0% found this document useful (0 votes)
85 views23 pages

Determination of Individual Components in Spark Ignition Engine Fuels by 50-Metre Capillary High Resolution Gas Chromatography

This document outlines the international standard D6733-24 for determining individual components in spark ignition engine fuels using high-resolution gas chromatography. It specifies the scope, applicable test methods, and the necessary equipment and procedures for accurate analysis of hydrocarbon components. The standard emphasizes the importance of safety and regulatory compliance when utilizing the test method.

Uploaded by

Marcelo Queiroz
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
85 views23 pages

Determination of Individual Components in Spark Ignition Engine Fuels by 50-Metre Capillary High Resolution Gas Chromatography

This document outlines the international standard D6733-24 for determining individual components in spark ignition engine fuels using high-resolution gas chromatography. It specifies the scope, applicable test methods, and the necessary equipment and procedures for accurate analysis of hydrocarbon components. The standard emphasizes the importance of safety and regulatory compliance when utilizing the test method.

Uploaded by

Marcelo Queiroz
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 23

This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles

for the
Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Designation: D6733 − 24

Standard Test Method for


Determination of Individual Components in Spark Ignition
Engine Fuels by 50-Metre Capillary High Resolution Gas
Chromatography1
This standard is issued under the fixed designation D6733; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope* may reflect significant errors in PONA type groupings. Based


1.1 This test method covers the determination of individual on the interlaboratory cooperative study, this procedure is
hydrocarbon components (detailed hydrocarbon analysis) of applicable to samples having concentrations of olefins less than
spark-ignition engine fuels with boiling ranges up to 225 °C. 20 % by mass. However, significant interfering coelution with
Other light liquid hydrocarbon mixtures typically encountered the olefins above C7 is possible, particularly if blending
in petroleum refining operations, such as, blending stocks components or their higher boiling cuts such as those derived
(naphthas, reformates, alkylates, and so forth) may also be from fluid catalytic cracking (FCC) are analyzed, and the total
analyzed; however, statistical data was obtained only with olefin content may not be accurate. Many of the olefins in spark
blended spark-ignition engine fuels. The tables in Annex A1 ignition fuels are at a concentration below 0.10 %; they are not
enumerate the components reported. Component concentra- reported by this test method and may bias the total olefin
tions are determined in the range from 0.10 % to 15 % by mass. results low.
The procedure may be applicable to higher and lower concen- 1.5.1 Total olefins in the samples may be obtained or
trations for the individual components; however, the user must confirmed, or both, by Test Method D1319 (volume %) or
verify the accuracy if the procedures are used for components other test methods, such as those based on multidimensional
with concentrations outside the specified ranges. PONA type of instruments.
1.2 This test method is applicable also to spark-ignition 1.6 If water is or is suspected of being present, its concen-
engine fuel blends containing oxygenated components. tration may be determined, if desired, by the use of Test
However, in this case, the oxygenate content must be deter- Method D1744. Other compounds containing sulfur, nitrogen,
mined by Test Methods D5599 or D4815. and so forth, may also be present, and may co-elute with the
1.3 Benzene co-elutes with 1-methylcyclopentene. Benzene hydrocarbons. If determination of these specific compounds is
content must be determined by Test Method D3606 or D5580. required, it is recommended that test methods for these specific
materials be used, such as Test Method D5623 for sulfur
1.4 Toluene co-elutes with 2,3,3-trimethylpentane. Toluene
compounds.
content must be determined by Test Method D3606 or D5580.
1.5 Although a majority of the individual hydrocarbons 1.7 The values stated in SI units are to be regarded as the
present are determined, some co-elution of compounds is standard. The values given in parentheses are provided for
encountered. If this procedure is utilized to estimate bulk information only.
hydrocarbon group-type composition (PONA) the user of such 1.8 This standard does not purport to address all of the
data should be cautioned that error may be encountered due to safety concerns, if any, associated with its use. It is the
co-elution and a lack of identification of all components responsibility of the user of this standard to establish appro-
present. Samples containing significant amounts of naphthenic priate safety, health, and environmental practices and deter-
(for example, virgin naphthas) constituents above n-octane mine the applicability of regulatory limitations prior to use.
1.9 This international standard was developed in accor-
1
This test method is under the jurisdiction of ASTM Committee D02 on dance with internationally recognized principles on standard-
Petroleum Products, Liquid Fuels, and Lubricantsand is the direct responsibility of ization established in the Decision on Principles for the
Subcommittee D02.04.0L on Gas Chromatography Methods.
Development of International Standards, Guides and Recom-
Current edition approved Nov. 1, 2024. Published December 2024. Originally
approved in 2001. Last previous edition approved in 2020 as D6733 – 01 (2020). mendations issued by the World Trade Organization Technical
DOI: 10.1520/D6733-24. Barriers to Trade (TBT) Committee.

*A Summary of Changes section appears at the end of this standard


Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 1


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24
2. Referenced Documents computer. Each eluting component is identified by comparing
2.1 ASTM Standards: 2 its retention time to those established by analyzing reference
D1319 Test Method for Hydrocarbon Types in Liquid Petro- standards or samples under identical conditions. The concen-
leum Products by Fluorescent Indicator Adsorption tration of each component in mass % is determined by normal-
D1744 Test Method for Determination of Water in Liquid ization of the peak areas after correction of selected compo-
Petroleum Products by Karl Fischer Reagent (Withdrawn nents with detector response factors. The unknown
2016)3 components are reported individually as well as a summary
D3606 Test Method for Determination of Benzene and total.
Toluene in Spark Ignition Fuels by Gas Chromatography
5. Significance and Use
D4057 Practice for Manual Sampling of Petroleum and
Petroleum Products 5.1 Knowledge of the individual component composition
D4175 Terminology Relating to Petroleum Products, Liquid (speciation) of gasoline fuels and blending stocks is useful for
Fuels, and Lubricants refinery quality control and product specification. Process
D4420 Test Method for Determination of Aromatics in control and product specification compliance for many indi-
Finished Gasoline by Gas Chromatography (Withdrawn vidual hydrocarbons may be determined through the use of this
2004)3 test method.
D4815 Test Method for Determination of MTBE, ETBE,
TAME, DIPE, tertiary-Amyl Alcohol and C1 to C4 Alco- 6. Apparatus
hols in Gasoline by Gas Chromatography 6.1 Instrumentation—A gas chromatograph capable of op-
D5580 Test Method for Determination of Benzene, Toluene, erating under the conditions outlined in Table 1, equipped with
Ethylbenzene, p/m-Xylene, o-Xylene, C9 and Heavier a split injector, a carrier gas pressure control, and a flame
Aromatics, and Total Aromatics in Finished Gasoline by ionization detector which are required.
Gas Chromatography 6.2 Sample Introduction System—Manual or automatic liq-
D5599 Test Method for Determination of Oxygenates in uid syringe sample injection may be employed.
Gasoline by Gas Chromatography and Oxygen Selective
Flame Ionization Detection 6.3 Data Acquisition System—Any data system can be used
D5623 Test Method for Sulfur Compounds in Light Petro- with a requirement:
leum Liquids by Gas Chromatography and Sulfur Selec- 6.3.1 Sampling rate of 10 Hz or more with a storage of
tive Detection sampling data for later processing.
E355 Practice for Gas Chromatography Terms and Relation- 6.3.2 Capacity for at least 400 peaks/analysis.
ships 6.3.3 Identification of individual components from retention
E594 Practice for Testing Flame Ionization Detectors Used time; software can be used to automatically identify the peaks
in Gas or Supercritical Fluid Chromatography with the index system determined from Table A1.1 or Table
A1.2.
3. Terminology 6.4 Sampling—Two millilitres or more crimp-top vials and
3.1 Definitions: aluminum caps with polytetrafluoroethylene (PTFE)-lined
3.1.1 For definitions of terms used in this test method, refer septa are used to transfer the sample.
to Terminology D4175. Additional common gas chromato- 6.5 Capillary Column—A 50 m fused silica capillary col-
graphic procedures, terms and relationships may be found in umn with an internal diameter of 0.2 mm, containing a 0.5 µm
Practices E355 and E594. film thickness of bonded dimethylpolysiloxane phase is used.
3.2 Acronyms: The features must be respected to reproduce the separation of
3.2.1 DHA—Detailed Hydrocarbon Analysis
4. Summary of Test Method
TABLE 1 Operating Conditions
4.1 Representative samples of the petroleum liquid are Temperatures Method 1 Method 2
introduced into a gas chromatograph equipped with an open Column initial isotherm, °C 35 10
tubular (capillary) column coated with specified stationary Initial hold time, min. 10 15
phase(s). Helium carrier gas transports the vaporized sample Rate 1, °C/min. 1.1 1.3
Final temperature 1, °C 114 70
through the column in which it is partitioned into individual Hold time 2, min. 0 0
components, which are sensed with a flame ionization detector Rate 2, °C/min 1.7 1.7
as they elute from the end of the column. The detector signal Final temperature 2, °C 250 250
Final hold time 2, min. 5 20
is recorded digitally by way of an integrator or integrating Injector, °C 250 250
Detector, °C 280 280
Carrier gas helium pressure, kPA (psi) 207 (30) 190 (27)
2
For referenced ASTM standards, visit the ASTM website, www.astm.org, or Flow rate (initial isotherm), mL/min. 0.9 0.7
contact ASTM Customer Service at www.astm.org/contact. For Annual Book of Average linear velocity, cm/s 22 21.5
ASTM Standards volume information, refer to the standard’s Document Summary Injection
page on the ASTM website. Sample size, µL 0.5 0.3
3
The last approved version of this historical standard is referenced on Splitter vent–flow out, mL/min. 250 200
www.astm.org.

