UNIT-3 (Estimation Theory)
UNIT-3 (Estimation Theory)
Lshmatíon Throny
Sec
uused a
ass
ohouse Value
Stnishc Ca lleel an
Pon4 sme H Pova mele.
estimetov
(OR) a
Pavicular
PAya metes
An eshmehe th
Of the esimator
dbtaine y1 SamplJ
Dumen n l Va lue
I huo
yp
()Poit esimehier
() Tnerial estimertion
Sec
Pont Estimahon
Parameler
Popuah on
eshmae of a
an
Singe Valu, then he eshmale
ven by Payamee r .
Ca lled a Point eshme of
the
L a Poim estima
F Sample mean
Popution maan
POint
eStimae of
VaYIa nce
Sample
Popubhion Variance -
Populetion poPulti on
h+ Connec
O Coeale
PTamokers.
moments unknaun
Sam ple from which
Select the popula-tion
P o p u l a t h io m momen+s
esti me th
momeNS
The Sample of he Population
3The
sed Solve the u a h onms
e S t i m c r h on
acumae
Tis helds mas +
Example denSt of
the
paAmelerSo,, K
the Opuatio
pAYAmeers
we P , 8ar.. Oc
Solving
4Honda,
,(mm-,)
eanlation
obtainnd 6y ment t Smpe
whese m
t O rdor Mo
Noe
Parameess, we
eStimaR the
we wish to
about the ongn
Compule k mome ntS
Should
Metwod oment
estimatos S Aye
uSuall
ess efficien than MLE's
laximum ltolhood ochmator Poi n t
kethocd Osthmrtos
pAramoers
tool
hat tie s ftndunknos h
dale Sets
Jtalhod funchom T Corrpares
th nitASe he
he best t fo datn bH usin g
and ds
model
Poven
Values
Dein
.kelhood
maximu m
Sahhc
&(x ,1)
A
e hma h o
XA) u
Samle , ,1., A , ,
Onch
T fo hea+ maxi miys
PArRm ets
Va h Ro L (0/x 2/X»)
Ielhoat funchion
maximum
ikelih aod Hhe
Methed 0 f esti mato Y
amethod, a good
hw
T he Lkel.hoo d M a k muM
mxim
s Callel Hh
whch
One f(.,o). It u
f(1,,0),. ,
MLE Sos t
Litelhood the
t
Sehsie
Pavomet o
ecivalen
L +ve, o
COT)
Psa chca
convehient
=o a
to as ikelihood
uSunly T*ffered
omd itF
euah or
Nole u sualy
Peram e e
Tw MLLE of
denond
MaK im um
ke lihoo d OshmaosS
Propomes ef
COnsisent
MLE a
oose fficiontt
2) MLE
fSufficiend SeShimntor5 4
MLEs e Sufficiens,
unbiased
hot necossaily
MLE S C
nve he nyaianco PDpe*
MLEs
u t MLE sb , hen
Chacesi cs Estimtion
estimatos should
Point
A Food
following Coilena
SaHsfy
C Unbiasedness
( Consisknc
3) EF: oen
C4) Sfficien
S ) RobuSt ness
() Unbiased ness hn
am
eshmqtur
Le+ be Said to be
(A12,.A)
th e Shmatos rameter
unbia sed estimae of
I Eo) - o to
be Poshvely
I E0)>8, then &aid
iased oe
E (0)< 0, hen T Said hatively
IP
rased amount
ef a S
Caled
EC)-o}
denoted 4
.bo) EC)-
om
Uased
E), he Somple ean an
w heve ,- 7
unbiased s t mak
Bu Ae
U brse d Sn
Also, S nS
n-
Cons+
e
obleid from
Stetshc be
Consi ten+
Said to
Smpie Si , I f i+ corme S close
Premees
Ww hen n be con9
th ree ,
amd Claser
Jage nd avg
I ezo
To-o|
n
s e] =
) E fcitnc
two more Cons Sent
ge+
eimato1S th Same PaYamees
