0% found this document useful (0 votes)
25 views53 pages

UNIT-3 (Estimation Theory)

The document discusses point estimation methods for statistical parameters, including sample mean and variance, and emphasizes the importance of unbiasedness, consistency, efficiency, and robustness in estimators. It also covers maximum likelihood estimation (MLE) and its properties, highlighting that MLEs are often unbiased and efficient but not necessarily sufficient. Additionally, the text explores the median as a robust measure and the impact of sample size on estimation accuracy.

Uploaded by

ssihplanner
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
25 views53 pages

UNIT-3 (Estimation Theory)

The document discusses point estimation methods for statistical parameters, including sample mean and variance, and emphasizes the importance of unbiasedness, consistency, efficiency, and robustness in estimators. It also covers maximum likelihood estimation (MLE) and its properties, highlighting that MLEs are often unbiased and efficient but not necessarily sufficient. Additionally, the text explores the median as a robust measure and the impact of sample size on estimation accuracy.

Uploaded by

ssihplanner
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 53

O

Lshmatíon Throny
Sec
uused a
ass
ohouse Value
Stnishc Ca lleel an
Pon4 sme H Pova mele.
estimetov
(OR) a
Pavicular
PAya metes
An eshmehe th
Of the esimator
dbtaine y1 SamplJ
Dumen n l Va lue

I huo
yp
()Poit esimehier

() Tnerial estimertion

Sec
Pont Estimahon
Parameler
Popuah on
eshmae of a
an
Singe Valu, then he eshmale
ven by Payamee r .
Ca lled a Point eshme of
the

L a Poim estima
F Sample mean

Popution maan

POint
eStimae of
VaYIa nce
Sample
Popubhion Variance -

Point esti males


Metds nding Value of
the
Tvn obtained u suS acheve the
Statish c denved fro Suavey data to
the Populai on'S Coses pondin g
oes+ approxation af
e sti mato S CAn be
Unknowwh parameler. Thu Point
as is
methodS, each
Cakuh ed uSin yaty
Own Pope
co 1
Momevts
Method f about he
with mown facts
T that
beginsaffeck S a Sample
Paramee r

Populetion poPulti on
h+ Connec
O Coeale
PTamokers.
moments unknaun
Sam ple from which
Select the popula-tion
P o p u l a t h io m momen+s
esti me th
momeNS
The Sample of he Population
3The
sed Solve the u a h onms

e S t i m c r h on
acumae
Tis helds mas +

unKmaw pOpulathon Paame esS.

Example denSt of
the
paAmelerSo,, K
the Opuatio

L3 fo find the Pns of Sample


Our In lerest P a a meB
,, ,8k
momenS hat w es male h

densi fn the popuahm,


OLo+ f(ol , O2, 9 ) > dens- dsaw0.
Sigeen Samples
fem cahich (1y n)
then Tel2-K.
fu;o,0,-, 8.)dz,
be fhe
In Genral wl

pAYAmeers

we P , 8ar.. Oc
Solving

4Honda,

,(mm-,)

eanlation
obtainnd 6y ment t Smpe
whese m
t O rdor Mo

Noe
Parameess, we
eStimaR the
we wish to
about the ongn
Compule k mome ntS
Should

Metwod oment
estimatos S Aye
uSuall
ess efficien than MLE's
laximum ltolhood ochmator Poi n t
kethocd Osthmrtos
pAramoers
tool
hat tie s ftndunknos h
dale Sets
Jtalhod funchom T Corrpares
th nitASe he
he best t fo datn bH usin g
and ds
model
Poven
Values

Dein
.kelhood

maximu m

Sahhc
&(x ,1)
A
e hma h o
XA) u
Samle , ,1., A , ,
Onch
T fo hea+ maxi miys
PArRm ets
Va h Ro L (0/x 2/X»)
Ielhoat funchion

maximum
ikelih aod Hhe
Methed 0 f esti mato Y

amethod, a good
hw
T he Lkel.hoo d M a k muM

mxim
s Callel Hh
whch
One f(.,o). It u
f(1,,0),. ,

L f , O); e stimatos (MLE). Populti m

MLE Sos t
Litelhood the
t
Sehsie
Pavomet o

ecivalen
L +ve, o
COT)

Psa chca
convehient
=o a
to as ikelihood
uSunly T*ffered
omd itF

euah or

Nole u sualy
Peram e e
Tw MLLE of
denond
MaK im um
ke lihoo d OshmaosS
Propomes ef
COnsisent
MLE a
oose fficiontt
2) MLE
fSufficiend SeShimntor5 4
MLEs e Sufficiens,

unbiased
hot necossaily
MLE S C
nve he nyaianco PDpe*
MLEs
u t MLE sb , hen

So) will be a MLE fos


nos mau
MLE emds to
t h the dismbuthon
forv Nexge Amples

Chacesi cs Estimtion
estimatos should
Point
A Food
following Coilena
SaHsfy
C Unbiasedness

( Consisknc
3) EF: oen
C4) Sfficien
S ) RobuSt ness

() Unbiased ness hn
am
eshmqtur
Le+ be Said to be
(A12,.A)
th e Shmatos rameter
unbia sed estimae of

