1040en ts4990
1040en ts4990
Applications
■ Mobile phones (cellular / cordless)
■ Laptop / notebook computers
■ PDAs
■ Portable audio devices TS4990IQT - DFN8
Description
STANDBY 1 8 VOUT2
The TS4990 is designed for demanding audio
applications such as mobile phones to reduce the BYPASS 2 7 GND
VIN+ 3 6 VCC
VIN- 4 5 VOUT1
Contents
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 BTL configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Gain in a typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Low and high frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6 Wake-up time (tWU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.7 Standby time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.8 Pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.9 Application example: differential input, BTL power amplifier . . . . . . . . . . 23
5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1 Flip-chip package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 DFN8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Rfeed
Cfeed Vcc
+
Cs
VCC
Audio In Cin
Rin
Vin- -
Vout 1
Vin+
Speaker
+
8 Ohms
-
Vout 2
AV = -1
Bypass +
Standby Standby
Bias
Control
GND
TS4990
+
Cb
Inverting input resistor that sets the closed loop gain in conjunction with Rfeed. This
Rin
resistor also forms a high pass filter with Cin (Fc = 1 / (2 x Pi x Rin x Cin)).
Cin Input coupling capacitor that blocks the DC voltage at the amplifier input terminal.
Rfeed Feed back resistor that sets the closed loop gain in conjunction with Rin.
Cs Supply bypass capacitor that provides power supply filtering.
Cb Bypass pin capacitor that provides half supply filtering.
Low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off
Cfeed
frequency 1/ (2 x Pi x Rfeed x Cfeed)).
AV Closed loop gain in BTL configuration = 2 x (Rfeed / Rin).
DFN8 exposed pad is electrically connected to pin 7. See DFN8 package
Exposed pad
information on page 29 for more information.
3 Electrical characteristics
Supply current
ICC 3.7 6 mA
No input signal, no load
Standby current (1)
ISTBY 10 1000 nA
No input signal, VSTBY = GND, RL = 8Ω
Output offset voltage
Voo 1 10 mV
No input signal, RL = 8 Ω
Output power
Pout 0.9 1.2 W
THD = 1% max, F = 1kHz, RL = 8 Ω
Total harmonic distortion + noise
THD + N 0.2 %
Pout = 1Wrms, AV = 2, 20Hz ≤ F ≤ 20kHz, RL = 8 Ω
Power supply rejection ratio(2)
RL = 8 Ω, AV = 2, Vripple = 200mVpp, input grounded
PSRR dB
F = 217Hz 55 62
F = 1kHz 55 64
tWU Wake-up time (Cb = 1 µF) 90 130 ms
tSTBY Standby time (Cb = 1 µF) 10 µs
VSTBYH Standby voltage level high 1.3 V
VSTBYL Standby voltage level low 0.4 V
Phase margin at unity gain
ΦM 65 Degrees
RL = 8 Ω, CL = 500 pF
Gain margin
GM 15 dB
RL = 8 Ω, CL = 500 pF
Gain bandwidth product
GBP 1.5 MHz
RL = 8 Ω
Resistor output to GND (VSTBY ≤ VSTBYL)
ROUT-GND Vout1 3 kΩ
Vout2 43
1. Standby mode is active when VSTBY is tied to GND.
2. All PSRR data limits are guaranteed by production sampling tests.
Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon
VCC.
Supply current
ICC 3.3 6 mA
No input signal, no load
Standby current (1)
ISTBY 10 1000 nA
No input signal, VSTBY = GND, RL = 8 Ω
Output offset voltage
Voo 1 10 mV
No input signal, RL = 8 Ω
Output power
Pout 375 500 mW
THD = 1% max, F = 1 kHz, RL = 8 Ω
Total harmonic distortion + noise
THD + N Pout = 400 mWrms, AV = 2, 20 Hz ≤ F ≤ 20 kHz, 0.1 %
RL = 8 Ω
Power supply rejection ratio(2)
RL = 8 Ω, AV = 2, Vripple = 200mVpp, input grounded
PSRR dB
F = 217 Hz 55 61
F = 1 kHz 55 63
tWU Wake-up time (Cb = 1 µF) 110 140 ms
tSTBY Standby time (Cb = 1 µF) 10 µs
VSTBYH Standby voltage level high 1.2 V
VSTBYL Standby voltage level low 0.4 V
Phase margin at unity gain
ΦM 65 Degrees
RL = 8 Ω, CL = 500 pF
Gain margin
GM 15 dB
RL = 8 Ω, CL = 500 pF
Gain bandwidth product
GBP 1.5 MHz
RL = 8 Ω
Resistor output to GND (VSTBY ≤ VSTBYL)