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 2


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24
the reference chromatogram. The column must meet the time of n-Heptane, n-Octane and n-Dodecane are between the
criteria of efficiency, resolution, and polarity defined in Section values given in Table 2.
10.
10. System Performance Evaluation
7. Reagents and Materials
10.1 Evaluation of the column and linearity of the split
7.1 Carrier Gas and Make-up, helium, 99.99 mol % pure. injection are carried out with a system performance mixture
(Warning—Compressed gas under high pressure.) defined in 7.12 and with the column temperature conditions
7.2 Fuel Gas, hydrogen, hydrocarbon free, 99.99 mol % defined in the following table.
pure. (Warning—Compressed gas under high pressure. Ex- Initial temperature 35 °C
tremely flammable.) Hold time 50 min
Final temperature 220 °C
7.3 Oxidizing Gas, air, 99 mol %. (Warning—Compressed Hold time 20 min
gas under high pressure.) Rate 3 °C ⁄min.

7.4 n-Pentane, 99+ mol % pure. (Warning—Extremely 10.2 Column Evaluation—To perform the required
flammable. Harmful if inhaled.) separation, the column must meet three criteria of separation:
efficiency, resolution, and polarity.
7.5 n-Hexane, 99+ mol % pure. (Warning—Extremely
flammable. Harmful if inhaled.) 10.2.1 Effıciency—The number of theoretical plates is cal-
culated with the normal octane peak using Eq 1:
7.6 n-Heptane, 99+ mol % pure. (Warning—Extremely
n 5 5.545~ Rt/W 0.5! 2 (1)
flammable. Harmful if inhaled.)
7.7 2-Methylheptane, 99+ mol % pure. (Warning— where:
Extremely flammable. Harmful if inhaled.) n = number of theoretical plates,
Rt = retention time of normal octane, and
7.8 4-Methylheptane, 99+ mol % pure. (Warning—
W0.5 = mid-height peak width of normal octane in the same
Extremely flammable. Harmful if inhaled.)
unit as retention time.
7.9 n-Octane, 99+ mol % pure. (Warning—Extremely
flammable. Harmful if inhaled.) 10.2.1.1 The number of theoretical plates must be greater
than 200 000.
7.10 n-Dodecane, 99+ mol % pure. (Warning—Extremely
10.2.2 Resolution—Resolution is determined between the
flammable. Harmful if inhaled.)
peaks of 2-methylheptane and 4-methylheptane using Eq 2:
7.11 Toluene, 99+ mol % pure. (Warning—Extremely
2 ~ Rt~ a ! 2 Rt~ b ! !
flammable. Harmful if inhaled.) R5 (2)
1.699~ W 0.5~ a ! 1W 0.5~ b ! !
7.12 System Performance Mixture—Weigh an equal amount
of n-pentane, n-heptane, n-octane, n-dodecane, where:
2-methylheptane, 4-methylheptane, and toluene. Dilute this Rt(a) = retention time of 4-methylheptane,
mixture in n-hexane to obtain a concentration of 2 % by mass Rt(b) = retention time of 2-methylheptane,
for each compound. W0.5(a) = mid-height peak width of 4-methylheptane in the
same unit as retention time, and
8. Sampling W0.5(b) = mid-height peak width of 2-methylheptane in the
same unit as retention time.
8.1 Container Sampling—Samples shall be taken as de-
scribed in Practice D4057 for instructions on manual sampling 10.2.2.1 The resolution must be equal to 4 or greater than
into open container. 1.20.
8.2 The sample and a 2 mL vial must be cooled at 4 °C. Part 10.2.3 Polarity—Polarity is defined by the McReynolds
of the sample is transferred to the vial up to 80 % of its volume, constant of toluene, using Eq 3:
and aluminum cap with septum is crimped. Rntol 5 Kiana 2 Kisqualane (3)

9. Preparation of Apparatus
9.1 Installation—Install and condition column in accor-
dance with the supplier’s instruction. TABLE 2 Reference Retention Times of Normal Paraffins
9.2 Operating Conditions—Two sets of operating condi- NOTE 1—Minutes and tenths of a minute.
tions are proposed in Table 1, the first with an initial column Method Method Method Method Method Method
temperature above the ambient temperature, the second with a 1 1 1 2 2 2
sub-ambient column temperature profile. Adjust the operating n-Paraffins Lower Refer- Upper Lower Refer- Upper
Time ence Time Time ence Time
conditions of the gas chromatograph to conform to the first or Time Time
second method. n-Heptane 18.5 19.4 20.3 39.5 40.7 42.0
n-Octane 32.0 33.0 34.0 57.0 57.8 59.0
9.3 Carrier Gas Pressure—Set a correct carrier gas pressure n-Dodecane 92.8 94.0 95.2 106.4 107.6 108.8
using the system performance mixture such that the retention

