∩ (A ∩ B)c = A ∩ Bc
3.
(d) {x : x ∈ R, 4 ≤ x < 5}
Explanation: Set A represents the elements which are greater or equals to 4 and the elements are real no. A[4, ∞)
Set B represents the elements which are less than 5 and are real no. B(−∞, 5)
So if we represent these two in number line we can see the common region is between 4(included) and 5(excluded).
4.
(d) Domain = R, Range = (−∞, 2]
Explanation: We have, f(x) = 2 − |x − 5|
Clearly, f(x) is defined for all x∈R
∴ Domain of f = R
Now, |x − 5| ≥ 0, ∀x ∈ R
⇒ −|x − 5| ≤ 0

⇒ 2 − |x − 5| ≤ 2

∴ f (x) ≤ 2

∴ Range of f = (−∞, 2]
5. (a) [-1, 1/3]
Explanation: we know, −1 ≤ cos x ≤ 1
−2 ≤ −2 cos x ≤ 2

−1 ≤ (1 − 2 cos x) ≤ 3

1 1
−1 ≤ ( ) ≤
1−2 cos x 3

So, R(f) = [-1, 1/3]


6.
(b) [−1, 2) ∪ [3, ∞)
(x+1)(x−3)
Explanation: Here (x−2)
≥ 0

But x ≠ 2
so, x ∈ [−1, 2) ∪ [3, ∞)

1/5
OR

(c) 2-1
1

Explanation: fof(x) = f(f(x)) = {f (25 − x 4


) 4
}

1 1

= {25 − (25 − x 4
)} 4 = (x 4
) 4 =x
∴ f (f (
1

2
)) = 1

= 2-1
7. (a) {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (2, 3)}
Explanation: R = {(x, y) : |x2 - y2| < 7}
R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (2, 3)}
8.
x1 + x2
(c) f (x 1) + f (x2 ) = f (
1+x1 x2
)

1+x1 1+x2
Explanation: f (x 1) + f (x2 ) = log(
1−x1
) + log(
1−x2
)

= log(1 + x1 ) − log(1 − x1 ) + log(1 + x2 ) − log(1 − x2 )


x1 +x2
1+
x1 + x2
⎛ 1+x x ⎞ 1+ x1 x2 + x1 + x2
1 2
f ( ) = log = log[ ]
1+x1 x2 x1 +x2 1+ x1 x2 − x1 − x2
⎝ 1− ⎠
1+x x
1 2

(1+ x1 )(1+ x2 )
= log[ ]
(1− x1 )(1− x2 )

= log(1 + x1 )(1 + x2 ) − log(1 − x1 )(1 − x2 )

= log((1 + x1 ) + log(1 + x2 ) − log(1 − x1 ) − log(1 − x2 )

x1 + x2
∴ f (x1 ) + f (x2 ) = f ( )
1+x1 x2

OR

(d) 17
Explanation: f(-2) + f(0) + f(2) + f(5) = -2 + 0 + 4 + 15 = 17
9. (a) x > 5
Explanation: x - 5 > 0
⇒ x>5
⇒ x ∈ (5, ∞)
2x−4
Now x+2
<2
2x−4

x+2
-2<0
2x−4−2(x+2)

x+2
<0
2x−4−2x−4

x+2
<0
−8

x+2
<0
a
⇒ x + 2 > 0 [∵ b
< 0, a < 0 ⇒ b > 0]
⇒ x > -2
⇒ x ∈ (−2, ∞)

Hence the solution set is (5, ∞) ∩ (−2, ∞) = (5, ∞)


Which means x > 5.
10. (a) no solution
Explanation: We have given: 4x + 3 ≥ 2x + 17
⇒ 4x − 2x ≥ 17 − 3 ⇒ 2x ≥ 1

⇒ x ≥
14

2
[Dividing by 2 on both sides]
⇒ x ≥ 7 ..... (i)