fo
2 Consisen eshmtto1S exist fo Same
PaTamekr 9, then tw Stohsh c w th th Smalley
Vanane Called an
efficien4 estimtor fO
c o n si Sk nt astimator Od a a r mekr 0,
th One wth he Smalles VAnana Called
mosh efAiie eshator best Sh mtor e
3
S
i
The median is a obust meaSu
Ccensal
cndeny
TaK Some dlalaset f2,3,5,6,9 1. - | o00
daapbin wth Value
T ue add anol
+1000
hen the median wil cma sligy
t med an
the
wll Shll e Simla
bu dsta
the o gnml
and i n e aarhle
3 hu median bsolue deviation
S tatishal
en 2 ae vobu St+ meSus s af
oeviaton and
disprSiom, whele t Stendrd
a ng ee e
S t i mators
win Sonsed
and
Timmed stimator S
me thadd to
make StotiStics meve obst
3enere
cass of Simple Stetish cs,
L- eshmaorS
Y
neral
obs wmle M-estmatos S
Stah sthcs and Ye
Y obust
Class Can be involved
tha
Preeed Son though
calcue
achieved. th
e ophn
Under
ascumphon
that
w th OR oistmbuti ons de)
deaved foT, other
ateas+ freedom.
t-dishmb h m
with ow degsa
MSing tw
OR
With mixture tup moTe isabuhons
PobemS-
Sude d o liong
PAsamek iS
Nocati on
Est mtin
Scale
Kalman fhes
PaoblemS esti mator
an
unbiase d
mean
3T the Sample
Populthon mean
for the
Soln
TP: E(Z)» .
andomn Sample
the
Let Sie n
E3E1-E(Za) E
t Ean
E,
(H+H)
estimrto
anblased
an
r a m e hrs s
with
binomi a Varine
ProPoton
observed POpatawom of
n and P hen ST n tho p a T a m e k r
UnbiaSe d estimato ef
Succe SSeS an
a
GYen
and P, hen Mean (X)- np
TT E(): P
E(x)
Le E() %
An
Unbiased esimcoT fhe
Parameler p
Show t h a t
3 Tf 3 m Unbiased estimae
a biad eStimato7
is
Sol u an
Unbiased
esti me
Guven
>ElO) 0.
E () # 0*
T.P
Vea()ElO) -¬c6)
Naw
Naw
(E(6) )*
ElO)- Vaa(6) +
Van (0) + 0
ElO) 2
biased estimatoT 0
a
faom a Novmal
a
Tando m Sample
4)I N(), then,
PoPul ati m
2 an Unbiasedd esti mator
ST
Soln
Given Vanlxi) - I
amd
E (Ai)-
El) +
EËJ
Et
ECt)E
Let
et,
.'. ECt) +
A) Si n
5P.T,for andom Sample
drawn om a ven ange Populaan
CP), a3)
An Unbiased estimato f h Parame k1
S ( x - ) u an unbiase d esti marto
n-
Soln
a(-T-H)
- + -N)
-
A
i
+n-H)-2G-
2
2 (i-)
(-)
2T-) (7-u
2 H) +n(7-H)-
nli-4)
-
O
Ci-H)-
Given -7)
T
- n-)J from
s (-
E - - nE (-
El
E(i-p)
w.kT E(;-) -
ElS') xha -*
unbi ood
n
estimatos
ConSider,
-
an
unbiaSed estmor f*.
6) ST `- 5 (x,-5) Un bia se esimortor
n- ef
tHhe PaYame les
Soln
2,- - (%-p)]
-H) + (Í-)J
- a (4i-H)
+n-H)
-)-a-H) (o;-H)
2(-¥)n(-4) +n (i-4)
-p) -
(o-H) - nlz-H)
Given 5(-a)
- p ) - o (i-H]
n-i
E S ) E - - n EC=-P)J
n-
na
(na- J
Unbiased esimator
an
Hence, 8 z%- th PaTAmeR1
n-
12
are Sample Vaiables based o n
YandomSamples ef Siyes . . , Nr respe ctvely
Populatim with Vasiance
drawn from a lavge O
find h Value 8
Soln
T an Unbiased estimshe
2
ECT).
