0% found this document useful (0 votes)
28 views5 pages

Integration AB

The document contains a series of multiple-choice questions focused on evaluating integrals using various techniques, including the general power rule and substitution. Each question presents a mathematical expression and four possible answers, requiring the reader to select the correct evaluation. The questions cover a range of integral calculus concepts and provide opportunities for practice and assessment.

Uploaded by

8gjbk6pfnt
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
28 views5 pages

Integration AB

The document contains a series of multiple-choice questions focused on evaluating integrals using various techniques, including the general power rule and substitution. Each question presents a mathematical expression and four possible answers, requiring the reader to select the correct evaluation. The questions cover a range of integral calculus concepts and provide opportunities for practice and assessment.

Uploaded by

8gjbk6pfnt
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

Multiple Choice Monday Name ________________________________________________

Integration by U-Substitution

1. Use the general power rule to evaluate the integral.

� 𝑥𝑥 �4 − 9𝑥𝑥 2 𝑑𝑑𝑑𝑑

1 3 1 3
(A) − (4 − 9𝑥𝑥 2 ) 2 + 𝐶𝐶 (B) − (4 − 9𝑥𝑥 2 ) 2 + 𝐶𝐶
27 18

2 3 4 3
(C) (4 − 9𝑥𝑥 2 ) 2 + 𝐶𝐶 (D) − (4 − 9𝑥𝑥 2 ) 2 + 𝐶𝐶
3 27

2. Use the general power rule to evaluate the integral.


5𝑥𝑥
� 𝑑𝑑𝑑𝑑
(𝑥𝑥 2 + 1)4

−5 5
(A) + 𝐶𝐶 (B) + 𝐶𝐶
6(𝑥𝑥 2 + 1)5 6(𝑥𝑥 2+ 1)3

−5 −5
(C) + 𝐶𝐶 (D) + 𝐶𝐶
6(𝑥𝑥 2 + 1)4 6(𝑥𝑥 2 + 1)3

3. Use the general power rule to evaluate the integral.

� 𝜋𝜋 sin(2𝜋𝜋𝜋𝜋) 𝑑𝑑𝑑𝑑

1
(A) − cos(2𝑥𝑥) + 𝐶𝐶 (B) −2 cos(2𝜋𝜋𝜋𝜋) + 𝐶𝐶
2

1 1
(C) − 2 cos(2𝜋𝜋𝜋𝜋) + 𝐶𝐶 (D) 2
sin(2𝜋𝜋𝜋𝜋) + 𝐶𝐶
4. Find the equation 𝐹𝐹(𝑥𝑥), for the function whose derivative is 𝑓𝑓 ′ (𝑥𝑥) = 2 sin(14𝑥𝑥) and
𝜋𝜋 6
passes through the point � 14 , − 7 �

1 1
(A) 𝐹𝐹(𝑥𝑥) = 7
cos(14𝑥𝑥) − 14 (B) 𝐹𝐹(𝑥𝑥) = −
7
cos(14𝑥𝑥) − 1

1 1
(C) 𝐹𝐹(𝑥𝑥) = 14 cos(14𝑥𝑥) + 1 (D) 𝐹𝐹(𝑥𝑥) = 14
cos(28𝑥𝑥) + 14

5. Using the substitution 𝑢𝑢 = 2𝑥𝑥 + 1 find an equivalent expression for


2
� √2𝑥𝑥 + 1 𝑑𝑑𝑑𝑑
0
2
1 5
(A) � √𝑢𝑢 𝑑𝑑𝑑𝑑 (B) � √𝑢𝑢 𝑑𝑑𝑑𝑑
0 2 1

1 2 5
(C) � √𝑢𝑢 𝑑𝑑𝑑𝑑 (D) � √𝑢𝑢 𝑑𝑑𝑑𝑑
2 0 1

6. Evaluate.
𝜋𝜋
2 cos 𝜃𝜃
� 𝑑𝑑𝑑𝑑
0 √1 + sin 𝜃𝜃

(A) 2(√2 − 1) (B) −2(√2 − 1)