ROUT-GND Vout1 4 kΩ
Vout2 44
1. Standby mode is active when VSTBY is tied to GND.
2. All PSRR data limits are guaranteed by production sampling tests.
Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon
VCC.
Table 6. Electrical characteristics when VCC = 2.6V, GND = 0V, Tamb = 25°C (unless
otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
Supply current
ICC 3.1 6 mA
No input signal, no load
Standby current (1)
ISTBY 10 1000 nA
No input signal, VSTBY = GND, RL = 8 Ω
Output offset voltage
Voo 1 10 mV
No input signal, RL = 8 Ω
Output power
Pout 220 300 mW
THD = 1% max, F = 1 kHz, RL = 8 Ω
Total harmonic distortion + noise
THD + N Pout = 200 mWrms, AV = 2, 20 Hz ≤ F ≤ 20 kHz, 0.1 %
RL = 8 Ω
Power supply rejection ratio(2)
RL = 8 Ω, AV = 2, Vripple = 200 mVpp, input grounded
PSRR dB
F = 217 Hz 55 60
F = 1 kHz 55 62
tWU Wake-up time (Cb = 1 µF) 125 150 ms
tSTBY Standby time (Cb = 1 µF) 10 µs
VSTBYH Standby voltage level high 1.2 V
VSTBYL Standby voltage level low 0.4 V
Phase margin at unity gain
ΦM 65 Degrees
RL = 8 Ω, CL = 500 pF
Gain margin
GM 15 dB
RL = 8 Ω, CL = 500 pF
Gain bandwidth product
GBP 1.5 MHz
RL = 8 Ω
Resistor output to GND (VSTBY ≤ VSTBYL)
ROUT-GND Vout1 6 kΩ
Vout2 46
1. Standby mode is active when VSTBY is tied to GND.
2. All PSRR data limits are guaranteed by production sampling tests.
Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon
VCC.
Figure 2. Open loop frequency response Figure 3. Open loop frequency response
60 0 60 0
Gain
Gain
40 40
-40 -40
20 Phase 20
Phase (°)
Phase (°)
Phase
-80 -80
Gain (dB)
Gain (dB)
0 0
-120 -120
-20 -20
Figure 4. Open loop frequency response Figure 5. Open loop frequency response
60 0 100 0
Gain
40 80 Gain
-40 -40
60
20
Phase (°)
Phase (°)
Phase
-80 -80
Gain (dB)
Gain (dB)
40
0 Phase
20
-120 -120
-20
0
Vcc = 2.6V -160 Vcc = 5V -160
-40 -20
RL = 8Ω CL = 560pF
Tamb = 25°C Tamb = 25°C
-60 -200 -40 -200
0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000
Frequency (kHz) Frequency (kHz)
Figure 6. Open loop frequency response Figure 7. Open loop frequency response
100 0 100 0
80 Gain 80 Gain
-40 -40
60 60
Phase (°)
Phase (°)
-80 -80
Gain (dB)
Gain (dB)
40 40
Phase Phase
20 20
-120 -120
0 0
Vcc = 3.3V -160 Vcc = 2.6V -160
-20 CL = 560pF -20 CL = 560pF
Tamb = 25°C Tamb = 25°C
-40 -200 -40 -200
0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000
Frequency (kHz) Frequency (kHz)
Figure 8. PSRR vs. power supply Figure 9. PSRR vs. power supply
0 0
PSRR (dB)
2.2V 5V
-30 Tamb = 25°C 2.6V Tamb = 25°C
3.3V
-30
-40 5V
-50 -40
-60
-50
-70
100 1000 10000 100000 100 1000 10000 100000
