3 W Filter-Free Class D Audio Power Amplifier: Related Products
3 W Filter-Free Class D Audio Power Amplifier: Related Products
Related products
• See TS2007 for further gain settings e.g.
6 or 12 dB
• See TS2012 for stereo settings
Applications
• Portable gaming consoles
• VR headsets
• Smart phones
• Tablets
Description
The TS4962M is a differential Class-D BTL power
Features amplifier. It is able to drive up to 2.3 W into a 4 Ω
• Operating from VCC = 2.4 V to 5.5 V load and 1.4 W into a 8 Ω load at 5 V. It achieves
outstanding efficiency (88% typ.) compared to
• Standby mode active low classical Class-AB audio amps.
• Output power: 3 W into 4 Ω and 1.75 W into 8
The gain of the device can be controlled via two
Ω with 10% THD+N max. and 5 V power supply
external gain-setting resistors. Pop and click
• Output power: 2.3 W @5 V or 0.75 W @ 3.0 V reduction circuitry provides low on/off switch
into 4 Ω with 1% THD+N max. noise while allowing the device to start within
• Output power: 1.4 W @5 V or 0.45 W @ 3.0 V 5 ms. A standby function (active low) allows the
into 8 Ω with 1% THD+N max. reduction of current consumption to 10 nA typ.
• Adjustable gain via external resistors
• Low current consumption 2 mA @ 3 V
• Efficiency: 88% typ.
• Signal to noise ratio: 85 dB typ.
• PSRR: 63 dB typ. @217 Hz with 6 dB gain
• PWM base frequency: 250 kHz
• Low pop and click noise
• Available in Flip Chip 9 x 300 µm (Pb-free)
Contents
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1 Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Gain in typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 Common-mode feedback loop limitations . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4 Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.5 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.6 Wake-up time (tWU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.7 Shutdown time (tSTBY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.8 Consumption in shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.9 Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.10 Output filter considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.11 Different examples with summed inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7 Evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.1 9-bump Flip Chip package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
B1 B2
Vcc
C2 Stdby Internal
Bias
300k
Out+
150k
C3
C1 - Output
In- PWM H
In+ +
A1 Bridge
A3
150k
Out-
Oscillator
GND
A2 B3
1. Legend:
IN+ = positive differential input
IN- = negative differential input
VDD = analog power supply
GND = power supply ground
STBY = standby pin (active low)
OUT+ = positive differential output
OUT- = negative differential output
2. Bumps are underneath, bump diameter = 300 µm
Vcc
Vcc B1 B2 Cs
Vcc 1u
In+
C2 Stdby Internal
Bias
300k
Out+ GND
GND 150k
C3
GND
Rin
+ C1 - Output
Differential In- H
PWM
Input In+ +
A1 Bridge
- Rin SPEAKER
In-
A3
Input 150k
Out-
capacitors
are optional Oscillator
GND
Vcc
Vcc B1 B2 Cs
Vcc 1u
In+
C2 Stdby Internal
4 Ohms LC Output Filter
Bias
300k
Out+ GND
GND 150k 15µH
C3
GND
Rin
+ C1 - Output
Differential In- H 2µF
PWM
Input In+ +
Bridge GND Load
A1
- Rin
In- 2µF
A3 15µH
Input 150k
Out-
capacitors
are optional Oscillator
GND
1µF
GND
1µF
30µH
4 Electrical characteristics
Internal resistance
RSTBY 273 300 327 kΩ
from Standby to GND
Pulse width modulator
FPWM 180 250 320 kHz
base frequency
SNR Signal to noise ratio A-weighting, Pout = 1.2 W, RL = 8 Ω 85 dB
tWU Wake-up time 5 10 ms
tSTBY Standby time 5 10 ms
Table 4. VCC = 5 V, GND = 0 V, VIC = 2.5 V, tamb = 25 °C (unless otherwise specified) (continued)