E( 4)-
2
EC) -
i)
( i - ) =*
7 n; 6,+n,t... + n) -1
Te X,72,
andom Sample from NC)
an Unbiase d
omd T 1-HI, hen TVi
esti mak
S ln
T -H
ECT El%-
deviaho about h
E-H the meann
oms di sm bi om
mean e iven
wich
ECT)
unbiased
E (T) an
estimo
N (0,)
trom
Tf , n Tan dom Sample
Unbiased
e stime
ond 2,
if T: then T an
a n
on
ECT) E (4)
i
N(o, s)
Elx)» Van(I;)
+
E ()
ECT)L.pr* ea
obtai nad fem
the Valuns
oBelow dou are
iven taken from
obserVatim
Tandom Sample
Popul ahon .
infin e 34
35
32 34 an
for . Ts
the
Nhat Can be Said a bout
Sampin
disibehn Be Suse to aiscuss
expeched Valu Standard deviati on, and
Solr
eSim atoT
A= 32t 34t35+31
@Point
35.
an CAnbiased e stimato s d P.
(from problem 1)
Point eshmaor 2 ( - T *
. s(d-3
n-
9+1+ 0 +6 = 8.66L*
3
eshimato
T s an un biased
(from problem 3)
e Shimator Vs 6644
Point
= 2.94 39
ual to
dishibti on
mas m ean
The Samplinq
mean. Tie Sampling dish bcti
m
has
he POpulation divided
he Population SD f
a S D equal
of he Sampk
by The SqaAY
oot Si
Sam phng dismbethi m
he
T Shape
nbma Cuwe
4 drawn
, a,x4) of Si Consider
1A Tandom Sample C unKmo wn
mean
populatien
from aa noma eshimae
esti m afors
he followin
an Unbiased estimto
9t Hhe
estimator
Teas o n s
unbia sed ? Stae
ti,t2 and t3
bes+ am ong
a m on
which
Sol ECx)-H,
Van (i) -a
We have
0, i#j =l,2,n.
Cov(i, X)
ECE) E + t+ g+1
EC . F 3
3
unbiased estimator
an
C3+AJ-
3 t3
+ Vlt,)+V(z
V) . [Va,)+ VOa)
+vla) + V)
V)= [v(z)+Via,)
+*
%( ) +
(a1) + v()
v) V
5
Sense
from a
esimatdo S used +o estimae
e
Let 2,T
Value whese
T +232 +33 -5ol4
g: K +2 +3 +4
estimator s2
Unbiased
Tand a r e
(i ind
whethe Unbiased estimator
s
01) nd he Value ef k
k
3
for
ConSisknt
(t) With t w
estimao"?
best eshmato
Cw) Ahat s the
Poma
Soln an
Tan dom Sample
Sine , 2 , g, 4 VaianCe
and
Populati m with mean
n)
V (x)
= Co (a1,3)-o, Ci4j=l,3..
E () H,
E CT) =
Mtp+H - 2=B
C Ts a Unbised
esti matox
B alSo
wich implies
that T,
esh mator af
F + H+M+H -
3M+K =
4
K
-.