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 3


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24
where: 12. Procedure
Kisqualane = toluene Kovats index on Squalane at 12.1 Preparation of Apparatus—After optimization of the
35 °C = 742.6, and carrier gas pressure (9.3) and evaluation of apparatus (Section
Kiana = toluene Kovats index on the analytical column at 10), set the temperature program corresponding to the selected
35 °C. method (Table 1).
10.2.3.1 Toluene Kovats index is calculated using Eq 4: 12.2 Injection of Sample—Inject with a 5 µL or 10 µL
syringe, manually or by autosampler, the size corresponding to
Kiana 5 7001100 S logT' R ~ t ! 2 logT' R ~ h !
logT' R ~ o ! 2 logT' R ~ h ! D (4) the method (Table 1).
12.3 Integration of Chromatogram—Integration codes must
where:
be selected to obtain a horizontal baseline with a perpendicular
T'R(t) = adjusted retention time for toluene, drop to the baseline for partially resolved peaks. An example of
T'R(h) = adjusted retention time for n-heptane, and
correct baseline is given in Figs. A1.1 and A1.2.
T'R(o) = adjusted retention time for n-octane.
12.4 Identification—Each peak is identified by matching the
10.2.3.2 Adjusted retention time of a peak is determined by
retention time with that of compounds listed in Table 1 or Table
subtracting the retention time of an unretained compound (air
2 and standard chromatogram given in Fig. A1.1 or Fig. A1.2.
or methane) from the retention time of the peak. The McReyn-
A specific software program using the data of Table 1 or Table
olds constant must be less than 10.
2 can be employed.
10.2.4 Base Line Stability—Base line stability is calculated
12.4.1 If an oxygenate has been determined by Test Meth-
with the difference between area slices at the beginning and at
ods D4815 or D5599 and is not in the table, it is necessary to
the end of analysis, divided by the maximum area slice of
prepare a mixture of a weighed amount of this oxygenate in a
N-octane obtained with the system performance mixture.
known spark-ignition engine fuel to determine its retention
10.2.4.1 Measurement of the Stability—Carry out one tem-
time and response factor and then add it to the table.
perature programming defined in 10.1 without injecting any
sample. Subtract the area slices at the start of the analysis with 13. Calculation
those corresponding to 120 min (average of three slices). 13.1 Calculation of % (m/m) of Each Compound Without
10.2.4.2 Stability Standardization—Standardization is car- Co-elution and Not Corrected for Co-elutions—% (m/m) of
ried out using the system performance mixture defined in 7.12 each component without co-elution and no corrections of
with the column temperature conditions defined in 10.1. The co-elutions is calculated according to Eq 6:
value obtained in 10.2.4.1 is divided by the maximum area
slice of N-octane and multiplied by 100. The value obtained Ai Bi
C i' 5 i5n 100 (6)
must be less than 2 %. If this is not the case, check for possible
leaks, or recondition the column according to the manufactur-
(
i50
~ A i B i 1A int B int!
er’s recommendations. where:
10.3 Evaluation of the Linearity of the Split Injector— Ci' = % (m/m) of compound i without co-elution and no
Evaluation is carried out using the system performance mixture correction of coelutions,
defined in 7.12 with the column temperature conditions defined Ai = peak area of compound i without co-elution (benzene,
in 10.1. The % (m/m) of each compound is determined from toluene, and oxygenates),
the corrected area % using the response factors for each Aint = peak area of compounds co-eluting (benzene, toluene,
compound given in Table A1.1 or Table A1.2. The relative and oxygenates),
percent error is determined from the known mixture concen- Bi = response factor for component i (given in Table A1.1
trations according to Eq 5: or Table A1.2), and
Bint = response factor for components co-eluted with
Relative % error
benzene, toluene, and oxygenates.
100 ~ calculated concentration 2 known concentration!
5 13.2 Calculation of Components Coeluted with Benzene,
known concentration
Toluene, and Oxygenates—Benzene and toluene contents are
(5)
determined by Test Methods D3606 or D4420 or D5580;
10.3.1 The relative error must not exceed 3 %. oxygenates content is determined by Test Methods D4815 or
D5599. The % (m/m) of components coeluted with benzene,
11. Response Factor toluene, and oxygenates is calculated according Eq 7:

(S C DG
11.1 Theoretical response factors are used for correction of
the detector response of hydrocarbons. The response factor for F
C coeluted 5 C int 0.01 100 2 ext 2 C ext ×
B int
B ext
2 C ext ×
B int
B ext
(7)
each compound is relative to that of benzene taken equal to
where:
unity and is listed in Tables 1 and 2. For peaks corresponding
to the co-elution of compounds with benzene, toluene, and Ccoeluted = % (m/m) of component eluted with benzene,
oxygenates, the response factor is the one of the co-eluted toluene, or oxygenates,
compound of % (m/m). Co-eluted compounds are footnoted in Cint = % (m/m) calculated with Eq 6 for the peak with
Tables A1.1 and A1.2. co-elution,

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 4


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24

Cext = % (m/m) of benzene, toluene, or oxygenates carbon number from 6 to 12, and to (c) aromatics. This
determined by other method, and precision is as follows:
Bext = response factor of benzene, toluene, or 15.1.1 Repeatability—The difference between successive
oxygenates. test results, obtained by the same operator with the same
apparatus under constant operating conditions on identical test
13.3 Calculation of Other Components—% (m/m) of other
material, in the normal and correct operation of the test
components is calculated using Eq 8:
method, would exceed the value given in the Table 3 in only
C i 5 C i'
100 2 (C coeluted 2 (C ext.
(8)
one case in twenty.
(C i'
15.1.2 Reproducibility—The difference between two single
and independent results, obtained by different operators in
14. Report different laboratories on nominally identical test material, in
14.1 Report the content of each component as % (m/m) to the normal and correct operation of the test method, would
the nearest 0.01 %. exceed the values given in the Table 3 in only one case in
twenty.
15. Precision4
16. Keywords
15.1 Individual Components—The precision of this test
method was determined by a statistical analysis of interlabo- 16.1 detailed hydrocarbon analysis; DHA; gas chromatog-
ratory test results. It applies only to a range from 0.1 % to 15 % raphy; gasoline; hydrocarbons; open tubular; oxygenates; spark
(m/m), for all components with a resolution greater than 1.0 ignition engine fuels
and without co-elution with oxygenate components. When two
components of the same hydrocarbon type have a resolution TABLE 3 Repeatability and Reproducibility for Individual
Components
less than 1.0, the precision can be applied by adding the
concentration of two components. The precision is the same for Range
Range, Repeatability, Reproducibility,
of
all: (a) light components (saturates and olefins) with a carbon % (m/m) X (%(m/m)) X (% (m/m))
Carbon
number of 4 and 5, (b) saturates and olefins with a range of Light C4–C5 0.1–14 0.04 · X 0.16 · X
Components
Paraffins C6–C12 0.1–11.5 0.01 + 0.03 · X 0.04 + 0.07 · X
4
Supporting data of interlaboratory cooperative study program, statistical Naphthenes C6–C8 0.1–3
analysis, and precision determination are available from ASTM International Olefins C6–C8 0.1–1
Headquarters. Request RR: D02:1520. Contact ASTM Customer Service at Aromatics C6–C12 0.1–14 0.05 + 0.02 · X 0.1 + 0.06 · X
www.astm.org/contact.

ANNEX

(Mandatory Information)

A1. METHOD 1, PEAK NUMBER, RETENTION TIME, RESPONSE FACTOR, HYDROCARBON TYPE, AND CARBON NUM-
BER

A1.1 Table A1.1 and Table A1.2 include Method 1/Method Fig. A1.2 include Method 1/Method 2 reference
2 peak numbers, retention time, response factor, hydrocarbon chromatograms.
type, and carbon number for each component. Fig. A1.1 and

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 5


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24
TABLE A1.1 Method 1–Peak Numbers, Retention Time, Response Factor, Hydrocarbon Type and Carbon Number for Each Component

NOTE 1—Legend—Hydrocarbon types–NP = normal paraffins, IP = isoparaffins, NA = naphthenes, OL = olefins, AR = aromatics, Ox = oxygenates.
Nb Compounds Retention, min. Response Factor Hydrocarbon Type Carbon No.
1 Propane 4.14 1.125 Ip 3
2 IsobutaneA 4.47 1.112 Ip 4
2 MethanolA 4.47 2.850 Ox 1
3 Isobutene+1-butene 4.66 1.075 Ol 4
4 N-butane 4.74 1.112 NP 4
5 Trans-2-butene 4.84 1.075 Ol 4
6 C4-diolefin 4.88 1.045 OL 4
7 CIS-2-butene 5.00 1.075 OL 4
8 Ethanol 5.17 2.300 OX 2
9 3-Methyl-1-butene 5.45 1.075 OL 5
10 Isopentane 5.76 1.105 IP 5
11 1-pentene 6.05 1.075 OL 5
12 2-Methyl-1-butene 6.20 1.075 OL 5
13 N-Pentane 6.31 1.105 NP 5
14 Isoprene 6.43 1.075 OL 5
15 Trans-2-pentene 6.49 1.075 OL 5
16 Tertiobutylalcohol 6.60 1.490 OX 5
17 CIS-2-pentene 6.70 1.075 OL 5
18 2-Methyl-2-butene 6.84 1.075 OL 5
19 1,Trans-3-pentadiene 6.91 1.075 OL 5
20 1,CIS-3-pentadiene 7.28 1.075 OL 5
21 2,2-Dimethylbutane 7.36 1.100 IP 6
22 1-Cyclopentene 7.99 1.075 OL 5
23 4-Methyl-1-pentene 8.12 1.075 OL 6
24 3-Methyl-1-pentene 8.19 1.075 OL 6
25 CyclopentaneA 8.46 1.075 NA 5
25 MTBEA 8.46 1.520 OX 5
26 2,3-Dimethylbutane 8.52 1.100 IP 6
27 4-Methyl-CIS-2-pentene 8.61 1.075 OL 6
28 2-Methylpentane 8.70 1.100 IP 6
29 4-Methyl-trans-2-pentene 9.04 1.075 OL 6
30 3-Methylpentane 9.41 1.100 IP 6
31 2-Methyl-1-pentene 9.66 1.075 OL 6
32 1-Hexene 9.70 1.075 OL 6
33 2-Ethyl-1-butene 10.32 1.075 OL 6
34 N-Hexane 10.40 1.110 NP 6
35 Trans-3-hexene 10.51 1.075 OL 6
36 CIS-3-hexene 10.59 1.075 OL 6
37 Trans-2-hexene 10.69 1.075 OL 6
38 2-Methyl-2-pentene 10.84 1.075 OL 6
39 4-Methyl-1-cyclopentene 10.99 1.075 OL 6
40 3-Methyl-trans-2-pentene 11.06 1.075 OL 6
41 3-Methyl-1-cyclopentene 11.19 1.075 OL 6
42 CIS-2-Hexene 11.31 1.075 OL 6
43 C6-olefin 11.46 1.075 OL 6
44 ETBE 11.62 1.520 OX 6
45 3-Methyl-CIS-2-pentene 11.74 1.075 OL 6
46 2,2-Dimethylpentane 12.06 1.099 IP 7
47 1-Methylcyclopentane 12.23 1.075 NA 6
48 2,4-Dimethylpentane 12.53 1.099 IP 7
49 C6-olefin 12.78 1.075 OL 6
50 2,2,3-Trimethylbutane 13.93 1.099 IP 7
51 C6-olefin 13.08 1.075 OL 6
52 C7-olefin 13.45 1.075 OL 7
53 C7-olefin 13.56 1.075 OL 7
54 C7-olefin 13.84 1.075 OL 7
55 C7-olefin 13.93 1.075 OL 7
56 BenzeneA 14.08 1.000 AR 6
56 1-Methyl-1-cyclopenteneA 14.08 1.075 OL 6
57 C7-olefin 14.23 1.075 OL 7
58 C7-olefin 14.36 1.075 OL 7
59 3,3-Dimethylpentane 14.61 1.099 IP 7
60 C7-olefin 14.77 1.075 OL 7
61 Cyclohexane 14.93 1.075 NA 6
62 C7-olefin 15.13 1.075 OL 7
63 C7-olefin 15.24 1.075 OL 7
64 C7-olefin 15.44 1.075 OL 7
65 C7-olefin 15.68 1.075 OL 7
66 2-Methylhexane 15.84 1.099 IP 7
67 2,3-Dimethylpentane 15.99 1.099 IP 7
68 1,1-Dimethylcyclopentane 16.24 1.075 NA 7
69 Cyclohexene 16.44 1.075 OL 6
70 3-Methylhexane 16.70 1.099 IP 7