Symbol Parameter Conditions Min. Typ. Max. Unit
F = 20 Hz to 20 kHz, G = 6 dB
Unweighted RL = 4 Ω 85
A-weighted RL = 4 Ω 60
Unweighted RL = 8 Ω 86
A-weighted RL = 8 Ω 62
Unweighted RL = 4 Ω + 15 µH 83
A-weighted RL = 4 Ω + 15 µH 60
VN Output voltage noise Unweighted RL = 4 Ω + 30 µH 88 µVRMS
A-weighted RL = 4 Ω + 30 µH 64
Unweighted RL = 8 Ω + 30 µH 78
A-weighted RL = 8 Ω + 30 µH 57
Unweighted RL = 4 Ω + filter 87
A-weighted RL = 4 Ω + filter 65
Unweighted RL = 4 Ω + filter 82
A-weighted RL = 4 Ω + filter 59
1. Standby mode is active when VSTBY is tied to GND.
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @
F = 217 Hz.
Table 5. VCC = 4.2V, GND = 0V, VIC = 2.5V, Tamb = 25°C (unless otherwise specified) (1)
Symbol Parameter Conditions Min. Typ. Max. Unit
Output offset
VOO No input signal, RL = 8 Ω 3 25 mV
voltage
G=6dB
THD = 1% max, F = 1 kHz,
RL = 4 Ω
THD = 10% max, F = 1 kHz, 1.6
Pout Output power RL = 4 Ω 2 W
THD = 1% max, F = 1 kHz, 0.95
RL = 8 Ω 1.2
THD = 10% max, F = 1 kHz,
RL = 8 Ω
Pout = 600mWRMS, G = 6 dB,
20 Hz < F < 20k Hz
Total harmonic
RL = 8 Ω + 15 µH, BW < 30 kHz 1
THD + N distortion + %
Pout = 700 mWRMS, G = 6 dB,
noise
F = 1 kHz, 0.35
RL = 8 Ω + 15 µH, BW < 30 kHz
Pout = 1.45 WRMS, RL = 4 Ω +
≥ 15 µH 78
Efficiency Efficiency %
Pout =0.9 WRMS, RL = 8 Ω+ 88
≥ 15 µH
Power supply
rejection ratio F = 217 Hz, RL = 8 Ω, G=6 dB,
PSRR 63 dB
with inputs Vripple = 200 mVpp
grounded (3)
Common-mode F = 217 Hz, RL = 8 Ω, G = 6 dB,
CMRR 57 dB
rejection ratio ∆Vicm = 200 mVpp
273k Ω 300k Ω 327k Ω
Gain Gain value Rin in kΩ ------------------ ------------------ ------------------ V/V
R in R in R in
Internal
RSTBY resistance from 273 300 327 kΩ
Standby to GND
Pulse width
FPWM modulator base 180 250 320 kHz
frequency
Signal to noise A-weighting, Pout = 0.9 W,
SNR 85 dB
ratio RL = 8 Ω
tWU Wake-uptime 5 10 ms
tSTBY Standby time 5 10 ms
Table 5. VCC = 4.2V, GND = 0V, VIC = 2.5V, Tamb = 25°C (unless otherwise specified) (1)
Symbol Parameter Conditions Min. Typ. Max. Unit
F = 20Hz to 20 kHz, G = 6 dB
Unweighted RL = 4 Ω 85
A-weighted RL = 4 Ω 60
Unweighted RL = 8 Ω 86
A-weighted RL = 8 Ω 62
Unweighted RL = 4 Ω + 15 µH 83
A-weighted RL = 4 Ω + 15 µH 60
Output voltage
VN Unweighted RL = 4 Ω + 30 µH 88 µVRMS
noise
A-weighted RL = 4 Ω + 30 µH 64
Unweighted RL = 8 Ω + 30 µH 78
A-weighted RL = 8 Ω + 30 µH 57
Unweighted RL = 4 Ω + filter 87
A-weighted RL = 4 Ω + filter 65
Unweighted RL = 4 Ω + filter 82
A-weighted RL = 4 Ω + filter 59
1. All electrical values are guaranteed with correlation measurements at 2.5 V and 5 V.
2. Standby mode is active when VSTBY is tied to GND.
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @
F = 217 Hz.
