Cambridge IGCSE: Mathematics 0580/04
Cambridge IGCSE: Mathematics 0580/04
*0123456789*
MATHEMATICS 0580/04
Paper 4 Calculator (Extended) For examination from 2025
INSTRUCTIONS
● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● Do not write on any bar codes.
● You should use a scientific calculator where appropriate.
● You may use tracing paper.
● You must show all necessary working clearly.
● Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.
● For π, use either your calculator value or 3.142.
INFORMATION
● The total mark for this paper is 100.
● The number of marks for each question or part question is shown in brackets [ ].
List of formulas
1
Area, A, of triangle, base b, height h. A = 2 bh
1
Volume, V, of pyramid, base area A, height h. V = 3 Ah
1
Volume, V, of cone of radius r, height h. V = 3 rr 2 h
4
Volume, V, of sphere of radius r. V = 3 rr 3
-b ! b 2 - 4ac
For the equation ax2 + bx + c = 0, where a ≠ 0, x= 2a
A a b c
= =
sin A sin B sin C
a 2 = b 2 + c 2 - 2bc cos A
c b
1
Area = 2 ab sin C
B a C
1 Write down the integer values of x that satisfy the inequality –2 ⩽ x < 2.
2 1,0 13
............................................... [2]
2
P
3 Simplify.
(x8y7) (x–1y3)
t 44
............................................... [2]
4 f(x) = 3x – 5
The domain of f(x) is {–3, 0, 2}.
3 3 5 14
at 3
3 0 5 5
0 1
14 5,1
{ ........................................... } [2]
312 5
5
North
North
1cm 3km
11cm B
11 3 33
.......................................... km [1]
120
............................................... [1]
120 180
300
............................................... [2]
600 10 12 4
5
.......................................... cm [2]
(b) The solid metal cuboid is melted and made into 1120 spheres, each with radius 0.45 cm.
sphere
10453 0 3817 cm 1120
427 508
600 427 508 172 49
172 5
......................................... cm3 [2]
1
7 On any day the probability that it rains is .
3
3
When it rains the probability that Amira goes fishing is 5 .
3
When it does not rain the probability that Amira goes fishing is .
4
60 20
............................................... [1]
Rain Fishing
3 Yes
5
Yes
1
3
................ No
Yes
................
................ No
................ No
[2]
(c) Find the probability that on any day Amira goes fishing.
1 35 3 7 70
............................................... [3]
8
y
8
R
4
0 1 2 3 4 5 6 7 8 x
8 10 8
NOT TO
Speed SCALE
(m/s)
0 113,0
0 Time (seconds) 10 13
8
1011 92
............................................ m [2]
© Cambridge University Press & Assessment 2022 0580/04/SP/25 [Turn over
8
10 Factorise.
2x + 6 – 3xy – 9y
3
21 3
3y
2 3 [2]
3
...............................................
11
A B
20 3 17
4 6 7
10 13 23
23 17 6
3
0
n( ) = 20, n(A B) = 3, n(A) = 10 and n(B) = 13.
The Venn diagram shows some of this information. 0
Find
(a) n(A B)
6
............................................... [2]
(b) n(A B) .
7
............................................... [1]
125 7 22
15511162.544171175
160.375
.......................................... cm [4]
13
D
NOT TO
15 cm
SCALE
A C
62°
14 4
12 cm
14 cm
The diagram shows a quadrilateral, ABCD, formed from two triangles, ABC and ACD.
ABC is a right-angled triangle.
tanx 1
x tañ 49.398
49.4
Angle BAC = .............................................. [2]
Levered
BD 12415221121415 11.45
22.36
22.4
22.4
BD = ......................................... cm [4]
sin 62
2 15 29
13.2
.......................................... cm [3]
Simple
I P ftp
1 18
2qf5x8 20oo 1
I 400 fA A 2343 32
A 2400
2400
Simple interest investment $ ....................................................
2343.32 [5]
Compound interest investment $ ....................................................
(ii) Find the overall percentage increase in the $4000 investment at the end of 8 years.
4743.32
4000 100
1
47432,3 118.583
18.6
............................................ % [2]
(iii) Find the number of complete years it takes for the compound interest investment of $2000 to
become greater than $2500.
2500 2000 1 F
using
trial improvement
n 11 2486.7
12 2536 5
12
............................................... [3]
years
(b) Alain invests $5000 at a rate of r% per year compound interest.
At the end of 15 years, the value of the investment is $7566.
15
5 oct fat
100
FF 1 r
2.799 2.80
r = .............................................. [3]
15 y= u2x
Fx25 35
y = .............................................. [2]
U x
y
x
5
x = .............................................. [2]
51412 85 13.42
13 4
13 4 units
............................................... [3]
(b) Find the equation of the line that is perpendicular to AB and that passes through the point (−1, 3).
Give your answer in the form y = mx + c .
2
8
m
MAB
Y m x C
3 2 1 C
3 2 C
C 5
2 5
y = .............................................. [4]
17
18 cm
x° NOT TO
SCALE
13 cm
50 21 18 13 sinx
50 117 sinx
5
sinx
57
sin x = .............................................. [2]
18 Solve.
3y 3
=
2y 1 4
3
12g 6y
3
6y y y = .............................................. [3]
63sin60
As
953
Anect 20 6 120
6 6
20
6 2 95 3 120
360
3188
391.2
......................................... cm2 [4]
dy
20 y = 2xk + ux7 and = 18xk–1 + 21x6
dx
Find the value of k and the value of u.
74 21
2k 18
4 3
k 9
9
k = ....................................................
3
u = ....................................................
[2]
21 Simplify.
5p 2 20p
EE
2p 2 32
2 IFIaFa
© Cambridge University Press & Assessment 2022 0580/04/SP/25
............................................... [3]
15
T
ᵗ
K NOT TO
t
2 s
L
SCALE
O P
Ip
p
m
In the diagram OT = t and OP = p.
OK : KT = 2 : 1 and TL : LP = 2 : 1.
(i) PL
TL LP TP
2
ti t p
LP t p
(ii) KL. It SP
............................................... [2]
OK KT OT TL 3 ttp
2
3 38
12
ᵗ3P
............................................... [2]
KM 3t P 0m Ip
one p
3
OT OT
[2]
2x 1 43 4
4 x 5 0
f
biz
É
2.79 1 79
A ( .................... , .................... )
12.99
48
B ( .................... , .................... )
[6]
Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (Cambridge University Press & Assessment) to trace copyright holders, but if any items requiring clearance
have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.
Cambridge Assessment International Education is part of Cambridge University Press & Assessment. Cambridge University Press & Assessment is a department
of the University of Cambridge.