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 6


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24
TABLE A1.1 Continued
Nb Compounds Retention, min. Response Factor Hydrocarbon Type Carbon No.
71 C7-olefin 17.04 1.075 OP 7
72 CIS-1,3- 17.32 1.075 NA 7
dimethylcyclopentane
73 Trans-1,3- 17.61 1.075 NA 7
dimethylcyclopentane
74 3-ethylpentane 17.76 1.099 IP 7
75 Trans-1,2- 17.92 1.075 NA 7
dimethylcyclopentane
76 2,2,4-Trimethylpentane 18.16 1.096 IP 8
76 C7-olefin 18.16 1.075 OL 7
77 C7-olefin 18.74 1.075 OL 7
78 C7-olefin 19.13 1.075 OL 7
79 N-heptane 19.36 1.099 NP 7
80 C7-olefin 19.57 1.075 OL 7
81 C7-olefin 19.69 1.075 OL 7
82 C7-olefin 19.90 1.075 OL 7
83 C7-olefin 20.08 1.075 OL 7
84 C7-olefin 20.47 1.075 OL 7
85 C7-olefin 20.87 1.075 OL 7
86 C7-olefin 21.30 1.075 OL 7
87 C7-olefin 21.53 1.075 OL 7
88 1-Methylcyclohexane 21.61 1.075 NA 7
88 CIS-1,2- 21.61 1.075 NA 7
dimethylcyclopentane
89 1,1,3- 22.02 1.075 NA 8
Trimethylcyclopentane
89 2,2-Dimethylhexane 22.02 1.096 IP 8
90 C8-olefin 22.49 1.075 OL 8
91 C8-olefin 22.70 1.075 OL 8
92 1-ethylcyclopentane 23.09 1.075 NA 7
93 2,2,3-Trimetylpentane 23.33 1.096 IP 8
93 2,5-Dimethylhexane 23.33 1.096 IP 8
94 2,4-Dimethylhexane 23.57 1.096 IP 8
95 1,trans2,CIS4- 24.24 1.075 NA 8
trimethylcyclopentane
96 3,3-Dimethylhexane 24.44 1.096 IP 8
97 C8-olefin 24.94 1.075 OL 8
98 1,Trans2,CIS3- 25.21 1.075 NA 8
trimethylcyclopentane
99 2,3,4-Trimetylpentane 25.64 1.096 IP 8
100 2,3,3-Trimetylpentane 26.17 1.096 IP 8
100 Toluene 26.17 1.008 AR 7
101 C8-olefin 26.38 1.075 OL 8
102 C8-olefin 26.67 1.075 OL 8
103 C8-olefin 26.79 1.075 OL 8
104 2,3-Dimethylhexane 27.16 1.096 IP 8
105 2-Methyl-3-ethylpentane 27.30 1.096 IP 8
106 C8-olefin 27.54 1.075 OL 8
107 2-Methylheptane 28.02 1.096 IP 8
108 4-Methylheptane 28.23 1.096 IP 8
109 3,4-Dimethylhexane 28.36 1.096 IP 8
110 1,CIS2,Trans4- 28.41 1.075 NA 8
trimethylcyclopentane
111 C8-olefin 28.76 1.075 OL 8
112 3-Methylheptane 29.08 1.096 IP 8
113 3-Ethylhexane 29.22 1.096 IP 8
114 1,CIS-3- 29.46 1.075 NA 8
dimethylcyclohexane
114 1,Trans-4- 29.46 1.075 NA 8
dimethylcyclohexane
114 1,CIS2,Trans3- 29.46 1.075 NA 8
trimethylcyclopentane
115 C8-olefin 29.81 1.075 OL 8
116 1,1-Dimethylcyclohexane 30.01 1.075 NA 8
117 C8-olefin 30.24 1.075 OL 8
118 2,2,5-Trimethylhexane 30.67 1.093 IP 8
119 1-ME-T3- 30.81 1.075 NA 8
ethylcyclopentane
119 C8-olefin 30.81 1.075 OL 8
120 1-Methyl-CIS-3- 31.11 1.075 NA 8
ethylcyclopentane
120 C8-olefin 31.11 1.075 OL 8
121 1-Methyl-trans-2- 31.29 1.075 NA 8
ethylcyclopentane
121 C8-olefin 31.29 1.075 OL 8