Table 6. VCC = 3.6 V, GND = 0 V, VIC = 2.5 V, Tamb = 25 °C (unless otherwise specified) (1)
Symbol Parameter Conditions Min. Typ. Max. Unit
Internal resistance
RSTBY 273 300 327 kΩ
from Standby to GND
Pulse width modulator
FPWM 180 250 320 kHz
base frequency
SNR Signal to noise ratio A-weighting, Pout = 0.6 W, RL = 8 Ω 83 dB
tWU Wake-uptime 5 10 ms
tSTBY Standby time 5 10 ms
Table 6. VCC = 3.6 V, GND = 0 V, VIC = 2.5 V, Tamb = 25 °C (unless otherwise specified) (1)
Symbol Parameter Conditions Min. Typ. Max. Unit
F = 20 Hz to 20 kHz, G = 6 dB
Unweighted RL = 4 Ω 83
A-weighted RL = 4 Ω 57
Unweighted RL = 8 Ω 83
A-weighted RL = 8 Ω 61
Unweighted RL = 4 Ω + 15 µH 81
A-weighted RL = 4 Ω + 15 µH 58
VN Output voltage noise Unweighted RL = 4 Ω + 30 µH 87 µVRMS
A-weighted RL = 4 Ω + 30 µH 62
Unweighted RL = 8 Ω + 30 µH 77
A-weighted RL = 8 Ω + 30 µH 56
Unweighted RL = 4 Ω + filter 85
A-weighted RL = 4 Ω + filter 63
Unweighted RL = 4 Ω + filter 80
A-weighted RL = 4 Ω + filter 57
1. All electrical values are guaranteed with correlation measurements at 2.5 V and 5 V.
2. Standby mode is active when VSTBY is tied to GND.
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ F = 217 Hz.
Table 7. VCC = 3 V, GND = 0 V, VIC = 2.5 V, Tamb = 25 °C (unless otherwise specified) (1)
Symbol Parameter Conditions Min. Typ. Max. Unit
Internal resistance
RSTBY 273 300 327 kΩ
from Standby to GND
Pulse width modulator
FPWM 180 250 320 kHz
base frequency
SNR Signal to noise ratio A-weighting, Pout = 0.4 W, RL = 8 Ω 82 dB
tWU Wake-up time 5 10 ms
tSTBY Standby time 5 10 ms
Table 7. VCC = 3 V, GND = 0 V, VIC = 2.5 V, Tamb = 25 °C (unless otherwise specified) (1) (continued)
Symbol Parameter Conditions Min. Typ. Max. Unit
f = 20 Hz to 20 kHz, G = 6 dB
Unweighted RL = 4 Ω 83
A-weighted RL = 4 Ω 57
Unweighted RL = 8 Ω 83
A-weighted RL = 8 Ω 61
Unweighted RL = 4 Ω + 15 µH 81
A-weighted RL = 4 Ω + 15 µH 58
VN Output Voltage Noise Unweighted RL = 4 Ω + 30 µH 87 µVRMS
A-weighted RL = 4 Ω + 30 µH 62
Unweighted RL = 8 Ω + 30 µH 77
A-weighted RL = 8 Ω + 30 µH 56
Unweighted RL = 4 Ω + filter 85
A-weighted RL = 4 Ω + filter 63
Unweighted RL = 4 Ω + filter 80
A-weighted RL = 4 Ω + filter 57
1. All electrical values are guaranteed with correlation measurements at 2.5 V and 5 V.
2. Standby mode is active when VSTBY is tied to GND.
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ F = 217 Hz.