Frequency (Hz) Frequency (Hz)
Figure 10. PSRR vs. power supply Figure 11. PSRR vs. power supply
0 0
PSRR (dB)
-30
5V
Tamb = 25°C Tamb = 25°C
-40 -30
-50
-40
-60
-50
-70
-80 -60
100 1000 10000 100000 100 1000 10000 100000
Frequency (Hz) Frequency (Hz)
Figure 12. PSRR vs. power supply Figure 13. PSRR vs. power supply
0 0
PSRR (dB)
-30
Tamb = 25°C Tamb = 25°C
-30 -40
-60 -80
100 1000 10000 100000 100 1000 10000 100000
Frequency (Hz) Frequency (Hz)
Figure 14. PSRR vs. DC output voltage Figure 15. PSRR vs. DC output voltage
0 0
Vcc = 5V Vcc = 5V
-10 Vripple = 200mVpp Vripple = 200mVpp
RL = 8Ω -10 RL = 8Ω
-20 Cb = 1μF Cb = 1μF
AV = 2 AV = 10
PSRR (dB)
PSRR (dB)
-30 Tamb = 25°C -20 Tamb = 25°C
-40
-30
-50
-40
-60
-70 -50
-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5
Differential DC Output Voltage (V) Differential DC Output Voltage (V)
Figure 16. PSRR vs. DC output voltage Figure 17. PSRR vs. DC output voltage
0 0
Vcc = 3.3V Vcc = 5V
-10 Vripple = 200mVpp Vripple = 200mVpp
-10
RL = 8Ω RL = 8Ω
Cb = 1μF Cb = 1μF
-20 AV = 5 -20 AV = 5
PSRR (dB)
PSRR (dB)
-40 -40
-50 -50
-60 -60
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -5 -4 -3 -2 -1 0 1 2 3 4 5
Differential DC Output Voltage (V) Differential DC Output Voltage (V)
Figure 18. PSRR vs. DC output voltage Figure 19. PSRR vs. DC output voltage
0 0
Vcc = 3.3V Vcc = 3.3V
-10 Vripple = 200mVpp Vripple = 200mVpp
RL = 8Ω -10 RL = 8Ω
-20 Cb = 1μF Cb = 1μF
AV = 2 AV = 10
PSRR (dB)
PSRR (dB)
-40
-30
-50
-40
-60
-70 -50
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Differential DC Output Voltage (V) Differential DC Output Voltage (V)
Figure 20. PSRR vs. DC output voltage Figure 21. PSRR vs. DC output voltage
0 0
Vcc = 2.6V Vcc = 2.6V
-10 Vripple = 200mVpp Vripple = 200mVpp
RL = 8Ω -10 RL = 8Ω
Cb = 1μF Cb = 1μF
-20
AV = 2 AV = 10
PSRR (dB)
PSRR (dB)
-20
-30
-40
-30
-50
-40
-60
-70 -50
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
Differential DC Output Voltage (V) Differential DC Output Voltage (V)
Figure 22. Output power vs. power supply Figure 23. PSRR vs. DC output voltage
voltage
2.4 0
Vcc = 2.6V
2.2 RL = 4Ω
F = 1kHz Vripple = 200mVpp
2.0 THD+N=10% -10
BW < 125kHz RL = 8Ω
1.8 Tamb = 25°C Cb = 1μF
Output power (W)
1.6 -20 AV = 5
PSRR (dB)
Tamb = 25°C
1.4
1.2 -30
1.0
0.8 -40
THD+N=1%
0.6
0.4 -50
0.2
0.0 -60
2.5 3.0 3.5 4.0 4.5 5.0 5.5 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
Vcc (V) Differential DC Output Voltage (V)
Figure 24. PSRR at F = 217 Hz vs. Figure 25. Output power vs. power supply
bypass capacitor voltage
2.0
-30 Av=10 RL = 8Ω
Vcc: 1.8
F = 1kHz