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 7


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24
TABLE A1.1 Continued
Nb Compounds Retention, min. Response Factor Hydrocarbon Type Carbon No.
122 1-Methyl-1- 31.43 1.075 NA 8
ethylcyclopentane
122 C8-olefin 31.43 1.075 OL 8
123 1,Trans-2- 31.68 1.075 OL 7
dimethylcyclopentane
124 C8-olefin 31.97 1.075 OL 8
125 C8-olefin 32.17 1.075 OL 8
126 C8-olefin 32.58 1.075 OL 8
127 C8-olefin 32.81 1.075 OL 8
128 C8-naphthene 33.01 1.075 NA 8
128 N-octane 33.01 1.096 NP 8
129 C8-olefin 33.56 1.075 OL 8
130 C8-olefin 33.81 1.075 OL 8
131 2,2,4-Trimethylhexane 34.04 1.093 IP 9
132 C8-olefin 34.76 1.075 OL 8
133 C8-olefin 34.93 1.075 OL 8
134 C8-olefin 35.15 1.075 OL 8
135 2,3,5-Trimethylhexane 35.46 1.093 IP 9
136 2,2-Dimethylheptane 35.67 1.093 IP 9
137 1,CIS-2- 36.02 1.075 NA 8
Dimethylcyclohexane
138 C9-olefin 36.25 1.075 OL 9
139 2,4-Dimethylheptane 36.65 1.093 IP 9
140 4,4-Dimethylheptane 36.91 1.093 IP 9
141 C9-olefin 37.17 1.075 OL 9
142 1-Ethylcyclohexane 37.35 1.075 NA 8
143 C9-olefin 37.52 1.075 OL 9
144 2,6-Dimethylheptane 37.66 1.093 IP 8
145 C9-naphthene 37.93 1.075 NA 9
146 C9-naphthene 38.05 1.075 NA 9
147 C9-naphthene 38.21 1.075 NA 9
148 2,5-Dimethylheptane 38.68 1.093 IP 9
149 C8-olefin 38.87 1.075 OL 8
150 C8-olefin 39.05 1.075 OL 8
151 C8-olefin 39.23 1.075 OL 8
152 C8-olefin 39.46 1.075 OL 8
153 C8-olefin 39.80 1.075 OL 8
154 ethylbenzene 40.19 1.018 AR 8
155 C8-olefin 40.41 1.075 OL 8
156 C9-naphthene 40.60 1.075 NA 9
157 C9-naphthene 40.89 1.075 NA 9
158 C8-olefin 41.09 1.075 OL 8
159 C8-olefin 41.24 1.075 OL 8
160 Metaxylene 41.69 1.018 AR 8
161 Paraxylene 41.83 1.018 AR 8
162 C9-naphthene 42.20 1.075 NA 9
163 3,4-Dimethylheptane 42.32 1.093 IP 9
164 4-Ethylheptane 42.68 1.093 IP 9
165 C9-olefin 42.91 1.075 OL 8
166 4-Methyloctane 43.16 1.093 IP 9
167 2-Methyloctane 43.33 1.093 IP 9
168 C9-naphthene 43.51 1.075 NA 9
169 C9-naphthene 43.71 1.075 NA 9
170 3-Ethylheptane 44.21 1.093 IP 9
171 3-Methyloctane 44.43 1.093 IP 9
172 Orthoxylene 45.12 1.018 AR 8
173 C9-naphthene 45.33 1.075 NA 9
174 C9-naphthene 45.66 1.075 NA 9
175 C9-naphthene 46.08 1.075 NA 9
176 C10-isoparaffin 46.26 1.086 IP 10
177 C10-isoparaffin 46.58 1.086 IP 10
178 C10-isoparaffin 46.72 1.086 IP 10
179 C10-isoparaffin 46.98 1.086 IP 10
180 C10-isoparaffin 47.29 1.086 IP 10
181 C9-naphthene 47.80 1.075 NA 9
182 C9-naphthene 48.10 1.075 NA 9
183 C9-naphthene 48.40 1.075 NA 9
184 C9-naphthene 48.68 1.075 NA 9
185 N-nonane 48.85 1.093 NP 9
186 C9-olefin 49.25 1.075 OL 9
187 C9-olefin 49.50 1.075 OL 9
188 C9-olefin 49.70 1.075 OL 9
189 isopropylbenzene 50.34 1.025 AR 9
190 C9-olefin 50.59 1.075 OL 9
191 C9-naphthene 50.81 1.025 NA 9

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 8


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24
TABLE A1.1 Continued
Nb Compounds Retention, min. Response Factor Hydrocarbon Type Carbon No.
192 C9-olefin 51.01 1.075 OL 9
193 C9-olefin 51.24 1.075 OL 9
194 C10-isoparaffin 51.59 1.086 IP 10
195 C10-isoparaffin 51.93 1.086 IP 10
196 C10-isoparaffin 52.18 1.086 IP 10
197 C9-naphthene 52.62 1.075 NA 9
198 C10-isoparaffin 52.85 1.086 IP 10
199 C10-isoparaffin 53.08 1.086 IP 10
200 C10-naphthene 53.35 1.025 NA 10
201 2,7-Dimethyloctane 53.78 1.086 IP 9
202 C10-isoparaffin 54.23 1.086 IP 10
203 2,6-Dimethyloctane 54.51 1.086 IP 9
204 3,3-Dimethyloctane 54.80 1.086 IP 9
205 N-propylbenzene 55.07 1.025 AR 9
206 3,6-Dimethyloctane 55.34 1.086 IP 9
207 C10-isoparaffin 55.41 1.086 IP 10
208 C10-isoparaffin 55.66 1.086 IP 10
209 1-Methyl,3-ethylbenzene 56.40 1.025 AR 9
210 1-Methyl,4-ethylbenzene 56.68 1.025 AR 9
211 C10-isoparaffin 57.30 1.086 IP 10
212 1,3,5-Trimethylbenzene 57.61 1.025 AR 9
213 4-Ethyloctane 57.94 1.086 IP 10
214 C10-isoparaffin 58.20 1.086 IP 10
215 C10-isoparaffin 58.28 1.086 IP 10
216 5-Methylnonane 58.64 1.086 IP 10
217 1-Methyl,2-ethylbenzene 59.03 1.025 AR 9
217 4-Methylnonane 59.03 1.086 IP 10
218 2-Methylnonane 59.34 1.086 IP 10
219 C10-naphthene 59.56 1.075 NA 10
220 3-Ethyloctane 59.84 1.086 IP 10
221 C10-isoparaffin 60.19 1.086 IP 10
222 3-Methylnonane 60.41 1.086 IP 10
223 C10-naphthene 60.61 1.075 NA 10
224 C10-naphthene 61.06 1.075 NA 10
225 1,2,4-Trimethylbenzene 61.55 1.025 AR 9
226 to 232 C11-isoparaffin from 62.00 1.086 Ip 11
to 64.10
233 C10-aromatic 64.29 1.025 AR 10
234 C10-aromatic 64.64 1.025 AR 10
235 N-decane 64.86 1.086 NP 10
236 C11-isoparaffin 65.18 1.086 IP 11
237 1,2,3-Trimethylbenzene 65.63 1.025 AR 9
238 1-Methyl,4- 66.08 1.025 AR 10
isopropylbenzene
239 1-Methyl,3- 66.47 1.025 AR 10
isopropylbenzene
240 C11-isoparaffin 66.95 1.086 IP 11
241 Indan 67.24 1.025 AR 9
242 C11-isoparaffin 67.53 1.086 IP 11
243 C11-isoparaffin 67.74 1.086 IP 11
244 1-Methyl,2- 68.13 1.025 AR 10
isopropylbenzene
245 2,6-Dimethylnonane 68.43 1.025 IP 10
246 C11-isoparaffin 68.65 1.086 IP 11
247 C11-isoparaffin 69.19 1.086 IP 11
248 C11-isoparaffin 69.98 1.086 IP 11
249 1,3-Diethylbenzene 70.16 1.030 AR 10
250 1-Methyl,3N- 70.58 1.030 AR 10
propylbenzene
251 C10-aromatic 70.76 1.025 AR 10
252 1-Methyl,4N- 71.13 1.030 AR 10
propylbenzene
253 C10-aromatic 71.43 1.025 AR 10
254 1,3-Dimethyl,5- 71.64 1.030 AR 10
ethylbenzene
255 1,4-Diethylbenzene 71.89 1.030 AR 10
256 C12-isoparaffine 72.36 1.086 IP 12
257 1-Methyl,2N- 72.84 1.030 AR 10
propylbenzene
258 C12-isoparaffin 73.18 1.086 IP 12
259 C12-isoparaffin 73.71 1.086 IP 12
260 C12-isoparaffin 73.99 1.086 IP 12
261 1,4-Dimethyl,2- 74.44 1.030 AR 10
ethylbenzene