Table 8. VCC = 2.5 V, GND = 0 V, VIC = 2.5 V, Tamb = 25 °C (unless otherwise specified)
Symbol Parameter Conditions Min. Typ. Max. Unit
Internal resistance
RSTBY 273 300 327 kΩ
from Standby to GND
Pulse width modulator
FPWM 180 250 320 kHz
base frequency
SNR Signal to noise ratio A-weighting, Pout = 1.2 W, RL = 8 Ω 80 dB
tWU Wake-up time 5 10 ms
tSTBY Standby time 5 10 ms
Table 8. VCC = 2.5 V, GND = 0 V, VIC = 2.5 V, Tamb = 25 °C (unless otherwise specified) (continued)
Symbol Parameter Conditions Min. Typ. Max. Unit
F = 20Hz to 20kHz, G = 6 dB
Unweighted RL = 4 Ω 85
A-weighted RL = 4 Ω 60
Unweighted RL = 8 Ω 86
A-weighted RL = 8 Ω 62
Unweighted RL = 4 Ω + 15 µH 76
A-weighted RL = 4 Ω + 15 µH 56
VN Output voltage noise Unweighted RL = 4 Ω + 30 µH 82 µVRMS
A-weighted RL = 4 Ω + 30 µH 60
Unweighted RL = 8 Ω + 30 µH 67
A-weighted RL = 8 Ω + 30 µH 53
Unweighted RL = 4 Ω + filter 78
A-weighted RL = 4 Ω + filter 57
Unweighted RL = 4 Ω + filter 74
A-weighted RL = 4 Ω + filter 54
1. Standby mode is active when VSTBY is tied to GND.
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinusoidal signal to VCC @ F = 217 Hz.
Table 9. VCC = 2.4 V, GND = 0 V, VIC = 2.5 V, Tamb = 25 °C (unless otherwise specified)
Symbol Parameter Conditions Min. Typ. Max. Unit
Internal resistance
RSTBY 273 300 327 kΩ
from Standby to GND
Pulse width modulator
FPWM 250 kHz
base frequency
SNR Signal to noise ratio A Weighting, Pout = 1.2 W, RL = 8 Ω 80 dB
tWU Wake-up time 5 ms
tSTBY Standby time 5 ms
F = 20 Hz to 20 kHz, G = 6 dB
Unweighted RL = 4 Ω 85
A-weighted RL = 4 Ω 60
Unweighted RL = 8 Ω 86
A-weighted RL = 8 Ω 62
Unweighted RL = 4 Ω + 15 µH 76
A-weighted RL = 4 Ω + 15 µH 56
VN Output voltage noise Unweighted RL = 4 Ω + 30 µH 82 µVRMS
A-weighted RL = 4 Ω + 30 µH 60
Unweighted RL = 8 Ω + 30 µH 67
A-weighted RL = 8 Ω + 30 µH 53
Unweighted RL = 4 Ω + Filter 78
A-weighted RL = 4 Ω + Filter 57
Unweighted RL = 4 Ω + Filter 74
A-weighted RL = 4 Ω + Filter 54
1. Standby mode is active when VSTBY is tied to GND.
Vcc
1uF 100nF
Cs1 + Cs2
GND GND
Cin Rin
Out+ 4 or 8 Ohms
In+
15uH or 30uH
150k 5th order
TS4962 or RL 50kHz low pass
Cin Rin filter
LC Filter
In-
Out-
150k
GND
Audio Measurement
Bandwidth < 30kHz
100nF
GND
GND
4.7uF Rin
Out+ 4 or 8 Ohms
In+
15uH or 30uH
150k 5th order
TS4962 or RL 50kHz low pass
4.7uF Rin filter
LC Filter
In-
Out-
150k
GND
GND
5th order
RMS Selective Measurement
Reference
50kHz low pass
Bandwidth=1% of Fmeas
filter
Figure 6. Current consumption vs. power Figure 7. Current consumption vs. standby
supply voltage voltage at VCC = 5 V
1RORDG
7DPE q&
&XUUHQW&RQVXPSWLRQ P$
&XUUHQW&RQVXPSWLRQ P$
Figure 8. Current consumption vs. standby Figure 9. Output offset voltage vs.