I Eo) - o to
be Poshvely
I E0)>8, then &aid

iased oe
E (0)< 0, hen T Said hatively
IP
rased amount
ef a S
Caled
EC)-o}

denoted 4
.bo) EC)-
om
Uased
E), he Somple ean an

esma a popuhhon mean

w heve ,- 7
unbiased s t mak

Bu Ae

U brse d Sn

Also, S nS
n-

Cons+
e
obleid from
Stetshc be
Consi ten+
Said to
Smpie Si , I f i+ corme S close
Premees
Ww hen n be con9
th ree ,
amd Claser
Jage nd avg
I ezo
To-o|
n
s e] =

a Consis ent if it ConNer


esti motor 0
to P, S t Sample Siy

) E fcitnc
two more Cons Sent
ge+
eimato1S th Same PaYamees
fo
2 Consisen eshmtto1S exist fo Same
PaTamekr 9, then tw Stohsh c w th th Smalley

Vanane Called an
efficien4 estimtor fO

wule otw Stah sh c Called an mefi ciênt


esh metoí of
fov tw o Consi sen e shato 5 and

fos we have V(D, )< V(O) then


n fhient esi n atov

c o n si Sk nt astimator Od a a r mekr 0,
th One wth he Smalles VAnana Called
mosh efAiie eshator best Sh mtor e
3

S
i
The median is a obust meaSu
Ccensal

cndeny
TaK Some dlalaset f2,3,5,6,9 1. - | o00
daapbin wth Value
T ue add anol
+1000
hen the median wil cma sligy
t med an
the
wll Shll e Simla
bu dsta
the o gnml

and i n e aarhle
3 hu median bsolue deviation
S tatishal
en 2 ae vobu St+ meSus s af
oeviaton and
disprSiom, whele t Stendrd
a ng ee e

S t i mators
win Sonsed
and
Timmed stimator S
me thadd to
make StotiStics meve obst

3enere
cass of Simple Stetish cs,
L- eshmaorS
Y
neral
obs wmle M-estmatos S
Stah sthcs and Ye
Y obust
Class Can be involved
tha
Preeed Son though
calcue

APplhcan yeressiom problems,


also exist fo
I+ u para me ler dismbuh n
modelsS
naluggd inar
d i s m b u t i on s
Vanouss
fo R

Pera mc hoc StahsFcs So that


esthmato
imfluea funchr b
designing
0)5y
0)0 behaviour
P e . Seleckd

achieved. th
e ophn

eplain 1 eshmato s smbuth on


Gi B omT)

Under
ascumphon
that
w th OR oistmbuti ons de)
deaved foT, other
ateas+ freedom.
t-dishmb h m
with ow degsa
MSing tw
OR
With mixture tup moTe isabuhons
PobemS-
Sude d o liong
PAsamek iS
Nocati on
Est mtin
Scale

Tessi Coe-fficic ntS


Thedels
n
Esh mti on model- Staes
for whhch
in Stae-Spele fovm,
pressed
the Standad metmod eauivalent

Kalman fhes
PaoblemS esti mator
an
unbiase d
mean
3T the Sample
Populthon mean
for the

Soln
TP: E(Z)» .
andomn Sample
the
Let Sie n

E3E1-E(Za) E

t Ean
E,
(H+H)

estimrto
anblased
an

r a m e hrs s
with
binomi a Varine
ProPoton
observed POpatawom of
n and P hen ST n tho p a T a m e k r
UnbiaSe d estimato ef
Succe SSeS an

Soln bivoial Vaia


th ParameksS

a
GYen
and P, hen Mean (X)- np
TT E(): P
E(x)
Le E() %
An
Unbiased esimcoT fhe
Parameler p

Show t h a t

3 Tf 3 m Unbiased estimae
a biad eStimato7
is

Sol u an
Unbiased
esti me
Guven
>ElO) 0.
E () # 0*
T.P
Vea()ElO) -¬c6)
Naw
Naw
(E(6) )*
ElO)- Vaa(6) +
Van (0) + 0

ElO) 2
biased estimatoT 0
a

faom a Novmal
a
Tando m Sample
4)I N(), then,
PoPul ati m
2 an Unbiasedd esti mator
ST

Soln
Given Vanlxi) - I
amd
E (Ai)-
El) +
EËJ
Et
ECt)E
Let
et,

.'. ECt) +
A) Si n
5P.T,for andom Sample
drawn om a ven ange Populaan
CP), a3)
An Unbiased estimato f h Parame k1
S ( x - ) u an unbiase d esti marto
n-

Soln

(-5) 2 [-) - (-PJ

a(-T-H)
- + -N)
-

A
i

+n-H)-2G-
2
2 (i-)
(-)

2T-) (7-u
2 H) +n(7-H)-

nli-4)
-

O
Ci-H)-

Given -7)
T

- n-)J from
s (-

E - - nE (-
El
E(i-p)
w.kT E(;-) -

ElS') xha -*

unbi ood

n
estimatos

ConSider,
-
an
unbiaSed estmor f*.
6) ST `- 5 (x,-5) Un bia se esimortor
n- ef
tHhe PaYame les

Soln

2( -3) -H+H- <)

2,- - (%-p)]

-H) + (Í-)J
- a (4i-H)

+n-H)
-)-a-H) (o;-H)

2(-¥)n(-4) +n (i-4)
-p) -

(o-H) - nlz-H)

Given 5(-a)
- p ) - o (i-H]
n-i

E S ) E - - n EC=-P)J
n-

na
(na- J

Unbiased esimator
an
Hence, 8 z%- th PaTAmeR1
n-
12
are Sample Vaiables based o n
YandomSamples ef Siyes . . , Nr respe ctvely
Populatim with Vasiance
drawn from a lavge O

Omd T S; 3 = an Unbiased estmak ef

find h Value 8

Soln
T an Unbiased estimshe
2
ECT).