Cif) wth K,
G: (x,+ +3 +4) Populahm
Con st6 Hent e sh m a t t o r
a
men
numberS, T3 is a
Sanpl Jarg
the heetlaw
by esti natoT -
Consi s e n t
4V(4) 1
oV Var T Vx V()+V(4) +
Vav(T) t 4010- a5
3
Va (T). t o n a ) - 4 e s i martos
he hest
Van(T,) u mi mimum,
Sens I
mi nimurm Vanante.
in
Bemou lhs
Vai ak md (1-)respechively. ST
Pobab1hhes
with
estimto1
unbiase d
T(n-T) an
n (n-1)
T: X4+*t. t An
Where a
a y the
nepladng
neplacing y thu
- p
=II-p , =:
p.
sol Convestiona
(
(ta
-O )
-) =
md P
: F
PP(-)
( x - ) =F ean nP
T +3l2t +In d i s h b h a n
wIth
amol vananu
mp
a biomI
fnow S ECT) -ECT))
Van (T) =
amd
ET) nP =np
2
E CT)rp9tnp
[ n ECT) E CT*J
nn-J nin-l
No E -npy -)
n(n-1)
-n p4)
(np
n (n-1)
14Tf X,a,nj s a ran dom Sample Sie
d i s m b u h on, the p.mf
dqwn Aom eomehC
wnch iven Pla-1): y , T:1,2.. P.T
COnsis Hnt+ eshmrtor
h mean Sample
mean
Popuaiom
So Romei c
iven
Mean Vaa d
PoPulhon
Fl): E (24) E)
-
Van (x)
Van()
Vavn (oti)
and Van ()=0
E)
e StimatD e
C&a Con S S lent
Populatiom man
Son
a n d t2
Variance
e te
the
Let and V
Yes pech vely Then
e- V -
V2
h +q ,
where p+
le Van a L f
md ort V3 4e the
Then V Va pt,+Vb)
V +9V. +2pq Cov(t,,)
Cov (ty,t2
CovCt) -f V
V( 2 )V,-
Ve
dess
e simatoT
the
1
Cie v , 2 (p:9.V
Ve
PA & fom
e)
e
ie) whn
when
rolds
o lds Jood,
the eauality
In ,
2(f -)
P-ve
efficient
esti moavtos s
both mos
Eamd t are
f t, i the ave sage
Vand
16) Tf Vanana
V 1+ P),
wkere f
with eual
that Van (t3)
nd t, Tmore
Corelah on Aoetwen t ond t2
Coepp cien
SoIn
Let
Van (al, 1 bl,) a van(t) 4h van lt,)
2ab Cov (t,, 6,)=O
yV+PV VCP)
Sec2
Method ef moments
w
wth
h
o in the Populatian
) Find the of
estim atov
metvoa
the Populatiom
Ca, 2 , A n )
th Sample
Order momen+ ef
th fis+
alout
m o m e n t S
method f
b
o+)
a(-) -
-3
the Unifon
Sample frem
ayandom
_ a<a<b.
2) Tf (A,3 (X,a, b) =
denSr f b-a
Cwth
t methoel
he
Populah m
e s h matoTS y
Fnd
momen} s
S
Soln b-a.
d b-4
d EI
2
2 (b-a)
dx
3 (b-)
a (b +ab+a
3 Cb-
- btabr4
m, o= 2
and m L53
momendS
hfrst ond Second oder
mehad
are
He orgin, hen hen
ther
about
the Sample
momets ve
b= a-a
atb 2
abtb 38
3sby
ata (2- a) t (22-a)=
)a2ta
+ (4 i - 3 5 ) - o
4(43)
V4*-
-
2 2
a t a()
ain
fern
have
a= - V 3 ( z - )
we
a cb,
amd
fx,)-
fa,p) - 3Cy.
3C -
a-p)
P 23
Pm.f
3For he
he
obtain w estimtoi
if the
8 Pdoy the method of (2
feanenGe at
X:12, 3 are
momenB,
18 res pectively 22, 20 ond
Soln
flp) (3p)
-Ci-P)*
moment
a bout the Oiin
OTde
fvst iven distibuhom b
he mean
he
.3
momentS,
the method f
e) 3P
3p-3p+p3
29p-81p + 42 =b
P 871 5123
58
0.605
2 315 1 )
2-3150, b o.6o 5
fC,6) 0e
e Ise wher
e.