Also we have 3x - 5 < -2


⇒ 3x < −2 + 5 ⇒ 3x < 3

2/5
⇒ x < 1

On combining (i) and (ii), we see that solution is not possible because nothing is common between these two solutions.(i.e., x <
1, x ≥ 7)
11.
3
(c)
√19

Explanation: Using L'Hospital,


2x

2
√x2 +10

lim
1
x→3
2x

2√x2 +10

Substituting x = 3 in 1

We get 3

√19

12. (a) 1

2
tan 2x
x[ −1]
tan 2x−x x

Explanation: Given, lim 3x−sin x


= lim
sin x
x→0 x→0 x[3− ]
x

tan 2x
×2−1
2x 1.2−1 2−1 1
lim = = =
sinx 3−1 2 2
x →0
3−
x

13.
(d) n
n n
(1+x ) −1
Explanation: lim = lim n(1 + x)
n−1
= n
x→0 (1+x)−(1) x→0

14. (a) 100


2 3 n
x+ x + x …x −n
Explanation: lim x−1
= 5050
x→1
2 3
(x−1) (x −1) (x −1) n
x −1
⇒ lim
x−1
+
x−1
+
x−1

x−1
= 5050
x→1

n n

= nan-1]
x −a
⇒ 1 + 2 + 3 ... n = 5050 [∵ x−a

n(n+1)

2
= 5050
⇒ n (n + 1) = 10100
⇒ n(n + 1) = 100 × 101

On comparing:
n = 100
15. (a) 1
Explanation: lim tan x

log(1+x)

x

x
x→0

tan x 1
⇒ lim ⋅
x log(1+x )
x→0
x

⇒ 1⋅ 1 = 1
16.
(b) -2
sin x+cos x
Explanation: Given, y = sin x−cos x

dy (sinx−cosx)(cosx−sinx)−(sin x+cos x)(cos x+sin x)


=
dx 2
(sin x−cos x)

2 2
−(sin x−cos x ) −(sin x+cos x )
=
2
(sin x−cos x)

2 2 2 2
−[sin x+ cos x−2 sin x cos x+ sin x+ cos x+2 sin x cos x]

=
2
(sin x−cos x)

−2
=
2
(sin x−cos x)

dy −2 −2
∴ ( ) = = = −2
dx 2 2
at x=0 (sin 0−cos 0) (−1)

17. (a) 6[cos(3π/4)+isin(3π/4)]


Explanation:

3/5
.

.
18.
(d) -2
Explanation: -2
502 590 588 586 584
i +i +i +i +i
− 1
582 580 578 576 574
i +i +i +i +i

[∵ i4 = 1 and i2 =-1]
4×148 4×147+2 4×147 4×146+2 4×146
i +i +i +i +i
= − 1
4×145+2 4×145 4×144+2 4×144 4×143+2
i +i +i +i +i
2 2
1+ i +1+ i +1
= − 1
2 2 2
i +1+ i +1+ i

1
= − 1
−1

= -2
19.
3
(d) 2
- 2i
Explanation: Let z = x + iy
Now
|z| = z + 1 + 2i
−−−−−−
2
⇒ √x + y
2
⇒ x + 1 + i(y + 2)
−−−−−−
2
⇒ √x + y
2
= x + 1 and y + 2 = 0
⇒ y = -2 and x2 + 4 = (x + 1)2
⇒ y = -2 and x =
3

Hence z = 3

2
- 2i
20.
9
(d) ( 1

4
+
4
i)

1 1 (1+2i) 1 3
Explanation: (1−2i)
= (1−2i)
×
(1+2i)
=( 5
+
5
i)

3 3 (1−i) (3−3i) 3 3

(1+i)
= (1+i)
×
(1−i)
= 2
=( 2

2
i)
(1− i )

(3+4i) (3+4i) (2+4i) −10+20i −10 20 −1

(2−4i)
= (2−4i)
×
(2+4i)
= 2
=( 20
+
20
i) =( 2
+ i)
(4−16i )