E( 4)-
2

EC) -

i)
( i - ) =*

7 n; 6,+n,t... + n) -1

Te X,72,
andom Sample from NC)
an Unbiase d
omd T 1-HI, hen TVi
esti mak

S ln

T -H

ECT El%-
deviaho about h
E-H the meann

oms di sm bi om
mean e iven
wich

ECT)
unbiased
E (T) an

estimo

N (0,)
trom
Tf , n Tan dom Sample
Unbiased
e stime
ond 2,
if T: then T an
a n

on

ECT) E (4)
i

N(o, s)
Elx)» Van(I;)
+
E ()

ECT)L.pr* ea
obtai nad fem
the Valuns
oBelow dou are
iven taken from
obserVatim
Tandom Sample
Popul ahon .
infin e 34
35
32 34 an
for . Ts

find Point estimato


? Explain.
un bi a se d est mre
Awo an
the Point eshmtos for Ts
Fnd
unbiaSed esti maR o Explain
Point+ e stimatos for
Rind

the
Nhat Can be Said a bout
Sampin
disibehn Be Suse to aiscuss
expeched Valu Standard deviati on, and

th Shapee Samping disibuhsn

Solr
eSim atoT
A= 32t 34t35+31
@Point

35.
an CAnbiased e stimato s d P.

(from problem 1)
Point eshmaor 2 ( - T *
. s(d-3
n-

(32-35) +(3 4-3 5) + (35-35)+ (39-35)


4

9+1+ 0 +6 = 8.66L*
3
eshimato
T s an un biased
(from problem 3)

e Shimator Vs 6644
Point
= 2.94 39

ual to
dishibti on
mas m ean

The Samplinq
mean. Tie Sampling dish bcti
m
has
he POpulation divided
he Population SD f
a S D equal
of he Sampk
by The SqaAY
oot Si
Sam phng dismbethi m
he
T Shape
nbma Cuwe
4 drawn
, a,x4) of Si Consider
1A Tandom Sample C unKmo wn
mean

populatien
from aa noma eshimae
esti m afors

he followin

i) ta= It 24 tA3 where


3 Find . Ave

an Unbiased estimto
9t Hhe
estimator
Teas o n s
unbia sed ? Stae
ti,t2 and t3
bes+ am ong
a m on
which

Sol ECx)-H,
Van (i) -a

We have
0, i#j =l,2,n.
Cov(i, X)
ECE) E + t+ g+1

EC . F 3
3

unbiased estimator
an

C3+AJ-
3 t3

+ Vlt,)+V(z
V) . [Va,)+ VOa)

+vla) + V)
V)= [v(z)+Via,)
+*
%( ) +

(a1) + v()
v) V
5
Sense

i the best estime


least, t
Vt)
leas4 Vaaianc
andom Sample of
amd 4 amd Vanance o
12) Le+ o4, man
Value
PoPulaion

from a
esimatdo S used +o estimae
e
Let 2,T
Value whese
T +232 +33 -5ol4

g: K +2 +3 +4
estimator s2
Unbiased
Tand a r e
(i ind
whethe Unbiased estimator
s
01) nd he Value ef k
k
3

for
ConSisknt

(t) With t w

estimao"?
best eshmato
Cw) Ahat s the

Poma
Soln an
Tan dom Sample
Sine , 2 , g, 4 VaianCe
and
Populati m with mean
n)
V (x)
= Co (a1,3)-o, Ci4j=l,3..
E () H,
E CT) =
Mtp+H - 2=B
C Ts a Unbised
esti matox

ECT)= H+2t 3u -5.


=
. an
un b i a s e

B alSo
wich implies
that T,
esh mator af

Gi) We ase ven ECT) -F

F + H+M+H -

3M+K =
4
K

-.
Cif) wth K,
G: (x,+ +3 +4) Populahm
Con st6 Hent e sh m a t t o r
a
men
numberS, T3 is a
Sanpl Jarg
the heetlaw
by esti natoT -
Consi s e n t
4V(4) 1
oV Var T Vx V()+V(4) +

Vav(T) t 4010- a5
3

Va (T). t o n a ) - 4 e s i martos
he hest
Van(T,) u mi mimum,
Sens I
mi nimurm Vanante.
in

Tandom ob 8evati o w and O


Values
3)Tf , 2 which assumes

Bemou lhs
Vai ak md (1-)respechively. ST
Pobab1hhes
with
estimto1
unbiase d
T(n-T) an

n (n-1)

T: X4+*t. t An
Where a
a y the
nepladng
neplacing y thu
- p
=II-p , =:
p.
sol Convestiona
(
(ta
-O )
-) =

md P
: F
PP(-)
( x - ) =F ean nP
T +3l2t +In d i s h b h a n
wIth

amol vananu
mp
a biomI
fnow S ECT) -ECT))
Van (T) =

amd
ET) nP =np
2

E CT)rp9tnp

[ n ECT) E CT*J
nn-J nin-l
No E -npy -)

n(n-1)

-n p4)
(np
n (n-1)
14Tf X,a,nj s a ran dom Sample Sie
d i s m b u h on, the p.mf
dqwn Aom eomehC
wnch iven Pla-1): y , T:1,2.. P.T
COnsis Hnt+ eshmrtor
h mean Sample
mean
Popuaiom

So Romei c
iven
Mean Vaa d
PoPulhon

Fl): E (24) E)
-

Van (x)
Van()
Vavn (oti)
and Van ()=0
E)
e StimatD e
C&a Con S S lent
Populatiom man

most effiet esti matos and t2


5 Tf t PAsameer)
Unbi a Se d .esh matos (of Some Populohom

, nd if the Coselati on coficient P


wth e f Cien

behwan ti and t u f S.T P Ve.