=
e,
fmonme t s
EStimaf si
method
Son
24)
0 to
One pAramekr
Heve theve Only
e shmaBe
So E (x) X
expontnial
di shi buio
tor h
ECx)
TeSuHs
in
ECx) X
estimah on oef
momert
So O he
follous
Component
el echonic units
Tha hme failuse an
R r a meles
an
exponenhal dismbutm with he folloong
o
md hestd Tesuting
ae andomly Selece d
falure time Cin hours).
23.42
03, 6.07, 68.
4L,I7.11 32.54, 8.77,12.4
13
he m Omen estmae A
ind
Solo
k 1 3 - 0 3 t 6.07+G&49 P17.II t32 554 +8.77
He se
+12.14 t 23.42)
C181 52
22.6
22.49= o.0440t
estmoxs C m a2.
Soln
Soln 29
Fo tho Nomal disbrtion
2
M X, M+a*
w momemt
Solving use eans ves
estiators
and
X
1x-x)
Valuas ,0,1,2
,2 with
w th
takes he
A) A Tan dom
Tespective
Vanable
PHobabiles
X
2
- t2(1-0
amd
the Parameers
Omd
+C2n-) o , wAhese
e Populati o n
dsauwn
d s a w nn from
fom
15
Pnd the
27, 3 8 , o ectively
mment S.
metho d f
Salo - ( - o ) +(1D+2
(-doj
H-E
+ (2-1o }
1- +2%
2- +
(Lo-2) &
Sample
The m m q fu obseved
m' 3P(1) +lo2) 58
75
15
about tho on7n s
Second Ordes moment
Fiven b
2
hemehhod
he omentS
omd M, 3
2
O
Omd
2-2+ (6«-2) 0 =1e
8 olving O
amd 0 - 1
33
So
Method af aximu Likelihood Esthmotor
Soln he
binomial dishibuim
he P.m.f
o -0,2 N
P(x- «)- p(x3NPD . NGP (1-P)
Sample
random
he ikelihood dn qPhe
C2 n)
n
n (m-be ) ie Cr-7
o s ( n ) +nxagP +
n
og L
ikdiwod ean
i n n(n-X)
-P
P
Kao Cramer's for mwla
(29)
-E 1 -
-P
-E - h(n-x)
C1-p
-P)
+ (n-K})
-P)
PI-PUJ PA
P6
'.Vanl P) -
2
n om
andom Sample 3i
2 Let X,,2Xn b e a
th Poisson dis buti an
f()A"e oe
stmator ef
maxMu m Mkal ihood
obtain
Soln ea
P(x.)
Th P.d f
LL,, ,) - T e
og L Log ( A
M M M
EM M
M
N
inerShak, he
he numbes f
4) Ln On area
alon Call follo u s
Con necti ber
dsoppe wireless hone
PP. Fem 4 calls, mumber dvopped
kali hood
Rnd h m a Xinmum
Connechim 2,0, 3,,1.
estmsk of
Soln
- 2 +0 +3+ 1.5
4
a oma Populhon
fron
5For Yndom Samplin estimators
the maximum ikdiho od
N p , , find
,When nown
i When Kno un
Sol t
omaldisibuion N (H, ) ,
fo
Aikelihood nib n
o N 27
ag- Loj 7 -
, S_ (x;-
LO
D i - ) (n -np)
The MLE H tr
Cog )o
1,
H MLE of
TbSean ha+
1 2 (,-")
the
he MLE of i n b
epesthimatio b
Ctri The imutan eou
Oo - o (eg L) o
Cie A
USing , we a
-7.
Note
k E) E(S) /*.