2.6V 1.6 BW < 125kHz
PSRR at 217Hz (dB)
THD+N=10%
1.2
-50
Av=2 1.0
Figure 26. Output power vs. power supply Figure 27. Output power vs. load resistor
voltage
1.2 2.2
RL = 16Ω 2.0 Vcc = 5V
F = 1kHz F = 1kHz
1.0 1.8
BW < 125kHz BW < 125kHz
Tamb = 25°C 1.6 Tamb = 25°C
0.4 0.8
THD+N=1% 0.6
0.2 0.4 THD+N=1%
0.2
0.0 0.0
2.5 3.0 3.5 4.0 4.5 5.0 5.5 4 8 12 16 20 24 28 32
Vcc (V) Load Resistance ( )
Figure 28. Output power vs. load resistor Figure 29. Output power vs. power supply
voltage
0.6 0.6
Vcc = 2.6V RL = 32Ω
F = 1kHz F = 1kHz
0.5 0.5
BW < 125kHz BW < 125kHz
Tamb = 25°C Tamb = 25°C
Output power (W)
0.2 0.2
THD+N=1%
THD+N=1%
0.1 0.1
0.0 0.0
4 8 12 16 20 24 28 32 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Load Resistance ( ) Vcc (V)
Figure 30. Output power vs. load resistor Figure 31. Power dissipation vs. Pout
1.0 1.4
Vcc = 3.3V Vcc=5V
F = 1kHz 1.2 F=1kHz
0.8 BW < 125kHz THD+N<1% RL=4Ω
Power Dissipation (W)
THD+N=10%
0.6 0.8
0.6
0.4
0.4 RL=8Ω
0.2
0.2
THD+N=1%
RL=16Ω
0.0 0.0
8 16 24 32 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Load Resistance ( ) Output Power (W)
Figure 32. Power dissipation vs. Pout Figure 33. Power derating curves
0.4
0.8
0.3
0.6
0.2 0.4
RL=8Ω
Figure 34. Clipping voltage vs. power supply Figure 35. Power dissipation vs. Pout
voltage and load resistor
0.7 0.40
Tamb = 25°C Vcc=2.6V
0.6 RL = 4Ω 0.35 F=1kHz
Clipping Voltage Low side (V)
THD+N<1%
0.30 RL=4Ω
Power Dissipation (W)
0.5
0.25
Vout1 & Vout2
0.4
RL = 8Ω 0.20
0.3
0.15
0.2 RL=8Ω
0.10
0.1 0.05
RL=16Ω
RL = 16Ω
0.0 0.00
2.5 3.0 3.5 4.0 4.5 5.0 0.0 0.1 0.2 0.3 0.4
Power supply Voltage (V) Output Power (W)
Figure 36. Clipping voltage vs. power supply Figure 37. Current consumption vs. power
voltage and load resistor supply voltage
0.6 4.0
Tamb = 25°C RL = 4Ω
No load
3.5 Tamb=25°C
Clipping Voltage High side (V)
0.5
Current Consumption (mA)
3.0
0.4
Vout1 & Vout2
2.5
RL = 8Ω
0.3 2.0
1.5
0.2
1.0
0.1
0.5
RL = 16Ω
0.0 0.0
2.5 3.0 3.5 4.0 4.5 5.0 0 1 2 3 4 5
Power supply Voltage (V) Power Supply Voltage (V)
Figure 38. Current consumption vs. standby Figure 39. Current consumption vs. standby
voltage @ VCC = 5V voltage @ VCC = 2.6V
4.0 4.0
Vcc = 2.6V
3.5 3.5 No load
Tamb=25°C
Current Consumption (mA)
2.5 2.5
2.0 2.0
1.5 1.5
1.0 1.0
Vcc = 5V
0.5 No load 0.5
Tamb=25°C
0.0 0.0
0 1 2 3 4 5 0.0 0.5 1.0 1.5 2.0 2.5
Standby Voltage (V) Standby Voltage (V)
Figure 40. THD + N vs. output power Figure 41. Current consumption vs. standby
voltage @ VCC = 3.3V
10 4.0
Vcc = 3.3V
RL = 4Ω 3.5 No load
F = 20Hz Tamb=25°C
Current Consumption (mA)
Av = 2 3.0
Cb = 1μF Vcc=2.2V
THD + N (%)