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 9


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24
TABLE A1.1 Continued
Nb Compounds Retention, min. Response Factor Hydrocarbon Type Carbon No.
262 1,3-Dimethyl,4- 74.69 1.030 AR 10
ethylbenzene
263 C12-isoparaffin 75.13 1.086 IP 12
264 1-Methylindan 75.35 1.030 AR 10
265 1,2-Dimethyl,4- 75.61 1.030 AR 10
ethylbenzene
266 1,3-Dimethyl-2- 76.08 1.030 AR 10
ethylbenzene
267 C11-isoparaffin 76.45 1.086 IP 11
268 to 271 C12-isoparaffin from 76.64 1.086 IP 12
to 78.20
272 1,2-Dimethyl-3- 78.51 1.030 AR 10
ethylbenzene
273 C10-naphthene 78.73 1.075 NA 10
274 C12-isoparaffin 78.92 1.086 IP 12
275 C12-isoparaffin 79.32 1.086 IP 12
276 C12-isoparaffin 79.62 1.086 IP 12
277 N-undecane 80.17 1.086 NP 11
278 1,2,4,5- 80.39 1.030 AR 10
Tetramethylbenzene
279 1,2,3,5- 80.89 1.030 AR 10
Tetramethylbenzene
280 C12-isoparaffin 81.28 1.086 IP 12
281 to 286 C11-naphthene from 81.53 1.075 NA 11
to 83.00
287 5-Methylindan 83.21 1.030 AR 10
288 C11-aromatic 83.45 1.030 AR 11
289 C11-aromatic 83.90 1.033 AR 11
290 C11-aromatic 84.26 1.033 AR 11
291 4-Methylindan 84.60 1.030 AR 10
292 C11-aromatic 84.83 1.033 AR 11
293 C11-aromatic 85.07 1.033 AR 11
294 1,2,3,4- 85.28 1.030 AR 10
Tetramethylbenzene
295 to 302 C11-aromatic from 85.64 1.033 AR 11
to 87.70
303 C12-isoparaffin 87.86 1.086 IP 12
304 C12-isoparaffin 88.09 1.086 IP 12
305 Naphthalene 88.33 1.030 AR 10
306 C12-isoparafin 88.52 1.086 IP 12
307 C12-isoparafin 88.92 1.086 IP 12
308 C11-aromatic 89.15 1.033 AR 11
309 C12-isoparafin 89.39 1.086 IP 12
310 C12-isoparafin 89.61 1.086 IP 12
311 C11-aromatic 89.94 1.033 AR 11
312 C12-isoparaffin 90.12 1.086 IP 12
313 to 320 C11-aromatic from 90.40 1.033 AR 11
to 93.30
321 N-dodecane 93.50 1.086 NP 12
322 C13-isoparaffin 93.81 1.033 IP 13
323 to 337 C11-aromatic from 94.23 1.033 AR 11
to 98.06
338 to 340 C11+-aromatic from 98.30 1.033 AR 11+
to 99.30
341 to 347 C13-isoparaffin from 99.46 1.033 AR 11+
to 101.30
348 2-Methylnaphthalene 101.54 1.033 AR 11
349 to 352 C11+-aromatic from 101.70 1.033 AR 11+
to 103.00
353 1-Methylnaphthalene 103.15 1.033 AR 11
354 and + Hydrocarbon C12+ >103.20 1.035
A
Co-eluted compounds.

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 10


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24
TABLE A1.2 Method 2–Peak Number, Retention Time, Response Factor, Hydrocarbon Type and Carbon Number for Each Component
Nb Compounds Retention, min. Response Factor Hydrocarbon Type Carbon No.
1 Propane 5.08 1.125 IP 3
2 Isobutane 5.84 1.112 IP 4
3 Methanol 6.06 2.850 OX 1
4 Isobutene+1-butene 6.33 1.075 OL 4
5 N-butane 6.55 1.112 NP 4
6 Trans-2-butene 6.83 1.075 OL 4
7 C4-diolefin 6.92 1.045 OL 4
8 CIS-2-butene 7.25 1.075 OL 4
9 Ethanol 8.10 2.300 OX 2
10 3-Methyl-1-butene 8.51 1.075 OL 5
11 Isopentane 9.40 1.105 IP 5
12 1-Pentene 10.33 1.075 OL 5
13 2-Methyl-1-butene 10.78 1.075 OL 5
14 N-pentane 11.12 1.105 NP 5
15 Isoprene 11.45 1.045 OL 5
16 Trans-2-pentene 11.77 1.075 OL 5
17 C5-diene 12.20 1.045 OL 5
18 CIS-2-penteneA 12.40 1.075 OL 5
18 TertiobutylalcoholA 12.40 1.490 OX 5
19 2-Methyl-2-butene 12.82 1.075 OL 5
20 1,Trans-3-pentadiene 13.04 1.075 OL 5
21 1,CIS-3-pentadiene 13.94 1.075 OL 5
22 2,2-Dimethylbutane 14.28 1.100 IP 6
23 1-Cyclopentene 16.14 1.075 OL 5
24 4-Methyl-1-pentene 16.90 1.075 OL 6
25 3-Methyl-1-pentene 17.00 1.075 OL 6
26 Cyclopentane 17.49 1.075 NA 5
27 2,3-Dimethylbutane 17.95 1.100 IP 6
28 MTBE 18.11 1.520 OX 5
29 4-Methyl-CIS-2-pentene 18.52 1.075 OL 6
30 2-Methylpentane 18.68 1.100 IP 6
31 4-Methyl-trans-2-pentene 18.98 1.075 OL 6
32 3-Methylpentane 20.64 1.100 IP 6
33 2-Methyl-1-pentene 21.47 1.075 OL 6
34 1-Hexene 21.64 1.075 OL 6
35 2-Ethyl-1-butene 23.30 1.075 OL 6
36 N-hexane 23.39 1.110 NP 6
37 Trans-3-hexene 23.84 1.075 OL 6
37 CIS-3-hexene 23.84 1.075 OL 6
38 Trans-2-hexene 24.20 1.075 OL 6
39 4-Methyl-1-cyclopentene 24.42 1.075 OL 6
40 2-Methyl-2-pentene 24.58 1.075 OL 6
41 3-Methyl-Trans-2-pentene 24.92 1.075 OL 6
41 3-Methyl-1-cyclopentene 24.92 1.075 OL 6
42 CIS-2-hexene 25.62 1.075 OL 6
43 C6-olefin 25.93 1.075 OL 6
44 3-Methyl-CIS-2-pentene 26.64 1.075 OL 6
45 ETBE 26.75 1.520 OX 6
46 2,2-Dimethylpentane 27.15 1.099 IP 6
46 1-Methylcyclopentane 27.15 1.075 NA 6
47 C6-olefin 27.66 1.075 OL 6
48 2,4-Dimethylpentane 28.28 1.099 IP 7
48 C6-olefin 28.28 1.075 OL 6
49 C6-olefin 28.58 1.075 OL 6
50 2,2,3-Trimethylbutane 28.79 1.099 IP 7
51 C6-olefin 29.14 1.075 OL 6
52 C7-olefin 29.27 1.075 OL 7
53 C7-olefin 30.11 1.075 OL 7
54 C7-olefin 30.82 1.075 OL 7
55 BenzeneA 31.01 1.000 AR 6
55 1-Methyl-1-cyclopenteneA 31.01 1.075 OL 6
56 C7-olefin 31.72 1.075 OL 7
57 3,3-Dimethylpentane 32.20 1.075 IP 7
58 Cyclohexane 32.50 1.075 NA 6
59 C7-olefin 32.76 1.075 OL 7
60 C7-olefin 32.95 1.075 OL 7
61 C7-olefin 33.30 1.075 OL 7
62 C7-olefin 33.46 1.075 OL 7
63 C7-olefin 33.72 1.075 OL 7
64 C7-olefin 34.03 1.075 OL 7
65 C7-olefin 34.51 1.075 OL 7
66 2-Methylhexane 34.81 1.099 IP 7
66 2,3-Dimethylpentane 34.81 1.099 IP 7
66 1,1-Dimethylcyclopentane 34.81 1.075 NA 7
67 Cyclohexene 35.28 1.075 OL 7