Son
a n d t2
Variance
e te
the
Let and V
Yes pech vely Then

e- V -
V2
h +q ,
where p+
le Van a L f
md ort V3 4e the

Then V Va pt,+Vb)
V +9V. +2pq Cov(t,,)
Cov (ty,t2

CovCt) -f V
V( 2 )V,-
Ve

dess
e simatoT
the
1

Cie v , 2 (p:9.V
Ve
PA & fom

e)
e

ie) whn
when
rolds
o lds Jood,
the eauality
In ,

2(f -)

P-ve
efficient
esti moavtos s
both mos
Eamd t are
f t, i the ave sage
Vand
16) Tf Vanana

V 1+ P),
wkere f
with eual
that Van (t3)
nd t, Tmore
Corelah on Aoetwen t ond t2
Coepp cien

SoIn
Let
Van (al, 1 bl,) a van(t) 4h van lt,)
2ab Cov (t,, 6,)=O

Vanlta). an (Kt Kt) (by O.


+

VA(th) Van(t,) y * y Cov (tit)

yV+PV VCP)
Sec2
Method ef moments
w
wth
h
o in the Populatian
) Find the of
estim atov
metvoa

density funchonfa)=0 o 4X <1; O>o, by


moments.

Soln ovdes moment (about ovin)


The fis

the Populatiom

Ca, 2 , A n )

th Sample
Order momen+ ef
th fis+

alout

m o m e n t S

method f
b
o+)

a(-) -

-3

the Unifon
Sample frem
ayandom
_ a<a<b.
2) Tf (A,3 (X,a, b) =
denSr f b-a
Cwth
t methoel
he
Populah m

e s h matoTS y
Fnd
momen} s

S
Soln b-a.
d b-4
d EI
2
2 (b-a)

dx
3 (b-)

a (b +ab+a
3 Cb-

- btabr4

m, o= 2

and m L53
momendS
hfrst ond Second oder
mehad
are
He orgin, hen hen
ther
about
the Sample
momets ve

b= a-a
atb 2
abtb 38
3sby
ata (2- a) t (22-a)=
)a2ta
+ (4 i - 3 5 ) - o
4(43)
V4*-
-
2 2

a t a()
ain
fern

have
a= - V 3 ( z - )
we
a cb,
amd

fx,)-
fa,p) - 3Cy.
3C -
a-p)
P 23
Pm.f

3For he
he
obtain w estimtoi
if the
8 Pdoy the method of (2
feanenGe at
X:12, 3 are
momenB,
18 res pectively 22, 20 ond

Soln
flp) (3p)
-Ci-P)*
moment
a bout the Oiin
OTde
fvst iven distibuhom b
he mean
he

.3

the mean o h Ob Served Sam le n by

X 0) (22) +(2) (20) + 3 (18) 21


5
22 +20 +18

momentS,
the method f

e) 3P
3p-3p+p3

29p-81p + 42 =b

P 871 5123

58
0.605
2 315 1 )

2-3150, b o.6o 5

andom Sample from


fom
be a

4) Let (X,Xi Xn) with p4f $ X


dishibi m
exponential

fC,6) 0e

e Ise wher
e.
=
e,
fmonme t s
EStimaf si
method
Son
24)
0 to
One pAramekr
Heve theve Only
e shmaBe
So E (x) X
expontnial
di shi buio
tor h
ECx)

TeSuHs
in
ECx) X

estimah on oef
momert

So O he

follous
Component

el echonic units
Tha hme failuse an
R r a meles
an
exponenhal dismbutm with he folloong
o
md hestd Tesuting
ae andomly Selece d
falure time Cin hours).
23.42
03, 6.07, 68.
4L,I7.11 32.54, 8.77,12.4
13
he m Omen estmae A
ind

Solo
k 1 3 - 0 3 t 6.07+G&49 P17.II t32 554 +8.77
He se
+12.14 t 23.42)

C181 52
22.6

The momet esthmae

22.49= o.0440t

Tancdom Sample fem


G) SupP ase #hat X,X Xn a

homa dishbuhon N(Ho). Find the moment


a

estmoxs C m a2.

Soln
Soln 29
Fo tho Nomal disbrtion
2

E()-M md E(x*) =uto


eauating E(x)to X ve
md ECx) to X;

M X, M+a*
w momemt
Solving use eans ves
estiators

and
X

1x-x)

Valuas ,0,1,2
,2 with
w th
takes he
A) A Tan dom
Tespective
Vanable
PHobabiles
X

2
- t2(1-0
amd

the Parameers
Omd
+C2n-) o , wAhese
e Populati o n
dsauwn
d s a w nn from
fom
15

Tfa a Sample of Si ectve


Tespecive
ruencies
with
Valuus O,),2 estimaoTS V«araod
8ielded the estmotors

Pnd the
27, 3 8 , o ectively
mment S.
metho d f

Salo - ( - o ) +(1D+2
(-doj
H-E
+ (2-1o }
1- +2%

2- +
(Lo-2) &
Sample
The m m q fu obseved
m' 3P(1) +lo2) 58
75
15
about tho on7n s
Second Ordes moment
Fiven b
2

hemehhod
he omentS

omd M, 3

2
O
Omd
2-2+ (6«-2) 0 =1e
8 olving O
amd 0 - 1
33
So
Method af aximu Likelihood Esthmotor

ConSides characenishc hat OCCUS in

e Tandopm Sample PSie


POpulhon Let X,X2,Xn
n sO
I - p omd
P[X;-J- > fo I=
PLXo] ikelihood
OEbe. obdain the Maximum
Hhese
eshmatos
(OR) for he
likelihood estmatox
rd he maximum WhurTe
binomial dish bukm B(NP),
Pasameke» P of
on thu basis fSantle
but finite,
N Vesy age
Vananco
S i x n. Also findS