1.5
1.0
0.1
0.5
Vcc=3.3V
Vcc=5V
0.0
1E-3 0.01 0.1 1 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Output Power (W) Standby Voltage (V)
Figure 42. Current consumption vs. standby Figure 43. THD + N vs. output power
voltage @ VCC = 2.2V
4.0 10
Vcc = 2.2V
RL = 8Ω
3.5 No load
Tamb=25°C F = 20Hz
Current Consumption (mA)
3.0 Av = 2
Cb = 1μF
1 BW < 125kHz
THD + N (%)
2.5 Vcc=2.2V
Tamb = 25°C
2.0
Vcc=2.6V
1.5
0.1
1.0
0.5
Vcc=3.3V Vcc=5V
0.0 0.01
0.0 0.5 1.0 1.5 2.0 1E-3 0.01 0.1 1
Standby Voltage (V) Output Power (W)
Figure 44. THD + N vs. output power Figure 45. THD + N vs. output power
10 10
RL = 16Ω RL = 8Ω
F = 20kHz F = 1kHz
Av = 2 Av = 2
Cb = 1μF Vcc=2.2V Cb = 1μF
1 1 BW < 125kHz
THD + N (%)
THD + N (%)
BW < 125kHz Vcc=2.2V
Tamb = 25°C Tamb = 25°C
Vcc=2.6V
Vcc=2.6V
0.1 0.1
Figure 46. THD + N vs. output power Figure 47. THD + N vs. output power
10 10
RL = 4Ω RL = 4Ω
F = 20kHz F = 1kHz
Av = 2 Av = 2
Cb = 1μF Vcc=2.2V Cb = 1μF Vcc=2.2V
THD + N (%)
THD + N (%)
0.1
Vcc=3.3V
Vcc=3.3V Vcc=5V Vcc=5V
0.1
1E-3 0.01 0.1 1 1E-3 0.01 0.1 1
Output Power (W) Output Power (W)
Figure 48. THD + N vs. output power Figure 49. THD + N vs. output power
10 10
RL = 16Ω RL = 8Ω
F = 1kHz F = 20kHz
Av = 2 Av = 2
1 Cb = 1μF Vcc=2.2V Cb = 1μF
THD + N (%)
THD + N (%)
Vcc=3.3V Vcc=2.6V
0.1
0.1
Figure 50. THD + N vs. output power Figure 51. THD + N vs. frequency
10
RL=8Ω
RL = 16Ω Av=2
F = 20kHz Cb = 1μF
Av = 2 Bw < 125kHz
Cb = 1μF Vcc=2.2V Tamb = 25°C Vcc=5V, Po=1W
1
THD + N (%)
BW < 125kHz
THD + N (%)
0.1
Tamb = 25°C Vcc=2.6V
0.1
Vcc=2.2V, Po=130mW
Vcc=3.3V Vcc=5V
0.01 0.01
1E-3 0.01 0.1 1 20 100 1000 10000 20k
Output Power (W) Frequency (Hz)
Figure 52. SNR vs. power supply with Figure 53. THD + N vs. frequency
unweighted filter (20Hz to 20kHz)
110 1
RL=16Ω RL=4Ω
105 Av=2
Signal to Noise Ratio (dB)
Cb = 1μF
Bw < 125kHz
100 Tamb = 25°C
THD + N (%)
Vcc=5V, Po=1.3W
95 RL=8Ω
RL=4Ω Vcc=2.2V, Po=150mW
90
Av = 2
85 Cb = 1μF
THD+N < 0.7%
Tamb = 25°C 0.1
80
2.5 3.0 3.5 4.0 4.5 5.0 20 100 1000 10000 20k
Power Supply Voltage (V) Frequency (Hz)
Figure 54. THD + N vs. frequency Figure 55. SNR vs. power supply with
unweighted filter (20Hz to 20kHz)
95
RL=16Ω RL=16Ω
Av=2
Cb = 1μF 90
Signal to Noise Ratio (dB)
Bw < 125kHz
Tamb = 25°C
THD + N (%)
0.1 85
Vcc=5V, Po=0.55W RL=8Ω
80 RL=4Ω
Vcc=2.2V, Po=100mW
Av = 10
75 Cb = 1μF
THD+N < 0.7%
Tamb = 25°C
0.01 70
20 100 1000 10000 20k 2.5 3.0 3.5 4.0 4.5 5.0
Frequency (Hz) Power Supply Voltage (V)
Figure 56. Signal to noise ratio vs. power Figure 57. Output noise voltage
supply with a weighted filter device ON
110 45
RL=16Ω Vcc=2.2V to 5.5V