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 11


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24
TABLE A1.2 Continued
Nb Compounds Retention, min. Response Factor Hydrocarbon Type Carbon No.
68 3-Methylhexane 36.23 1.099 IP 7
69 C7-olefin 36.95 1.075 OL 7
69 CIS-1,3- 36.95 1.075 NA 7
dimethylcyclopentane
70 Trans-1,3- 37.42 1.075 NA 7
dimethylcyclopentane
71 3-Ethylpentane 37.92 1.099 IP 7
72 Trans-1,2- 38.10 1.075 NA 7
dimethylcyclopentane
73 2,2,4-Trimethylpentane 38.42 1.096 IP 8
74 C7-olefin 38.58 1.075 OL 7
75 C7-naphthene 38.68 1.075 NA 7
76 C7-olefin 39.21 1.075 OL 7
77 C7-olefin 39.63 1.075 OL 7
78 C7-olefin 40.05 1.075 OL 7
79 C7-olefin 40.31 1.075 OL 7
80 N-heptane 40.58 1.099 NP 7
81 C7-olefin 40.77 1.075 OL 7
82 C7-olefin 40.97 1.075 OL 7
83 C7-olefin 41.17 1.075 OL 7
84 C7-olefin 41.46 1.075 OL 7
85 C7-olefin 41.63 1.075 OL 7
86 C7-olefin 41.87 1.075 OL 7
87 C7-olefin 42.03 1.075 OL 7
88 C7-olefin 42.17 1.075 OL 7
89 C7-olefin 42.62 1.075 OL 7
90 C7-olefin 42.79 1.075 OL 7
91 C7-olefin 43.09 1.075 OL 7
92 1-Methylcyclohexane 43.32 1.075 NA 7
92 CIS-1,2- 43.32 1.075 NA 7
dimethylcyclopentane
93 1,1,3- 44.07 1.075 NA 8
Trimethylcyclopentane
94 2,2-Dimethylhexane 44.34 1.096 IP 8
95 C8-olefin 44.92 1.075 OL 8
96 C8-olefin 45.30 1.075 OL 8
97 1-Ethylcyclopentane 45.51 1.075 NA 7
98 2,2,3-Trimetylpentane 46.00 1.096 IP 8
99 2,5-Dimethylhexane 46.15 1.096 IP 8
100 2,4-Dimethylhexane 46.43 1.096 IP 8
101 1,Trans2,CIS4- 47.12 1.075 NA 8
trimethylcyclopentane
102 3,3-Dimethylhexane 47.44 1.096 IP 8
103 C8-olefin 47.64 1.075 OL 8
104 C8-olefin 48.19 1.075 OL 8
105 1,Trans2,CIS3- 48.38 1.075 NA 8
trimethylcyclopentane
106 C8-olefin 48.63 1.075 OL 8
107 2,3,4-Trimetylpentane 48.92 1.096 IP 8
108 2,3,4-TrimetylpentaneA 49.50 1.096 IP 8
108 TolueneA 49.50 1.008 AR 7
109 C8-olefin 50.07 1.075 OL 8
110 C8-olefin 50.32 1.075 OL 8
111 C8-olefin 50.54 1.075 OL 8
112 C8-olefin 50.67 1.075 OL 8
113 2,3-Dimethylhexane 50.91 1.096 IP 8
114 2-Methyl-3-ethylpentane 51.23 1.096 IP 8
115 C8-naphthene 51.34 1.075 NA 8
116 2-Methylheptane 52.04 1.096 IP 8
117 4-Methylheptane 52.27 1.096 IP 8
118 3,4-Dimethylhexane 52.34 1.096 IP 8
119 C8-olefin 52.60 1.075 OL 8
120 C8-olefin 52.95 1.075 OL 8
121 3-Methylheptane 53.26 1.096 IP 8
122 1,CIS-3- 53.40 1.075 NA 8
dimethylcyclohexane
122 1,Trans-4- 53.40 1.075 NA 8
dimethylcyclohexane
122 1,CIS2,Trans3- 53.40 1.075 NA 8
trimethylcyclopentane
123 C8-olefin 53.87 1.075 OL 8
124 C8-olefin 54.08 1.075 OL 8
125 C8-olefin 54.34 1.075 OL 8
126 C8-olefin 54.73 1.075 OL 8
127 2,2,5-Trimethylhexane 55.06 1.093 IP 9

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 12


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24
TABLE A1.2 Continued
Nb Compounds Retention, min. Response Factor Hydrocarbon Type Carbon No.
128 1-Me-T3- 55.42 1.075 NA 8
ethylcyclopentane
128 C8–olefin 55.42 1.075 NA 8
129 1-Methyl-CIS- 55.63 1.075 NA 8
3–ethylcyclopentane
129 C8-olefin 55.42 1.075 OL 8
130 1-Methyl-Trans-2- 55.84 1.075 NA 8
ethylcyclopentane
130 C8-olefin 55.84 1.075 OL 8
131 1-Methyl-1- 55.94 1.075 NA 8
ethylcyclopentane
131 C8-olefin 55.94 1.075 OL 8
132 1,Trans-2- 56.29 1.075 NA 8
dimethylcyclopentane
133 C8-olefin 56.50 1.075 OL 8
134 C8-olefin 56.80 1.075 OL 8
135 C8-olefin 57.24 1.075 OL 8
136 C8-naphthene 57.70 1.075 NA 8
136 N-Octane 57.70 1.096 NP 8
137 C8-olefin 58.32 1.075 OL 8
138 C8-olefin 58.50 1.075 OL 8
139 C8-olefin 58.66 1.075 OL 8
140 2,2,4-Trimethylhexane 58.82 1.093 IP 9
141 C8-olefin 59.59 1.075 OL 8
142 2,3,5-Trimethylhexane 60.28 1.093 IP 9
143 C8-olefin 60.40 1.075 OL 8
144 2,2-Dimethylheptane 60.89 1.093 IP 9
145 C8-olefin 61.07 1.075 OL 8
146 1,CIS-2- 61.31 1.075 NA 8
Dimethylcyclohexane
147 2,4-Dimethylheptane 61.54 1.093 IP 9
148 C8-olefin 61.77 1.075 OL 8
149 1-Ethylcyclohexane 62.17 1.075 NA 8
150 C9-naphthene 62.42 1.075 NA 9
151 2,6-Dimethylheptane 62.59 1.093 IP 9
152 C9-naphthene 63.02 1.075 NA 9
153 2,5-Dimethylheptane 63.60 1.093 IP 9
154 C8-olefin 63.79 1.075 IP 9
155 C8-olefin 64.10 1.075 OL 8
156 C8-olefin 64.33 1.075 OL 8
157 ethylbenzene 65.02 1.018 OL 8
158 C9-naphthene 65.40 1.075 AR 8
159 C8-olefin 65.77 1.075 OL 8
160 Metaxylene 66.46 1.018 AR 8
161 Paraxylene 66.60 1.018 AR 8
162 C9-naphthene 66.97 1.075 NA 9
163 3,4-Dimethylheptane 67.08 1.093 IP 9
164 4-Ethylheptane 67.42 1.093 IP 9
165 4-Methyloctane 67.89 1.093 IP 9
166 2-Methyloctane 68.04 1.093 IP 9
167 C9-isoparaffin 68.78 1.075 IP 9
168 3-Ethylheptane 68.97 1.093 IP 9
168 3-Methyloctane 68.97 1.093 IP 9
169 Orthoxylene 69.65 1.018 AR 8
170 C9-naphthene 70.12 1.075 NA 9
171 C9-naphthene 70.52 1.075 NA 9
172 C10-isoparaffin 70.68 1.086 IP 10
173 C10-isoparaffin 71.05 1.086 IP 10
174 C10-isoparaffin 71.58 1.086 IP 10
175 C9-olefin 71.99 1.075 OL 9
176 C9-olefin 72.23 1.075 OL 9
177 C9-naphthene 72.47 1.075 NA 9
178 C9-naphthene 72.88 1.075 NA 9
178 N-nonane 72.88 1.093 NP 9
179 C9-naphthene 73.29 1.075 NA 9
180 C9-olefin 73.68 1.075 OL 9
181 isopropylbenzene 74.23 1.025 AR 9
182 C10-isoparaffin 74.71 1.025 IP 10
183 C10-isoparaffin 75.19 1.086 IP 10
184 C10-isoparaffin 75.46 1.086 IP 10
185 C10-isoparaffin 76.20 1.086 IP 10
186 C10-isoparaffin 76.41 1.086 IP 10
187 2,7-Dimethyloctane 77.05 1.086 IP 10
188 2,6-Dimethyloctane 77.56 1.086 IP 10
189 N-propylbenzene 78.15 1.025 AR 9