El) El):p
=
-034 O43
eb (x-a)
ke ed=
b ao
keab
ke
Cos) kb
(-a)
f(xa,b) = be a,b>0
-))
Now, L (ot,/a n,a, b) =b"e
be-bnx -na)
O.
for the 3imultaneous
Treiklihood ms
a omd b are
estimatm
(da L) -o
-
from O, we
nb (x -a)
Log L: n og b -
u gven to e
abSard s
> -n Cz-a)-o
Un u e Mot
>b
detniely 5own
Agan fom O, we note that Lu maximum
3
for a
given tve Valu f , when e nb(a)maximum
Valu o
eshmtor f in
Rnd he maximum likelhood
he Populahim oith dens t lat, CHO)
bas ed On Tandom Samplee
Suficient
Sigen Test whethes hi eshmato
eshmator .
s
32 TnesVal Estimahm
an
eShmre a POpulatim P s Y a m A e r
te POpulahon Parameler
Cnenval e Sti mses
Mean
- Z <+
Cor)
e ( a t Z, S.E ())
Or
s)
1
Tf 95 Confdene hon
H ( t 3 58
2 Piopohon P
Pe Ipt Z SE(
3) Diffkrende means (MI-H2)
3.2
MaXi mum Feror of estmate E
3 2 (a)
Maximum a ap estm ae (fw drae
Samples)
E Z ( r mown)
Poblems
Sample Si
Si
oohas S.D oS
A Tand om
abou+ he maximum eTror
Wha+ Can Jou Say
with 95 Confide e
Soln n (oO, Ta 5 .
C ven
esDY
maX mum
9sZ7 19%
Where Zy or
aximum
( =14
= 94 0.98
mlan
inends to u s e th
2) An indushial engincos eshmat
Si n-15o
andom Sample
m i a ured by
do as
mechanical p
avesage in e w oakeis
In a laa
Cesfan rs) aSse mby
ncu, thu
the evginer
egir
expene
epenen a,
SoIn
ne15, 6.2
Given
the MaXMum
99/= 2.575
at
E Z
E- 2-515. 6.2
Probrbility
= I30 with
asse
Can
Hence engince 30.
moSt
be at
o.99 that esoos
aTandDm
Sample
ha+ 20.o,
ho la ge that h
o.95
3) A SSumi ^ with Probability
be taken o
to asset the true mecn
will ot disfes from
meah
Sample 3.0 poinds
han
To findn.
Sol =96,
E:3,
tven, : 20, Zy
W k.T
EZ
3- C19 20
vn 46) (20) 3
3
e)n13.O64
o. 72 I).
Sample s 20 amd
Stand dvd doviatiom
Te t
wrth
9 9 confideme 72
the aximum
Semple migh e
how lag
Soln
E 2, Z 2.58
iven, 20,
EZ
(re) 12 2 58 20
n 2-58 x 20 30
2
th Taured Sample Si
Can exCep+
one
s the MAxi mum mea
5 whet he
with Pobabi l ty 0.9, when using estim<e
ma ke
64
o
Tandom Sample Sie
Populatin with o2.5647
th mean of
Sel
Given, n= 64
Max eoT E
SD 2-54 = 16
.. E -C1-64 5) ( ) -o 32
e bor=0 329
Maximum
6 A Yesearch woker wants fo deemi ne
h ave sag
Soln
Civen E 0.5, T : 6 minuk s
96
n Sample Sig?
E Z
o.5 C96) 6
o.5 3 134
Vn 3.13 -212
o.5
D39-33 39
the Sample
thes0ised Siee
39
use he mean
College WantS amon+
avesa
dean
)Tha Sample
estimae
one
class to the
rand om from +o aSSet wth
of a to ge
Studets take to e
able
Hme watS O.25
and She atmosSt
292Confidence
be presumed
mimues. If it
Can
an
will She
a Sample
how asge
min,
tha 4
take?
ave
2 51S
So E -0.25
Gaven
o.25: 515)
0.25 36oS
3 6o5
o.2 S
n 2o1.93 208
mean mumber
to esimak he
8 T+ is desiyed until a Cerain
use
ef houYS of Cohmuous TepairS.