voltage at VCC = 3 V common-mode input voltage
* G%
7DPE q&
&XUUHQW&RQVXPSWLRQ P$
9FF 9
9RR P9
9FF 9
9FF 9
9FF 9
1RORDG
7DPE q&
6WDQGE\9ROWDJH 9 &RPPRQ0RGH,QSXW9ROWDJH 9
Figure 10. Efficiency vs. output power at Figure 11. Efficiency vs. output power at
VCC = 5 V and RL = 4 Ω VCC = 3 V and RL = 4 Ω
(IILFLHQF\
(IILFLHQF\
3RZHU
'LVVLSDWLRQ
3RZHU 9FF 9
'LVVLSDWLRQ 9FF 9
5/ :tP+
5/ :tP+
) N+]
) N+]
7+'1d
7+'1d
2XWSXW3RZHU :
2XWSXW3RZHU :
Figure 12. Efficiency vs. output power at Figure 13. Efficiency vs. output power at
VCC = 5 V and RL = 8 Ω VCC = 3 V and RL = 8 Ω
3RZHU'LVVLSDWLRQ P:
3RZHU'LVVLSDWLRQ P:
(IILFLHQF\ (IILFLHQF\
(IILFLHQF\
(IILFLHQF\
3RZHU
'LVVLSDWLRQ
3RZHU
9FF 9 9FF 9
'LVVLSDWLRQ
5/ :tP+ 5/ :tP+
) N+] ) N+]
7+'1d 7+'1d
2XWSXW3RZHU : 2XWSXW3RZHU :
Figure 14. Output power vs. power supply Figure 15. Output power vs. power supply
voltage at RL = 4 Ω voltage at RL = 8 Ω
5/ :tP+ 5/ :tP+
) N+] 7+'1 ) N+]
%:N+] %:N+]
7DPE q& 7DPE q&
2XWSXWSRZHU :
2XWSXWSRZHU :
7+'1
7+'1
7+'1
9FF 9 9FF 9
Figure 16. PSRR vs. frequency at Figure 17. PSRR vs. frequency at
RL = 4 Ω + 15 µH RL = 4 Ω + 30 µH
9ULSSOH P9SS 9ULSSOH P9SS
,QSXWV *URXQGHG
,QSXWV *URXQGHG
* G%&LQ P) * G%&LQ P)
5/ :P+ 5/ :P+
'55d '55d
7DPE q& 7DPE q&
3655 G%
3655 G%
9FF 999 9FF 999
N N
)UHTXHQF\ +] )UHTXHQF\ +]
Figure 18. PSRR vs. frequency at Figure 19. PSR R vs. frequency at
RL = 4 Ω + filter RL = 8 Ω + 15 µH
9ULSSOH P9SS 9ULSSOH P9SS
,QSXWV *URXQGHG ,QSXWV *URXQGHG
* G%&LQ P) * G%&LQ P)
5/ :)LOWHU 5/ :P+
'55d '55d
7DPE q& 7DPE q&
3655 G%
3655 G%
9FF 999
9FF 999
N N
)UHTXHQF\ +] )UHTXHQF\ +]
9ULSSOH P9SS 9ULSSOH P9SS
,QSXWV *URXQGHG
,QSXWV *URXQGHG
* G%&LQ P) * G%&LQ P)
5/ :P+
'55d
'55d 5/ :)LOWHU
7DPE q& 7DPE q&
3655 G%
3655 G%
N
N
)UHTXHQF\ +]
)UHTXHQF\ +]
7DPE q&
3655 G%
9FF 9
N
)UHTXHQF\ +]
&RPPRQ0RGH,QSXW9ROWDJH 9
Figure 24. CMRR vs. frequency at Figure 25. CMRR vs. frequency at
RL = 4 Ω + 30 µH RL = 4 Ω + filter
5/ :P+ 5/ :)LOWHU
* G% * G%
'9LFP P9SS '9LFP P9SS
'55d '55d
&LQ P) &LQ P)
7DPE q& 7DPE q&
&055 G%
&055 G%
9FF 999 9FF 999
Figure 26. CMRR vs. frequency at Figure 27. CMRR vs. frequency at
RL = 8 Ω + 15 µH RL = 8 Ω + 30 µH
5/ :P+ 5/ :P+
* G% * G%
'9LFP P9SS '9LFP P9SS
'55d '55d
&LQ P) &LQ P)
7DPE q&
&055 G%
7DPE q&
&055 G%
9FF 999 9FF 999
Figure 28. CMRR vs. frequency at Figure 29. CMRR vs. common-mode input
RL = 8 Ω + filter voltage
5/ :)LOWHU '9LFP P9SS