Soln he
binomial dishibuim
he P.m.f
o -0,2 N
P(x- «)- p(x3NPD . NGP (1-P)
Sample
random
he ikelihood dn qPhe
C2 n)
n

P)- Tncy p ( I - P " - 2


L(
ToP (1-P)

n (m-be ) ie Cr-7
o s ( n ) +nxagP +
n

og L

ikdiwod ean

i n n(n-X)
-P

-P) P(n- 7)= o


-> -PA -Po + P= 6
- Pns o

P
Kao Cramer's for mwla
(29)

-E 1 -
-P

-E - h(n-x)

C1-p

-P)
+ (n-K})
-P)

PI-PUJ PA

P6
'.Vanl P) -
2

n om
andom Sample 3i
2 Let X,,2Xn b e a
th Poisson dis buti an
f()A"e oe
stmator ef
maxMu m Mkal ihood
obtain

Soln ea
P(x.)
Th P.d f

LL,, ,) - T e

og L Log ( A
M M M
EM M
M

N
inerShak, he
he numbes f
4) Ln On area
alon Call follo u s
Con necti ber
dsoppe wireless hone
PP. Fem 4 calls, mumber dvopped
kali hood
Rnd h m a Xinmum
Connechim 2,0, 3,,1.
estmsk of

Soln
- 2 +0 +3+ 1.5
4

a oma Populhon
fron
5For Yndom Samplin estimators
the maximum ikdiho od
N p , , find

,When nown
i When Kno un

dii The SornuH aneo esimtim ana

Sol t
omaldisibuion N (H, ) ,
fo
Aikelihood nib n

L= Slok, o), f(x,,0), ... f(

o N 27

ag- Loj 7 -

, S_ (x;-
LO
D i - ) (n -np)
The MLE H tr

Cog )o
1,
H MLE of
TbSean ha+

both Sdto O w.1to we go

1 2 (,-")

the
he MLE of i n b

epesthimatio b
Ctri The imutan eou

Oo - o (eg L) o

Cie A

USing , we a

-7.

Note
k E) E(S) /*.
El) El):p
=

the MLE ned ot hecsanly be unbiased

PoCesS making takes biomass


6) on reon soline
Suco se omd ComvestS it into 9selina
in the fovm of
unng catalyhe Techions A+ Onu >lep i apolepillo
Plat PrOce SS, he Output includes Cabon chaina
engt 3. Rfhean UnS wrth Same
artalyst Poduaad
(33)
elds (gal)
5 57 5 76 4 18 4.6 4 T02 6.62 6.33 7.24
5.53
24 6.43 5.59 5.31
Treatng he ields a andom
noml
P opulthon Sample from a
@ cbtain the Yax imum
mean eld and
fhe Va ziancee
kelihood e Sh maes

ob tain the maXi mum


kelth0od esimate op the
Coqfcien Vasiahon
Soln
= -55t 5.16
+.+5.1
5
IS
Recall that he MAX
keluhood eshmsk
Vasanauses divi Sor O, moO+ h-
5

S-3) n -C16.263) 1.0S


Tre Cfcrent fVasiehm
and a So
fancthn of R
itS a x i mum likeli hood estimate n
that Same of and o 2

-034 O43

0btain maxi mum likelihoo d esimatoYS


amd b in ksmS Sample obsevations
2 , An taken fe exponenttal POpulah o
wth
densty functiom
Fa,a,b) =
-b (-a)
2a,b>o
Soln
To Snd Unknbwn Conshan K we howe
I
33)
fl,a,b) do =

eb (x-a)

ke ed=

b ao
keab
ke

Cos) kb
(-a)

f(xa,b) = be a,b>0

-))
Now, L (ot,/a n,a, b) =b"e
be-bnx -na)
O.
for the 3imultaneous
Treiklihood ms
a omd b are
estimatm

(da L) -o
-
from O, we
nb (x -a)
Log L: n og b -

>nb -0, which means b o, coich

u gven to e
abSard s

> -n Cz-a)-o

Un u e Mot
>b
detniely 5own
Agan fom O, we note that Lu maximum
3
for a
given tve Valu f , when e nb(a)maximum

e ) N hen (-a) u mmimum

de When ( - a ) + (x,-a) t + ( t ,- ) ] mnimum

e) When aSmallest among 1, ,n, Say

Valu o

eshmtor f in
Rnd he maximum likelhood
he Populahim oith dens t lat, CHO)
bas ed On Tandom Samplee
Suficient
Sigen Test whethes hi eshmato
eshmator .
s
32 TnesVal Estimahm

an
eShmre a POpulatim P s Y a m A e r

betw ean cwhich


dishnc4 umbtrS
gn by 2
Considered to Iie, then
the Parameter e
Ca lled tewal estimsk
S t t m ae
the PaY qm etr
an Upper Condence
I haVing oe
Con fi d e w
imit and
limit omod lwes
condains
Pobabily ha hi mewal
assi t
Populah m Pasameey
thw dnknouwn
table Valuas
two tail one tail