Tf + Can be
Soln
E lo, :48 Zy-645
E Z,
Ci64 5) ( )
1o
= 78.9
Vn 79 6 7.894
lo
> n - 62 34 62
3.2 (b) Max mum
Eo of eshmaie for Smal
42
S amles)
E-t lUnknown)
In Six de emminations af mei Point
Soln
Given n -6, 3 II4 md t.o 3.365 (Sr n-i- 5 d.of)
E= 3 365. 4 1.566
Cor
taken Pem a
2 1 6 , Conshuc a 5 Confdance
the Population man
Soln 116
n 10D, 21-6, T- 5, y
ven
- < +
36-|96.5 H < 216 +1-46
Vio Vioo
imlewal frem
either
(o) 20.-6 << 22-6. of CourSe, ort do@s
th populatiom
mean M,
20.6 t bntain 5
22. means that the method
a 95 Confdent
ot
Yot but we
obtaintd "woks"" 95/
was
by wich the ieva
9P the hme.
a
Sumptim for
Con
eleciCy
2) h owemge monthy
elechi
t250
unit s. Assumins
Sam ple Uofamilieo familie nSo
elech c Con sump tion all estimk
SD 5/ Confidence
intewAl
Con 9huC+
UntS, actual Ran eleci c oomSum ptin.
te
Soln 6
Gwen X125o, So,
1250 1-96 g =
125o t 29 4o unis
T
%
h Populahon
Thus fos 9 5 leve f Confi denCa
fall be tw-earn P 2 e 12206o UnitB
YYan M
n 214-40 Units
i e 1220 60 u<12440
4 inboduto Some i mcenive for waer balanca
3 T ordes
aCcoun S, a andom
Snmple Si 64
Savings bxana was
Stud e
at a n k's
Savngs accounls
monthly Balana in Savin
estimae e avea found o
Dwese
bn adount S Tho man
m R 200o Yespechvely
e and (3) 94
(9) 24/
()95/
Fnd (0) 90 m e an
the populath on
mlvalS
Consdeme
(lub-) 7 for
Confdena
evel
i mitS wth
Confde a cCounts ave ven
balan in Savings
Av onthly
9 0 / Confderca lm
645
850 t 64 5/290 8 5o0 t 320
q5 confdena JimtS
= 8 5oot496 =(8010,8990)
ImS
Ciri 4 / Confdena
2-515
(2000
85o t 2.515(
85 t515o
8 5o 644 =(7856.25,9143.75) limts
meswa l ox
T+may be hoted Hhat he
desieJevel S COnfidece
gers wider a
increa Sed.
3 20) Confiden
45
tval for the Populahan mean fos
lar amples (wun a Unhmawn)
dnte n:50,
305 58n m, amd
manollas Aeigh
-b366.86 (ene B 36.14 m),
Conshuc a
Z Conf dence inkewal for h
Populto Ymean all neno pllas.
Solo
GIven n5o 305.58,8 36.91 and
ZooS 2.515, we
01) 21212<H<319.04
we e 99 Confi dent hat the inteaval fPom
212.12 nm 3 9.04 nm Contains the mean
mean
inkewal Aov he Populatiom
32(e) Confdeneo
Smali Samples (o u UnKmew
fo1
h Stati sh cs
reseaT ch Troup epoS SummM
n 18, 226, S.
Prewd f h e
for Th ughiness (MJ/) oy
inkwal for t mLan toughnas
Con shuct a 15 Confidenco nosmal.