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 13


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24
TABLE A1.2 Continued
Nb Compounds Retention, min. Response Factor Hydrocarbon Type Carbon No.
190 C10-isoparaffin 78.51 1.086 IP 10
191 1-Methyl,3-ethylbenzene 79.18 1.025 AR 9
192 1-Methyl,4-ethylbenzene 79.42 1.025 AR 9
193 1,3,5-Trimethylbenzene 80.14 1.025 AR 9
194 C10-isoparaffin 80.81 1.086 IP 10
195 C10-isoparaffin 81.04 1.086 IP 10
196 1-Methyl,2-ethylbenzene 81.31 1.025 AR 9
197 C10-isoparaffin 81.78 1.086 IP 10
198 C10-isoparaffin 82.15 1.086 IP 10
199 C10-naphthene 82.53 1.075 NA 9
200 C10-isoparaffin 82.76 1.086 IP 10
201 1,2,4-Trimethylbenzene 83.25 1.025 AR 9
202 C10-naphthene 83.60 1.086 NA 10
203 C10-isoparaffin 83.72 1.086 IP 10
204 C10-Aromatic 84.82 1.025 AR 10
205 C10-Aromatic 85.05 1.025 AR 10
206 C10-Aromatic 85.37 1.025 AR 10
207 N-decane 85.54 1.086 NP 10
208 C10-Aromatic 85.87 1.025 AR 10
209 1,2,3-Trimethylbenzene 86.42 1.025 AR 9
210 1-Methyl,4- 86.59 1.025 AR 10
isopropylbenzene
211 1-Methyl,3- 86.97 1.025 AR 10
isopropylbenzene
212 C11-isoparaffin 87.45 1.025 IP 10
213 Indan 87.71 1.025 AR 9
214 C11-isoparaffin 88.02 1.025 IP 10
215 1-Methyl,2- 88.40 1.025 AR 10
isopropylbenzene
216 C11-isoparaffin 88.77 1.025 IP 10
217 1,3-Diethylbenzene 89.68 1.030 AR 10
218 1-Methyl,3N- 89.99 1.030 AR 10
propylbenzene
219 1-Methyl,4N- 90.43 1.030 AR 10
propylbenzene
220 1,3-Dimethyl,5- 90.74 1.030 AR 10
ethylbenzene
221 C10-Aromatic 91.02 1.030 AR 10
222 1-Methyl,2N- 91.71 1.030 AR 10
propylbenzene
223 C12-isoparaffin 92.21 1.086 IP 12
224 C12-isoparaffin 92.52 1.086 IP 12
225 1,4-Dimethyl,2- 92.83 1.030 AR 10
ethylbenzene
226 1,3-Dimethyl,4- 93.02 1.030 AR 10
ethylbenzene
227 C12-isoparaffin 93.45 1.086 IP 12
228 1-Methylindan 93.68 1.030 AR 10
228 1,2-Dimethyl,4- 93.68 1.030 AR 10
ethylbenzene
229 C12-isoparaffin 94.15 1.086 IP 12
230 C12-isoparaffin 94.35 1.086 IP 12
231 1,3-Dimethyl-2- 94.53 1.030 AR 10
ethylbenzene
232 C11-isoparaffin 95.09 1.086 IP 11
233 C12-isoparaffin 95.53 1.086 IP 12
234 1,2-Dimethyl-3- 95.85 1.030 AR 10
ethylbenzene
235 C10-naphthene 96.17 1.075 NA 10
236 C12-isoparaffin 96.41 1.086 IP 12
237 N-Undecane 96.59 1.086 NP 11
238 C12-isoparaffin 96.80 1.086 IP 12
239 1,2,4,5- 97.15 1.030 AR 10
Tetramethylbenzene
240 1,2,3,5- 97.51 1.030 AR 10
Tetramethylbenzene
241 C11-naphthene 98.11 1.075 NA 11
242 C11-isoparaffin 98.53 1.025 IP 10
243 5-Methylindan 99.27 1.030 AR 10
244 C11-Aromatic 99.75 1.033 AR 11
245 C11-Aromatic 100.05 1.033 AR 11
246 4-Methylindan 100.32 1.030 AR 10
247 C11-Aromatic 100.57 1.033 AR 11
248 1,2,3,4- 100.77 1.030 AR 10
Tetramethylbenzene

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 14


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24
TABLE A1.2 Continued
Nb Compounds Retention, min. Response Factor Hydrocarbon Type Carbon No.
249 to 254 C11-aromatic from 101.25 1.033 AR 11
to 103.20
255 Naphthalene 103.30 1.030 AR 10
256 C12-isoparaffin 103.85 1.086 IP 12
257 to 263 C11-aromatic from 104.10 1.030 AR 11
to 107.50
264 N-dodecane 107.81 1.086 NP 12
265 to 274 C11+-aromatic from 107.90 1.033 AR 11+
to 114.00
275 2-Methylnaphthalene 114.09 1.033 AR 11
276 1-Methylnaphthalene 115.54 1.033 AR 11
277 and + Hydrocarbon C12+ >115.70 1.035
A
Co-eluted compounds.

FIG. A1.1 Method 1–Reference Chromatogram with Retention Times and Peak Numbers

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 15


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24

FIG. A1.1 Method 1–Reference Chromatogram with Retention Times and Peak Numbers (continued)

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 16


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24

FIG. A1.1 Method 1–Reference Chromatogram with Retention Times and Peak Numbers (continued)

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 17


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24

FIG. A1.1 Method 1–Reference Chromatogram with Retention Times and Peak Numbers (continued)

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 18


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24

FIG. A1.2 Method 2–Reference Chromatogram

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 19


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24

FIG. A1.2 Method 2–Reference Chromatogram (continued)

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 20


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24

FIG. A1.2 Method 2–Reference Chromatogram (continued)

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 21


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24

FIG. A1.2 Method 2–Reference Chromatogram (continued)

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 22


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG
D6733 − 24

APPENDIX

(Nonmandatory Information)

X1. BIBLIOGRAPHY

X1.1 The following publications on DHA analyses may be Gasolines by Capillary Gas Chromatography,” SAE Paper No.
useful as background and are recommended to the user of these 930144, March, 1993.
test procedures:
X1.1.5 DiSanzo, F. P. and Giarrocco, V. G., “Analysis of
X1.1.1 Johansen, N. G. and Ettre, L. S. “Retention Index Pressurized Gasoline-Range Liquid Hydrocarbon Samples by
Values of Hydrocarbons on Open Tubular Columns Coated Capillary Column and PIONA Analyzer Gas
with Methyl Silicone Liquid Phases,” Chromatographia, Vol 5, Chromatography,” Journal of Chromatographic Science, Vol
No. 10, October 1982. 26, June 1988, pp 258-266.
X1.1.2 Johansen, N. G., Ettre, L. S., and Miller, R. L.
X1.1.6 Durand, J. P., Beboluene, J. J. and Ducrozet, A.,
“Quantitative Analysis of Hydrocarbons by Structural Group
“Detailed Characterization of Petroleum Products with Capil-
Type in Gasolines and Distillates. Part 1,” Journal of
lary GC Analyzers” Analusis, 23, 1995, pp. 481-483.
Chromatography, 256, 1983, pp. 393-417.
X1.1.3 Kopp, V. R., Bones, C. J., Doerr, D. G., Ho, S. P., X1.1.7 Canadian General Standards Board: CAN/
and Schubert, A. J. “Heavy Hydrocarbon/Volatility Study: Fuel CGSB–3.0, No.14.3-94, “Test Method for Individual Hydro-
Blending and Analysis for the Auto/Oil Air Quality Improve- carbon Component Analysis (IHA) in Spark Ignition Engine
ment Research Program,” SAE Paper No. 930143, March, Fuels by Gas Chromatography.”
1993. X1.1.8 French Standard NF N07-086, December 1995,
X1.1.4 Schubert, A. J. and Johansen, N. J. “Cooperative “Determination of Hydrocarbon Type Contents in Motor Gaso-
Study to Evaluate a Standard Test Method for the Speciation of lines from Detailed Analysis Capillary Gas Chromatography.”

SUMMARY OF CHANGES

Subcommittee D02.04 has identified the location of selected changes to this standard since the last issue
(D6733 – 01 (2020)) that may impact the use of this standard. (Approved Nov. 1, 2024.)

(1) Added Terminology D4175 and Practice E594 to Sections


2 and 3.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned
in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk
of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and
if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards
and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the
responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should
make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,
United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above
address or at 610-832-9585 (phone), or through the ASTM website (www.astm.org/contact). Permission rights to photocopy the
standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600;
http://www.copyright.com/

&RS\ULJKWE\$670,QW O DOOULJKWVUHVHUYHG 7XH$SU87& 23


'RZQORDGHGSULQWHGE\
8)5- 8QLYHUVLGDGH)HGHUDOGR5LRGH-DQHLURSXUVXDQWWR/LFHQVH$JUHHPHQW1RIXUWKHUUHSURGXFWLRQVDXWKRUL]HG

You might also like