Con fdee level C-) Zlov) t


1.282
q07 64
196 1.645
95
1.960
233
98
2 515 2.326

without any refeseno to 3.00 2.576


Con fidevce Aevel

te POpulahon Parameler
Cnenval e Sti mses

Mean
- Z <+
Cor)

e ( a t Z, S.E ())
Or

s)
1
Tf 95 Confdene hon

I 99/ Confi deno Hhen

H ( t 3 58

2 Piopohon P

Pe Ipt Z SE(
3) Diffkrende means (MI-H2)

Hi-a L(7-3) SE (%,-7)


4Difeyene Popoh ono CP-P):
P-P eLCh- F) Zy sE (p,-+,2J

3.2
MaXi mum Feror of estmate E

3 2 (a)
Maximum a ap estm ae (fw drae
Samples)
E Z ( r mown)
Poblems

Sample Si
Si
oohas S.D oS
A Tand om
abou+ he maximum eTror
Wha+ Can Jou Say
with 95 Confide e

Soln n (oO, Ta 5 .
C ven
esDY
maX mum

9sZ7 19%
Where Zy or
aximum
( =14

= 94 0.98

mlan
inends to u s e th
2) An indushial engincos eshmat

Si n-15o
andom Sample
m i a ured by
do as
mechanical p
avesage in e w oakeis
In a laa
Cesfan rs) aSse mby
ncu, thu
the evginer
egir
expene
epenen a,

indu sh4 IP on the ba SiS


data, What
ndushy fos Such
assume hat =6 2 h
Con about
wh
PMobabi lity o99
asseF
Can he
OF eroT
maximum Siy

SoIn
ne15, 6.2
Given

the MaXMum
99/= 2.575
at

E Z
E- 2-515. 6.2

Probrbility
= I30 with
asse
Can
Hence engince 30.
moSt
be at
o.99 that esoos

aTandDm
Sample
ha+ 20.o,
ho la ge that h
o.95
3) A SSumi ^ with Probability
be taken o
to asset the true mecn
will ot disfes from
meah
Sample 3.0 poinds
han
To findn.

Sol =96,
E:3,
tven, : 20, Zy
W k.T

EZ
3- C19 20
vn 46) (20) 3
3

e)n13.O64
o. 72 I).

Sample s 20 amd
Stand dvd doviatiom
Te t
wrth
9 9 confideme 72
the aximum
Semple migh e
how lag

Soln
E 2, Z 2.58
iven, 20,

EZ
(re) 12 2 58 20

n 2-58 x 20 30
2

th Taured Sample Si

Can exCep+
one
s the MAxi mum mea

5 whet he
with Pobabi l ty 0.9, when using estim<e
ma ke
64
o
Tandom Sample Sie
Populatin with o2.5647
th mean of

Sel
Given, n= 64

Max eoT E

64 5 (90/ confi deea)

SD 2-54 = 16

.. E -C1-64 5) ( ) -o 32
e bor=0 329
Maximum
6 A Yesearch woker wants fo deemi ne
h ave sag

timit Hakes a mech ani c to Totak the tyses


ASses wth
to be able +o
Cex md he a n t s
mean eP ww Sample
that
5 onfidence Lf he Can
Car resuma
atmostos mnuk s. 6 minus,how a 2
b y by
ex pene nce 4ha+
tem Past
4o take ?
will ave
Sample

Soln
Civen E 0.5, T : 6 minuk s
96

n Sample Sig?

E Z
o.5 C96) 6
o.5 3 134

Vn 3.13 -212
o.5
D39-33 39
the Sample
thes0ised Siee
39

use he mean
College WantS amon+

avesa
dean
)Tha Sample
estimae
one
class to the
rand om from +o aSSet wth
of a to ge
Studets take to e
able
Hme watS O.25
and She atmosSt

next the expenence


f e m e x p e n e n e

292Confidence
be presumed
mimues. If it
Can
an
will She
a Sample
how asge
min,
tha 4
take?
ave

2 51S
So E -0.25
Gaven

o.25: 515)
0.25 36oS

3 6o5
o.2 S

n 2o1.93 208

mean mumber
to esimak he
8 T+ is desiyed until a Cerain
use
ef houYS of Cohmuous TepairS.
Tf + Can be

Compuk*x wil st Sample


a
asSumed hat 48 hour g how lage
to asset
be neede d So ha+ one e able
mea n

wth o onfidena that the Sample


at most lo housS.

Soln
E lo, :48 Zy-645

E Z,
Ci64 5) ( )
1o

= 78.9

Vn 79 6 7.894
lo

> n - 62 34 62
3.2 (b) Max mum
Eo of eshmaie for Smal
42
S amles)

E-t lUnknown)
In Six de emminations af mei Point

alumnlum alloy, a chemist Obtained 532.26

deges. Celsius wth a Standard deviotion ed - 4 dgre

L he uses th meann Ho esimak the actual

the aloy, wh Can the chemiS+


me Hing POin
wrth 98 Confidenco about the MaX imum
aSset

Soln
Given n -6, 3 II4 md t.o 3.365 (Sr n-i- 5 d.of)

E= 3 365. 4 1.566

Sset with 8 Confrdenc


Hecethe chemist+ Can
h aluminium
Hing P
that hn fos me o
gu1e
MoS 1.566 degreas.
Off
2 the Population mean for
Confide o ineswa for
u
Sample (o
s Kmown)