(C) 2(√2 + 1) (D) 2�√2 �

7. Find the indefinite integral.

2
� 4𝑥𝑥𝑒𝑒 5𝑥𝑥 𝑑𝑑𝑑𝑑

2 4 5𝑥𝑥 2
(A) 20𝑥𝑥𝑒𝑒 5𝑥𝑥 + 𝐶𝐶 (B) 𝑒𝑒 + 𝐶𝐶
5
2 5𝑥𝑥 2 4 5𝑥𝑥 2
(C) 𝑒𝑒 + 𝐶𝐶 (D) 𝑥𝑥𝑥𝑥 + 𝐶𝐶
5 5
8. Find the indefinite integral.
1
� 𝑑𝑑𝑑𝑑
9 + (𝑥𝑥 − 7)2

1 𝑥𝑥 − 7 𝑥𝑥 − 7
(A) arctan � � + 𝐶𝐶 (B) 3 arctan � � + 𝐶𝐶
9 3 3

1 𝑥𝑥 − 7 1 𝑥𝑥 − 7
(C) arctan � � + 𝐶𝐶 (D) arctan � � + 𝐶𝐶
3 3 9 9

9. Evaluate the definite integral.


2
𝑒𝑒 3√𝑥𝑥
� 𝑑𝑑𝑑𝑑
1 √𝑥𝑥

𝑒𝑒 3√2 − 𝑒𝑒 3
(A) (B) 𝑒𝑒 3√2 − 𝑒𝑒 3
3

𝑒𝑒 3√2 − 𝑒𝑒 3 2�𝑒𝑒 3√2 − 𝑒𝑒 3 �


(C) (D)
6 3

10. Find the indefinite integral.


𝑥𝑥
� 𝑑𝑑𝑑𝑑
5 − 2𝑥𝑥 2

1
(A) ln|5 − 2𝑥𝑥 2 | + 𝐶𝐶 (B) − ln|5 − 2𝑥𝑥 2 | + 𝐶𝐶
4

ln|5 − 2𝑥𝑥 2 |
(C) ln|−2𝑥𝑥 2 − 5| + 𝐶𝐶 (D) + 𝐶𝐶
5 − 2𝑥𝑥 2
11. Evaluate the integral.
1/6
11
� 𝑑𝑑𝑑𝑑
0 √1 − 9𝑥𝑥 2

11 𝜋𝜋 11 𝜋𝜋
(A) (B)
18 25

11 11
(C) (D)
36 𝜋𝜋 18 𝜋𝜋

12. Find the indefinite integral.

� cos(3𝑥𝑥)𝑒𝑒 sin(3𝑥𝑥) 𝑑𝑑𝑑𝑑

1 sin(3𝑥𝑥)
(A) 𝑒𝑒 sin(3𝑥𝑥) + 𝐶𝐶 (B) 𝑒𝑒 + 𝐶𝐶
3

1 − cos (3𝑥𝑥)
(C) sin(3𝑥𝑥)𝑒𝑒 (− cos 3𝑥𝑥) + 𝐶𝐶 (D) 𝑒𝑒 + 𝐶𝐶
3

13. Find the indefinite integral.

𝑥𝑥 2
� 𝑑𝑑𝑑𝑑
8𝑥𝑥 3 + 9

(A) ln|8𝑥𝑥 3 + 9| + 𝐶𝐶 (B) 24 ln|8𝑥𝑥 3 + 9| + 𝐶𝐶

1 1
(C) ln|8𝑥𝑥 3 + 9 | + 𝐶𝐶 (D) ln|8𝑥𝑥 3 + 9| + 𝐶𝐶
24 8
14. Evaluate.
𝜋𝜋/2
� (sin3 𝑥𝑥)(cos 𝑥𝑥) 𝑑𝑑𝑑𝑑
0

1 1
(A) − (B)
4 4

(C) −9 (D) −27

15. Find the indefinite integral.

� 43𝑥𝑥 𝑑𝑑𝑑𝑑

43𝑥𝑥 43𝑥𝑥 (ln 4)


(A) + 𝐶𝐶 (B) + 𝐶𝐶
4 3

43𝑥𝑥
(C) 3 (ln 4) (43𝑥𝑥 ) + 𝐶𝐶 (D) + 𝐶𝐶
3 ln 4

16. Find the indefinite integral.

� tan(2𝑥𝑥) 𝑑𝑑𝑑𝑑

1
(A) −2 ln|cos(2𝑥𝑥)| + 𝐶𝐶 (B) ln|cos(2𝑥𝑥)| + 𝐶𝐶
2

1 1
(C) − ln|cos(2𝑥𝑥)| + 𝐶𝐶 (D) sec(2𝑥𝑥) tan(2𝑥𝑥) + 𝐶𝐶
2 2

You might also like