th PopulatHon
hese fbre ASsumne th
Soln
I1 dlagree qf
Given far n-
n
02s s * 2.1ho
.o2
faed om
fomula for
The 95 Confidento
becomes
Cntia unlegs
mo+ Use
n
knded fo
Cam
shafts 0 2 9nd
ec centr City
2)A Sample e breakd
engi n
heve o data may
asoline
ASSuminj Popuhion
O.444 noma
aS.D frem the actue
random
Sample i mewal
a
a
15/ Confsde
delemine
w Cam Shaft )
eccenrichy of
meah
=o2
Soln m-0 h Sma
226 for 9df
O.314
an
eccenrcity
o2 0.312 (o.1023, 1334)
3Ten b bean made by a contain pocasym ve
mean diamee f o.5o6o Cm wrth Sd f
A Sumi n data L ee Ken
O O o y o Cm
Consmc he bl heri ng
diamekkr
Sol
h 10 oSo 60, 8 0 boo
Small Sample
fo 9 5 confidene
T emwy f PSh mak
Evm
(n-) df
at P5 with
en t
2.262
1 df
CIC) o0S
o.025
Emax 2.262 xO.00
0 . 0022S 6
limfs r e
inlewal
= (o.5031, o.5o$ F)
two populath on
th differencon beiweon
COngideme inerva for
meanS for lag Samples u mown)
, -
CTiven
n 25b, 120, S12
4 8 , 124, S l4
Zy 5 1e
(HI-PD
fir
11 onf.denee mi
( Z 2 ( -t Z
120-2lyt5 12
250 45D
between two
f the differenne
3-20q) Confdene inkwal
Sma Samples
Populatim meanSS
(-)-ay <-t<(a7
Con
Valu
twit, n+n2-2
tha tebulakd
Whee
at a level Significah.
reodorn
deg
Pnoblem
ai ven two oups Studmb he
maks obtaine 4 as followS
Tar 18 20 3 S0 41 3l 34 4 41
21 28 26 35 30 44 44
90% &
ConShutta 95/ Oonfide me newa t mean
manks Secured by Shudents of akove 2 Too up 5
O 22
Value
Variance f
nomn opuhen
ra ndon Smple Si n fom
hen
(o-) 4
n-1) 82
(n-)
inkNAl
a (-d) IG0 / Confrdente
PHobl em
an
% rst ns tu asolino ConSumh
T ConstmmctF
expermnentm) engine
had
S.b of
a 22aallons.
Ch m e a Sure
engine
Soln:
iven n= l4, 8 12, 3 1 . o I . and
O D05, 15
0.915, 15 4 o 1 .
become S
2
Is (2-2 S(2.2)(22)
3 2 So 4-6o
hen
nomal
populhon
fa, n, -i, ar
n,-1,-
inewal t G*
l00Confidentu
a(-)
with o5 while 8
01
nicoin Conknt 21 "g° wi th S.P
an
Ar av
daa I'ndependent
myAsSumin tha+ he 2 Sets are
Sole
the ntevwal
Obtained mre includes Hh
ther e .U
ako
Possibility that Hhe
Teal evidence h assum FHon
gainst
eqnal Populatiom Vanace
Problems
Exh
Sle v o i CO was
So
D A andom Sample Sle nvoicm.
populatm of
taken Som a |age Rs. 20oo wth
Cwas found +o be
The owa Value
0 Confide ncz
S.D R 540. Fnd Value al he
mean
th tauo
intewa) for
SAles
Soln X 3 540,
u 20oO, -
The
mfomati m
given
l0/
G1.5o
54 0
Sx 64
= 6 4 (Srom nosma
and Za t bhe)
populatm
inewAl
RMI e d Confidena
the
m ean
C61-50) =2060
tlo.10
+ 64
200 o
invoic fo
Sale
he Rs. 188936
mean
he between
tena to fall
Populahon
ikely
t whol
2110.10.
Cie
Ioo
Obsev aw tields
andom Sample »f Vanance 400.
2 A Samble
X- I50 and
Sam ple mean
nlewal
i newal for thu
Confidence
and 99/
95
Compuk
man
Topulatim
Soh
Given S4oo
n 00 X =(50,
>S 20
S = 2 2
S.E
Z y 1-94
Cof ovel
at 5 = 2.se
t
(1) at 95
X 96 5.Fx
x2 =
So t 312
I 5 o - 9 6
os
146.o8
= I 5 3 . 9 2
2) at 91
X t -59 S.F
=I5o t 2-58x2
16 C6T) t44. 84
=
I55.