Cor

taken Pem a

A nndom Sample & na


mean
Given that th Sample
Populaion wrth o-5.1
Inteswa)
for

2 1 6 , Conshuc a 5 Confdance
the Population man

Soln 116
n 10D, 21-6, T- 5, y
ven
- < +
36-|96.5 H < 216 +1-46
Vio Vioo
imlewal frem
either
(o) 20.-6 << 22-6. of CourSe, ort do@s
th populatiom
mean M,
20.6 t bntain 5
22. means that the method
a 95 Confdent
ot
Yot but we
obtaintd "woks"" 95/
was
by wich the ieva
9P the hme.
a
Sumptim for
Con
eleciCy
2) h owemge monthy
elechi
t250
unit s. Assumins
Sam ple Uofamilieo familie nSo
elech c Con sump tion all estimk
SD 5/ Confidence
intewAl

Con 9huC+
UntS, actual Ran eleci c oomSum ptin.
te

Soln 6
Gwen X125o, So,

1250 1-96 g =
125o t 29 4o unis
T
%
h Populahon
Thus fos 9 5 leve f Confi denCa
fall be tw-earn P 2 e 12206o UnitB
YYan M
n 214-40 Units
i e 1220 60 u<12440
4 inboduto Some i mcenive for waer balanca
3 T ordes
aCcoun S, a andom
Snmple Si 64
Savings bxana was
Stud e
at a n k's
Savngs accounls
monthly Balana in Savin
estimae e avea found o
Dwese
bn adount S Tho man
m R 200o Yespechvely
e and (3) 94
(9) 24/
()95/
Fnd (0) 90 m e an
the populath on
mlvalS
Consdeme
(lub-) 7 for
Confdena
evel
i mitS wth
Confde a cCounts ave ven
balan in Savings
Av onthly
9 0 / Confderca lm
645
850 t 64 5/290 8 5o0 t 320

85oo t 41.25 =(8090,8910)

q5 confdena JimtS

16 85o t 146 (20D0


64
= S0o i 3 9 2

= 8 5oot496 =(8010,8990)

ImS
Ciri 4 / Confdena
2-515
(2000
85o t 2.515(
85 t515o
8 5o 644 =(7856.25,9143.75) limts
meswa l ox
T+may be hoted Hhat he
desieJevel S COnfidece
gers wider a

increa Sed.
3 20) Confiden
45
tval for the Populahan mean fos
lar amples (wun a Unhmawn)

dnte n:50,
305 58n m, amd
manollas Aeigh
-b366.86 (ene B 36.14 m),
Conshuc a
Z Conf dence inkewal for h
Populto Ymean all neno pllas.

Solo
GIven n5o 305.58,8 36.91 and

ZooS 2.515, we

305.58 -2.515|36 <p< 305.55t 5)

01) 21212<H<319.04
we e 99 Confi dent hat the inteaval fPom
212.12 nm 3 9.04 nm Contains the mean

nanopi lIaY uigh+

mean
inkewal Aov he Populatiom
32(e) Confdeneo
Smali Samples (o u UnKmew
fo1

that SiIk fbres are vey tough bu


We Kno
Shok Supply Engnars are mating bseak thughs
to Crea Sy nthetic SiIk bses that Can im pove
Car Sumper S to ullet- Proofs
every Th em
Vests or to mAke amfcialblod vessels One

h Stati sh cs
reseaT ch Troup epoS SummM
n 18, 226, S.
Prewd f h e
for Th ughiness (MJ/) oy
inkwal for t mLan toughnas
Con shuct a 15 Confidenco nosmal.
th PopulatHon
hese fbre ASsumne th

Soln
I1 dlagree qf
Given far n-
n
02s s * 2.1ho
.o2
faed om
fomula for
The 95 Confidento
becomes

- 2 H1o) 15.1<H<(22-4 t2410)


Cor)
<30.41 MT/m
1411 < the frem
inewal
15/ Conf dene that
are
we mean toughnay fah
Contains t
(419 to 36.4 MI/m the Cumet proca
fioes Creatd
To SSible ahfcial data bt
oi nal
da met ive
Thu ancle aSSumpt m b
homal
moderael thu
n
Outier exisls

Cntia unlegs
mo+ Use
n

knded fo
Cam
shafts 0 2 9nd
ec centr City
2)A Sample e breakd

engi n
heve o data may
asoline
ASSuminj Popuhion
O.444 noma
aS.D frem the actue
random
Sample i mewal
a
a
15/ Confsde
delemine
w Cam Shaft )
eccenrichy of
meah

=o2
Soln m-0 h Sma
226 for 9df

O.314

i nkwa for t actual


a5 Gonf denc

an
eccenrcity
o2 0.312 (o.1023, 1334)
3Ten b bean made by a contain pocasym ve
mean diamee f o.5o6o Cm wrth Sd f
A Sumi n data L ee Ken
O O o y o Cm

ndom Snmple favm nosmal populrti en


AS
q5/ onfidena nlewa for he acual

Consmc he bl heri ng
diamekkr

Sol
h 10 oSo 60, 8 0 boo
Small Sample

fo 9 5 confidene
T emwy f PSh mak

Evm
(n-) df
at P5 with
en t
2.262
1 df
CIC) o0S
o.025
Emax 2.262 xO.00

0 . 0022S 6
limfs r e
inlewal

Now the 95 Confdene


O S o lo o.00286

= (o.5031, o.5o$ F)

two populath on
th differencon beiweon
COngideme inerva for
meanS for lag Samples u mown)