* G% ) +]
* G%
'9LFP P9SS
'55d 5/ t:tP+ 9FF 9
&LQ P) 7DPE q&
&055 G%
7DPE q&
&055 G%
9FF 999 9FF 9
9FF 9
N
)UHTXHQF\ +] &RPPRQ0RGH,QSXW9ROWDJH 9
Figure 30. THD+N vs. output power at Figure 31. THD+N vs. output power at
RL = 4 Ω + 15 µH, F = 100 Hz RL = 4 Ω + 30 µH or filter, F = 100 Hz
5/ :P+ 9FF 9 5/ :P+RU)LOWHU 9FF 9
) +] ) +]
* G% 9FF 9 * G% 9FF 9
%:N+] %:N+] 9FF 9
9FF 9
7DPE q& 7DPE q&
7+'1
7+'1
Figure 32. THD+N vs. output power at Figure 33. THD+N vs. output power at
RL = 8 Ω + 15 µH, F = 100 Hz RL = 8 Ω + 30 µH or filter, F = 100 Hz
5/ :P+ 5/ :P+RU)LOWHU
9FF 9 9FF 9
) +] ) +]
* G% * G%
9FF 9 9FF 9
%:N+] %:N+]
7DPE q& 9FF 9 7DPE q&
7+'1
9FF 9
7+'1
Figure 34. THD+N vs. output power at Figure 35. THD+N vs. output power at
RL = 4 Ω + 15 µH, F = 1 kHz RL = 4 Ω + 30 µH or filter, F = 1 kHz
5/ :P+ 9FF 9 5/ :P+RU)LOWHU
9FF 9
) N+] ) N+]
* G% 9FF 9 * G% 9FF 9
%:N+] %:N+]
7DPE q& 7DPE q&
7+'1
( (
2XWSXW3RZHU : 2XWSXW3RZHU :
Figure 36. THD+N vs. output power at Figure 37. THD+N vs. output power at
RL = 8 Ω + 15 µH, F = 1 kHz RL = 8 Ω + 30 µH or filter, F = 1 kHz
7+'1
7DPE q&
7+'1
9FF 9
9FF 9
(
(
2XWSXW3RZHU :
2XWSXW3RZHU :
Figure 38. THD+N vs. frequency at Figure 39. THD+N vs. frequency at
RL = 4 Ω + 15 µH, VCC = 5 V RL = 4 Ω + 30 µH or filter, VCC = 5 V
5/ :P+ 5/ :P+RU)LOWHU
* G% * G%
%ZN+] %ZN+]
9FF 9 9FF 9 3R :
3R :
7DPE q& 7DPE q&
7+'1
7+'1
Figure 40. THD+N vs. frequency at Figure 41. THD+N vs. frequency at
RL = 4 Ω + 15 µH, VCC = 3.6 V RL = 4 Ω + 30 H or filter, VCC = 3.6 V
5/ :P+ 5/ :P+RU)LOWHU
* G% * G%
%ZN+] %ZN+]
9FF 9 9FF 9 3R :
3R :
7DPE q& 7DPE q&
7+'1
7+'1
3R :
3R :
Figure 42. THD+N vs. frequency at Figure 43. THD+N vs. frequency at
RL = 4 Ω + 15 µH, VCC = 2.5 V RL = 4 Ω + 30 µH or filter, VCC = 2.5 V
5/ :P+ 5/ :P+RU)LOWHU
* G% * G%
%ZN+] 3R : %ZN+]
9FF 9 9FF 9 3R :
7DPE q& 7DPE q&
7+'1
7+'1
3R :
3R :
Figure 44. THD+N vs. frequency at Figure 45. THD+N vs. frequency at
RL = 8 Ω + 15 µH, VCC = 5 V RL = 8 Ω + 30 µH or filter, VCC = 5 V
5/ :P+ 5/ :P+RU)LOWHU
* G% * G%
%ZN+] %ZN+]
9FF 9 9FF 9
7DPE q& 7DPE q& 3R :
3R :
7+'1
7+'1
Figure 46. THD+N vs. frequency at Figure 47. THD+N vs. frequency at
RL = 8 Ω + 15 µH, VCC = 3.6 V RL = 8 Ω + 30 µH or filter, VCC = 3.6 V
5/ :P+ 5/ :P+RU)LOWHU
* G% * G%
%ZN+] %ZN+]
9FF 9 9FF 9
7DPE q& 3R : 7DPE q&
7+'1
3R :
7+'1
Figure 48. THD+N vs. frequency at Figure 49. THD+N vs. frequency at