−1 −1
∴ given expression = {( 1

5
+
3

2
) + (
2

5

3

2
i)} (
2
+ i) =( 17

10

11i

10
)(
2
+ i)

−17 17 5 45 9
(
20
+
11

10
) + (
10
+
11

20
)i =( 20
+
20
i) =( 1

4
+
4
i)

21. (a) - (iii), (b) - (iv), (c) - (ii), (d) - (i)


22.
1
(c)
√2

4/5
Explanation: cos 15° - sin 15° = cos(45° - 30°) - sin (45° - 30°)
= (cos 45° cos 30° + sin 45° sin 30°) - (sin 45° cos 30° - cos 45° sin 30°)
1 √3 1 1 1 √3 1 1
= {( × ) + ( × )} − {( × ) − ( × )}
√2 2 √2 2 √2 2 √2 2

( √3+1) ( √3−1)
2 1
= − = =
2√2 2√2 2√2 √2

23.
(d) −56

65

Explanation: In quadrant IV, cos θ > 0, sin θ < 0 , cos ϕ > 0 and sin ϕ < 0
Now, cos θ = 4

5
⇒ sin
2
θ = (1 − cos
2
θ) = (1 −
16

25
) =
9

25
−−
9 −3
⇒ sin θ = − √ =
25 5

12 2 2 144 25
cos ϕ = ⇒ sin θ = (1 − cos ϕ) = (1 − ) =
13 169 169
−−

25 −5
⇒ sin ϕ = − √ =
169 13

∴ sin(θ + ϕ) = sin θ cos ϕ + cos θ sin ϕ

−3 12 −5 4 −36 20 −56
= ( × ) + ( × )= ( − ) =
5 13 13 5 65 65 65

24. (a) 1
Explanation: π = 180 ∘

Using tan (180 - A) = -tan A, we get;


C = π - (A + B)
Now,
tan A+tan B+tan C

tan A tan B tan C

tan A+tan B+tan[π−(A+B)]


=
tan A tan B tan[π−(A+B)]

tan A+tan B−tan(A+B)


=
− tan A tan B tan(A+B)

tan A+tan B
tan A+tan B−
1−tan A tan B
=
tan A+tan B
− tan A tan B×
1−tan A tan B
2 2
tan A+tan B− tan A tan B−tan A tan B−tan A−tan B
=
2 2
− tan A tan B−tan A tan B
2 2
− tan A tan B−tan A tan B
=
2 2
− tan A tan B−tan A tan B

=1
OR

(b) 1

Explanation: Given exp. = 1

2
(2 sin 70° sin 50°) . sin 10° = 1

2
[cos(70° - 50°) - cos (70° + 50°)] sin 10°
=
1

2
(cos 20° - cos 120°) sin 10° = 1

2
(cos 20

+
1

2
) sin 10

1 1
=
4
( 2 cos 20° sin 10°) + 4
sin 10°
=
1

4
[sin (20° + 10 °) - sin (20° - 10°)] 1

4
sin 10°
1 ∘ 1 1 1
= sin 30 = ( × ) =
4 4 2 8

25.
(b) 2
Explanation: We have:
2 π 2 π 2 7π 2 4π
sin + sin + sin + sin
18 9 18 9

2 π 2 2π 2 7π 2 8π
= sin + sin + sin + sin
18 18 18 18

2 π 2 2π 2 7π 2 8π
= sin + sin + sin ( ) + sin ( )
18 18 18 18

2 π 2 2π 2 π 2π 2 π π
= sin + sin + sin ( − ) + sin ( − )
18 18 2 18 2 18

2 π 2 2π 2 2π 2 π
= sin + sin + cos + cos
18 18 18 18

2 π 2 π 2 2π 2 2π
= sin + cos + sin + cos
18 18 18 18

=1+1
=2

5/5

You might also like