, -

Paoblem two nolependrnt Processrs


there 410
In Ces +an facoy weght Im
Samu idem. The avera
manufactring One pocez
250 1He mS Pooduad hom
Sampl the SD
12 Ozs wlile
found toe 20 Ozs , wit
400 ens fo m
Comespondiug figures Sampl
tu

ctHh TYOce ises ave 24 Ozs and 14 Ozs F md


n th +
/ Confdexe lim ytt dferent
of Hems P.odutd Paocesses es pretiely

CTiven
n 25b, 120, S12
4 8 , 124, S l4
Zy 5 1e
(HI-PD
fir
11 onf.denee mi

( Z 2 ( -t Z

120-2lyt5 12
250 45D

4t (25T) (103 24)


4t24635

(H) (134, 6.66)

between two
f the differenne
3-20q) Confdene inkwal
Sma Samples
Populatim meanSS

(-)-ay <-t<(a7
Con
Valu
twit, n+n2-2
tha tebulakd
Whee
at a level Significah.
reodorn
deg

Pnoblem
ai ven two oups Studmb he
maks obtaine 4 as followS

Tar 18 20 3 S0 41 3l 34 4 41

21 28 26 35 30 44 44
90% &
ConShutta 95/ Oonfide me newa t mean
manks Secured by Shudents of akove 2 Too up 5

Fer the diffesena


q4/ Confidena inewal
Consmc+ two Kinds ef i'gt bulbs,
meann Tifein
berwon bulbs ef
Yandom Sample 40 g+
ven Mat
418 hours
thefrS+ Kine 9ased he ave
Second
amd 50 1gh+ ulb s th
Contiuow Use
ContimuOU
kind aShd
on the
av 402 rS
KnDwn e o:26
use ThR poPulat cn S.D ave

O 22

Soln from+able, 0.03 - Ss.


FoT 0.06, we fnd
Confidene
inewal for P-H
4
418-402) - 18 922
H-H < (41F -y o2) tl88
5)
6.3,-H<25.7
He ne w
4 4/Confident hat heinewal
betwee
G.3 25. rs Contains he achual Aifferena
bulbs
men e t i me w hwo Kinds of lig
Sugysis
Theac %oth tve
Confidence linds e
hat
on he stkind ght ulbs
Second kind.
Supei

3.2(h) Intewal esthmathm fVans nu.

Value
Variance f
nomn opuhen
ra ndon Smple Si n fom
hen
(o-) 4
n-1) 82
(n-)

inkNAl
a (-d) IG0 / Confrdente

PHobl em
an
% rst ns tu asolino ConSumh
T ConstmmctF

expermnentm) engine
had
S.b of
a 22aallons.
Ch m e a Sure

992 Confidene newal or h


Consumbhmf
tu tre Vanability T asolin

engine
Soln:
iven n= l4, 8 12, 3 1 . o I . and
O D05, 15

0.915, 15 4 o 1 .

become S

2
Is (2-2 S(2.2)(22)
3 2 So 4-6o

e 2.2) <o*< 15.18


t u o Vaia mo
3.2 Tnewal
T a i o
eshmaion
Variaa
a Vqlus th
Te and Sines n and na frr
Samble of
independet TAndom

hen
nomal
populhon

fa, n, -i, ar
n,-1,-
inewal t G*
l00Confidentu
a(-)

Problems Hhe hi cotina


mode +o Compese
Stuy has be eigaretes. D ote
A
two brands
Content s mlramS
Contnt 3.1
nicoHne
Drand A and
an
oN cigraks a
Brand B
had

with o5 while 8
01
nicoin Conknt 21 "g° wi th S.P
an
Ar av
daa I'ndependent
myAsSumin tha+ he 2 Sets are

homal populahi on wth eana


Bandom Sample rem fer h a
95 nowa
VAnane, (a)aonShruct
A onfidente the
ehween he man
nicohne conke nts
nlewal
Aiffesen
(b) Find a 18/ confidende
2 brandh Cigaretes

Sole
the ntevwal
Obtained mre includes Hh

ther e .U
ako
Possibility that Hhe
Teal evidence h assum FHon
gainst
eqnal Populatiom Vanace

Problems
Exh
Sle v o i CO was
So
D A andom Sample Sle nvoicm.
populatm of
taken Som a |age Rs. 20oo wth
Cwas found +o be
The owa Value
0 Confide ncz
S.D R 540. Fnd Value al he
mean
th tauo
intewa) for
SAles

Soln X 3 540,
u 20oO, -

The
mfomati m
given
l0/

G1.5o
54 0
Sx 64
= 6 4 (Srom nosma
and Za t bhe)

populatm
inewAl
RMI e d Confidena
the
m ean

C61-50) =2060
tlo.10
+ 64
200 o
invoic fo
Sale
he Rs. 188936
mean
he between
tena to fall
Populahon
ikely
t whol
2110.10.

omd Rs I 8 8 9 . 3 o H < 2110.10

Cie

Ioo
Obsev aw tields
andom Sample »f Vanance 400.
2 A Samble
X- I50 and
Sam ple mean
nlewal
i newal for thu
Confidence
and 99/
95
Compuk
man
Topulatim
Soh
Given S4oo
n 00 X =(50,
>S 20

S = 2 2
S.E
Z y 1-94
Cof ovel
at 5 = 2.se
t

(1) at 95
X 96 5.Fx

x2 =
So t 312
I 5 o - 9 6

os
146.o8
= I 5 3 . 9 2

2) at 91
X t -59 S.F
=I5o t 2-58x2

16 C6T) t44. 84
=
I55.

You might also like