RL = 8 Ω + 15 µH, VCC = 2.5 V RL = 8 Ω + 30 µH or filter, VCC = 2.5 V
5/ :P+ 5/ :P+RU)LOWHU
* G% * G%
%ZN+] %ZN+]
9FF 9 9FF 9 3R :
7DPE q& 3R : 7DPE q&
7+'1
7+'1
3R : 3R :
N N
)UHTXHQF\ +] )UHTXHQF\ +]
Figure 50. Gain vs. frequency at Figure 51. Gain vs. frequency at
RL = 4 Ω + 15 µH RL = 4 Ω + 30 µH
'LIIHUHQWLDO*DLQ G%
'LIIHUHQWLDO*DLQ G%
5/ :P+ 5/ :P+
* G% * G%
9LQ P9SS
9LQ P9SS
&LQ P)
&LQ P)
7DPE q&
7DPE q&
N
N
)UHTXHQF\ +]
)UHTXHQF\ +]
'LIIHUHQWLDO*DLQ G%
'LIIHUHQWLDO*DLQ G%
9FF 999
9FF 999
5/ :)LOWHU 5/ :P+
* G% * G%
9LQ P9SS 9LQ P9SS
&LQ P) &LQ P)
7DPE q& 7DPE q&
N
N
)UHTXHQF\ +]
)UHTXHQF\ +]
Figure 54. Gain vs. frequency at Figure 55. Gain vs. frequency at
RL = 8 Ω + 30 µH RL = 8 Ω + filter
'LIIHUHQWLDO*DLQ G%
'LIIHUHQWLDO*DLQ G%
9FF 999 9FF 999
5/ :P+ 5/ :)LOWHU
* G% * G%
9LQ P9SS 9LQ P9SS
&LQ P) &LQ P)
7DPE q& 7DPE q&
N N
)UHTXHQF\ +] )UHTXHQF\ +]
Figure 56. Gain vs. frequency at Figure 57. Startup and shutdown time VCC = 5 V,
RL = no load G = 6 dB, Cin = 1 µF (5 ms/div)
Vo1
Vo2
'LIIHUHQWLDO*DLQ G%
9FF 999
Standby
5/ 1R/RDG Vo1-Vo2
* G%
9LQ P9SS
&LQ P)
7DPE q&
N
)UHTXHQF\ +]
Figure 58. Startup and shutdown time VCC = 3 V, Figure 59. Startup and shutdown time VCC = 5 V,
G = 6 dB, Cin = 1 µF (5 ms/div) G = 6 dB, Cin = 100 nF (5 ms/div)
Vo1 Vo1
Vo2 Vo2
Standby Standby
Vo1-Vo2 Vo1-Vo2
Figure 60. Startup and shutdown time VCC = 3 V, Figure 61. Startup and shutdown time VCC = 5 V,
G = 6 dB, Cin = 100 nF (5 ms/div) G = 6 dB, No Cin (5 ms/div)
Vo1 Vo1
Vo2 Vo2
Standby Standby
Vo1-Vo2 Vo1-Vo2
Figure 62. Startup and shutdown time VCC = 3 V, G = 6 dB, no Cin (5 ms/div)
Vo1
Vo2
Standby
Vo1-Vo2
6 Application information
VCC × R in + 2 × V IC × 150kΩ
V icm = ---------------------------------------------------------------------------- (V)
2 × ( R in + 150kΩ )
with
+ -
In + In
V IC = --------------------- (V)
2
Due to the ±9% tolerance on the 150kΩ resistor, it is also important to check Vicm in these
conditions:
If the result of the Vicm calculation is not in the previous range, input coupling capacitors
must be used (with VCC from 2.4V to 2.5V, input coupling capacitors are mandatory).
Example
With VCC = 3 V, Rin = 150 k and VIC = 2.5 V, we typically find Vicm = 2 V and this is lower
than 3V - 0.8 V = 2.2 V. With 136.5 kΩ we find 1.97 V, and with 163.5 kΩ we have 2.02 V.
So, no input coupling capacitors are required.