40 Cb=1μF
Tamb=25°C
35
100
RL=8Ω
30 Unweighted Filter
95 RL=4Ω
25
90
Av = 2 20
85 Cb = 1μF
A Weighted Filter
THD+N < 0.7% 15
Tamb = 25°C
80 10
2.5 3.0 3.5 4.0 4.5 5.0 2 4 6 8 10
Power Supply Voltage (V) Closed Loop Gain
Figure 58. Signal to noise ratio vs. power Figure 59. Output noise voltage device in
supply with a weighted filter Standby
100 2.0
RL=16Ω 1.8
Output Noise Voltage ( Vrms)
95
Signal to Noise Ratio (dB)
1.6
1.4 Unweighted Filter
90
RL=8Ω 1.2
85 RL=4Ω 1.0
0.8 A Weighted Filter
80
0.6
Av = 10 Vcc=2.2V to 5.5V
75 Cb = 1μF 0.4 Cb=1μF
THD+N < 0.7%
0.2 RL=8Ω
Tamb = 25°C Tamb=25°C
70 0.0
2.5 3.0 3.5 4.0 4.5 5.0 2 4 6 8 10
Power Supply Voltage (V) Closed Loop Gain
4 Application information
For the same power supply voltage, the output power in BTL configuration is four times
higher than the output power in single-ended configuration.
The differential gain named gain (Gv) for more convenience is:
V out2 – V out1 R feed
G v = ---------------------------------- = 2 --------------
V in R in
Vout2 is in phase with Vin and Vout1 is phased 180° with Vin. This means that the positive
terminal of the loudspeaker should be connected to Vout2 and the negative to Vout1.
In the high frequency region, you can limit the bandwidth by adding a capacitor (Cfeed) in
parallel with Rfeed. It forms a low-pass filter with a -3 dB cut-off frequency. FCH is in Hz.
1
F CH = -------------------------------------
2πR feed C feed
10
0 Cfeed = 330pF
Gain (dB)
-5 Cfeed = 680pF
and
V out
I out = ------------
- (A)
RL
and
2
V PEAK
P out = ------------------------
- (W)
2R L
2 2V CC
P diss = ---------------------- P out – P out
π RL
Note: This maximum value is only dependent on power supply voltage and load values.
The efficiency is the ratio between the output power and the power supply:
P out πV PEAK
η = ------------------- = -----------------------
P supply 4V CC
π
----- = 78.5%
4
600
Tamb=25°C
500 Vcc=3.3V
Startup Time (ms)
400 Vcc=2.6V
300
200
Vcc=5V
100
0
0.1 1 2 3 4 4.7
Bypass Capacitor Cb ( F)
Due to process tolerances, the maximum value of wake-up time is shown in Figure 62.
Tamb=25°C
600
Vcc=3.3V
500
Max. Startup Time (ms)
Vcc=2.6V
400
300
200
Vcc=5V
100
0
0.1 1 2 3 4 4.7
Bypass Capacitor Cb ( F)
Note: The bypass capacitor Cb also has a typical tolerance of +/-20%. To calculate the wake-up
time with this tolerance, refer to the graph above (considering for example for Cb=1 µF in the
range of 0.8 µF≤ Cb≤ 1.2 µF).
mode, the bypass pin and Vin pin are short-circuited to ground by internal switches. This
allows a quick discharge of Cb and Cin capacitors.
160 Tamb=25°C
Vcc=3.3V
120 Vcc=2.6V
in max. (ms)
80
40 Vcc=5V
0
1 2 3 4
Bypass Capacitor Cb ( F)
By following the previous rules, the TS4990 can reach near zero pop and click even with
high gains such as 20 dB.
Example:
With Rin = 22 kΩ and a 20 Hz, -3 dB low cut-off frequency, Cin = 361 nF. So, Cin = 390 nF
with standard value which gives a lower cut-off frequency equal to 18.5 Hz. In this case,
(Rin + 2kΩ) x Cin = 9.36ms. By referring to the previous graph, if Cb = 1 µF and VCC = 5 V,
we read 20 ms max. This value is twice as high as our current value, thus we can state that
pop and click will be reduced to its lowest value.
Minimizing both Cin and the gain benefits both the pop phenomenon, and the cost and size
of the application.
In order to reach the best performance of the differential function, R1 and R2 should be
matched at 1% max.
Vcc
+
Cs
VCC
Cin R1
Vin- -
Neg. Input
Vout 1
Vin+
Speaker
Cin +
R1 8 Ohms
Pos. Input
R2 -
Vout 2
AV = -1
Bypass +
Standby Standby
Bias
Control
GND
TS4990
Cb
+
The input capacitor Cin can be calculated by the following formula using the -3 dB lower
frequency required. (FL is the lower frequency required).
1
C in ≈ --------------------- (F)
2πR 1 F L
R1 20k / 1%
R2 20k / 1%
Cin 100 nF
Cb=Cs 1 µF
U1 TS4990
5 Package information
Vin+
3 VCC STBY
A B C
■ Balls are underneath
1.6mm
2 1.6mm
A B C
The daisy chain sample features two-by-two pin connections. The schematics in Figure 68
illustrate the way pins connect to each other. This sample is used to test continuity on your
board. Your PCB needs to be designed the opposite way, so that pins that are unconnected
in the daisy chain sample, are connected on your PCB. If you do this, by simply connecting
an Ohmmeter between pin A1 and pin A3, the soldering process continuity can be tested.
Φ=340μm min.
500μm
4 1.5
1 1
A A
Die size Y + 70µm
Device orientation
The devices are oriented in the carrier pocket with pin number A1 adjacent to the sprocket
holes.
A 1.1 0.043
A1 0 0.15 0 0.006
A2 0.75 0.85 0.95 0.030 0.033 0.037
b 0.22 0.40 0.009 0.016
c 0.08 0.23 0.003 0.009
D 2.80 3.00 3.20 0.11 0.118 0.126
E 4.65 4.90 5.15 0.183 0.193 0.203
E1 2.80 3.00 3.10 0.11 0.118 0.122
e 0.65 0.026
L 0.40 0.60 0.80 0.016 0.024 0.031
L1 0.95 0.037
L2 0.25 0.010
k 0° 8° 0° 8°
ccc 0.10 0.004
SEATING
C
PLANE
ddd
C
A2
A
A1
A3
D
0.15x45°
e
1 2 3 4
E2
E
L
8 7 6 5
b
D2
BOTTOM VIEW
7426334_F
A 1.75 0.069
A1 0.10 0.25 0.004 0.010
A2 1.25 0.049
b 0.28 0.48 0.011 0.019
c 0.17 0.23 0.007 0.010
D 4.80 4.90 5.00 0.189 0.193 0.197
H 5.80 6.00 6.20 0.228 0.236 0.244
E1 3.80 3.90 4.00 0.150 0.154 0.157
e 1.27 0.050
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
k 1° 8° 1° 8°
ccc 0.10 0.004
6 Ordering information
TS4990IJT
Flip-chip, 9 bumps Tape & reel 90
TS4990EIJT(1)
TSDC05IJT
Flip-chip, 9 bumps Tape & reel DC3
TSDC05EIJT(2)
TS4990IST -40°C, +85°C MiniSO-8 Tape & reel K990
TS4990IQT DFN8 Tape & reel K990
TS4990EKIJT FC + back coating Tape & reel 90
TS4990ID Tube or
SO-8 TS4990I
TS4990IDT Tape & reel
7 Revision history
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.