B1 B2 Cs
Vcc 1u
Ve
C2 Stdby Internal
Standby
Bias
300k
Out+ GND
150k
C3
Cin Rin
GND C1 Output
-
In- PWM H
In+ +
A1 Bridge
Rin SPEAKER
A3
Cin 150k
Out-
GND Oscillator
GND TS4962
A2 B3
GND
All formulas are identical except for the gain (with Rin in kΩ):
Ve 300
AV = ------------------------------
-- = ----------
sin gle
Out – Out
+ R in
273 327
---------- ≤ A V ≤ ----------
R in sin g le R in
In the event that multiple single-ended inputs are summed, it is important that the
impedance on both TS4962M inputs (In- and In+) are equal.
GND
k
C eq = Σ Cinj
j=1
1
C = ---------------------------------------------------- (F)
2×π×R ×F
inj
inj CLj
1
R eq = -------------------
k
1
---------Rinj
-
j =1
In general, for mixed situations (single-ended and differential inputs), it is best to use the
same rule, that is, to equalize impedance on both TS4962M inputs.
Gnd
In the case where the distance between the TS4962M outputs and speaker terminals is
high, it is possible to have low frequency EMI issues due to the fact that the typical operating
frequency is 250kHz. In this configuration, we recommend using an output filter (as shown
in Figure 3: Typical application schematics on page 4). It should be placed as close as
possible to the device.
300k
E2+ Out+ GND
150k
C3
R1
C1 - Output
E1+
In- PWM H
In+ +
E1- Bridge
A1
R1 SPEAKER
A3
150k
E2- Out-
R2 Oscillator
GND TS4962
A2 B3
GND
+ -
Out – Out 300
A V = ------------------------------
- = ----------
2
E2 – E2
+ - R2
+ - + -
E1 + E1 E2 + E2
V IC = ------------------------ and V IC = ------------------------
1 2 2 2
Figure 67. Typical application schematic with one differential input plus
one single-ended input
Vcc
Standby Cs
B1 B2
Vcc 1u
C2 Stdby Internal
R2 Bias
300k
E2+ Out+ GND
150k
C3
C1 R1
C1 - Output
E1+
In- PWM H
In+ +
E2- Bridge
A1
R2 SPEAKER
A3
150k
Out-
GND C1 R1 Oscillator
GND TS4962
A2 B3
GND
+ -
Out – Out 300
A V = ------------------------------
+ -
- = ----------
2
E2 – E2 R2
1
C 1 = ------------------------------------ (F)
2π × R1 × F CL
7 Evaluation board
An evaluation board for the TS4962M is available with a Flip Chip to DIP adapter. For more
information about this board, refer to AN2134.
Figure 68. Schematic diagram of mono class D evaluation board for TS4962M
Vcc Vcc
Cn1 + J1
1 +
Cn2 C1
2 2.2uF/10V
3
GND GND GND Vcc
Cn4 + J2
3 8
U1
Vcc
4 Stdby Internal
Bias
300k
C2 R1 Out+
150k
6
Cn3 Cn6
5 Output
Positive Input 100nF 150k - Positive Output
In- PWM H
Negative input In+ + Negative Output
100nF R2 Bridge
1
10
150k 150k
C3 Out-
Oscillator
GND TS4962 Flip-Chip to DIP Adapter
2 3
Cn5 + J3
GND
pin8
R1
+
OR C1 C2
1uF
100nF
B1 B2
Vcc
C2 Stdby Internal
Pin4
Bias
300k
Out+
150k
C3
Pin6
C1 - Output
Pin5
In- PWM H
In+ +
Pin1 Bridge
A1
Pin10
A3
150k
Out-
Oscillator
GND TS4962
A2 B3
R2
OR
Pin2
Pin9
8 Package information
PP
PP
PP
PP
PP
%DFNVLGH
FRDWLQJ
RSWLRQDO P
XXX
YWW
1. Legend:
ST logo
E = symbol for lead-free
First two “XX” = product code = 62
Third X = assembly code
Three-digit date code, Y = year, WW = week
Black dot is for marking pin A1
Φ=340µm min.
500µm
9 Ordering information
10 Revision history
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.