301 Estimation All Sheet
301 Estimation All Sheet
Sompl
is e auh have Procedu to
the ando includad
t in birg chnee
of equal on hwa
pup otuit 2ach wich inone S0mpl
is e Tonom
ng: sompli Rgndem A
ono Samele Rondam *
Eoimation Enhmale Elimoton,
terunt@,5atNH Ca 6tahiatiCparamete,
nit, Sanple [amplit [omple, Populaion,
Chuyan Concept boyie
poor Ka V.k. Guptan 5.C.
5iaistis Mothcalemah ’
fndamnta
o 3.
alAsnot
i
(Volue-11)
Stuant,
A: 2
A. 6G.
t. M. ’
and Thonykanda,
Avanee s.
Reetoneed Bok
Enimalion 6ineup-
ttheup-
A:
Intoronee-I statisi
Cal Stal-3o
Md. Shahtehf Moque 2
Assotate Prate sso
Dept of Statistics
Unverity of Chitiagong
OR, The
chatactubic d a pop? is called apanet
Unknon chuaeoubico t he pop otu wbually colle porsmelevs.
Po. mean (), Pe! voTioneelo),oalation Caßiient
), rsge Coient (e), ete. ane the yonples
oR, The erohnate of a Cernfun paanetor
tpnanau
Calad slahnhc
* 5tatibtie
nunTi cal value aebci bi ng a choraa
Sample mean 0, Jompla votçon ea (s, (otu eeef
sampling Biat of a Statistic u KnDQn
6
i2, s.E() = (o)
*ingenee: Ingenee
Inttntu is the Juokfiad logical Proces
(49,35, ne PropOSii on to anothe
proposihon. In inferane genno moTe than
uetive intauneeiS a
a Judqzment mAnnaizhm
bassd on oxioms, emisen, ond
L aBumpkon
e t
the fometim then
Pop
fom omple Tandom
Qoimao:
ate w»odto uwhich Statiptie Ebhmator:
T *
Eshmahion )
Conshuete
maon
a inrune induehve Moinly ingnnee
ollbo populat
won the obont Conclude
impoilonte stahoial noAan
vad deri(oncluion
u Conctubion
a
3
R
mumetü al val ot an lphimat
Colled aimate.
on enhmat
nbiasad
Conbi
qual to th paramta.
oR, Te nbisel eotmato u on whOre mean value
9qual to the value of the popr Potameter to be
latmata.
Exomple:
dyath om a ntal pop Wth mean anl
Vonion oY, ten fomple mean ý an Unbianed
lotimao of pop" maan
Nou
E) E xi)
E)+ E)+ -:
+
Unbiasedn Unbianed
Rptnato;
An estimatm Sod to b
as the somple ie(n) approches
that . An eoimatm tn padto be antmp
Un biased eohimaton t the potameter o
Lim
E(th) =
Wkne n is the somple d, and bn The tunchon
af the somple valws.
* Bios ephmato; tn be a pant ptiratm 6f
Joid. to bd bion Opinatm
Et)# 8 and th
kn
underenimate
Uhbi hed ebhmator bLUE)
* Bert inear thL Poe! fanam
point eotinaor of
at, tn be a
b BLUE
O, thn tn paid to
funeion t jomnple obs.
) th u a ineat
() E(th) = 0, a, tn
an
wherne
other
folloo: is not
An Unbianed aatimatomynceso to Uniqy.
() An nbi aedainattr my on ma not
onbnt.
i) tn be a hbiased lotmafom ot &, then it
Von(tr) = Eftn - E]
2tn t
= E(th) - 28 E(tn) +g
E(tN)-29Y+ 9v
poved
201y
t N(,), Show that Y
Von)=
Now,
neh) nn-)
Md.Shahid
H es
o lq u e
E(T)
os
íitagong
l e v e r s io
tyC
f hi
Asstc
ntn-) no(n-)
Wih inplin tha
Poam Sho thaf th nt Urhiobad 2ohna
5o that
T)=EK)
Tx) Lo odd
Pe) =
Now, T) =k)
EKo)*
E9]= +[2Eg)+
E) ’+
E(24+,
traf
. ahel Unbi
)=0,it ond =25Vor(xi) . E)
[ine
bedt onewkith entimabr true tke
ohmatm Unbiased blue And
On
Tsthat Bueh n whe
2
der 25. Anee vaTË ond mean akoWn With pop? the
Cahimatr
med. =(- Tt)
K) implin
tha Whith
(K)8 -
21
1E)+ El) + El
+ El).
(ut ) +
2 t
Vn1 ( +h+19)|
= 833
t(r) +nl)] t )
q:38
the abDVe We have,
Vor t) ve T)
Sinee Vap ) miimm ahmatr
in the Bryse of. minimm
VaTene
Vorbe) =6v
We have
(i-t u-)
)
=Vorli). -n
n
n )
Ey , hh implids that
Unbiaed. 2nhimat somple vnneay
I ki-)
(n-i)
-.
not nbiae hma
= A .
(nR-) n+
Ii(TN-) A=
n
nn
2(2-1) nV A
11
n A=
(2-1) 2
212-)
Av
22-)
An
e-2)! 2l2-)
A.P) =(4) E
Then Lohinato nbiased the be AKd
Kt,
5inee
eshmate biaded Unthe find 2014
3 5
+ V)2
n
Hneo
f
Tonom
ofkori0
eohrar.
2
b-a 33
tabt+a
L+abtaV bt)
12
N í,2,- 7=
P)=
n fm 5ample TUnom
-a)v
12
n
12
vh+-)
of
thin Vapione The krwwn.
(27-) u enhimatvp
b of (nbinsod the Henu,
2 2
12
6-2ab4-V
MdShsh.
A>
Des
Universay uiciitagong
Sufficitnyd/sufieienl eolinatnt :
saia to be. Sufiintis t wses
An Colimatm is ponameler Contain
aboul th population
Ql the intormalion
in th sAmple
TIanlom sonple. dran fom th
funehon f (x, o) A slaibic s= B(X,,)
5 detine sufiiart Statinica i ond
to be a
the Coni Honal Bioh. o
indepinden st e.
r.A. oadn tom
a
50,
haszA) =
Whre,
31
Poi oson With patane ne.
independent
goint denit funhn: dl K,.,
Size n a n m a Pop ith denatt fneion ta,o)
n
Wsually danaiel
n
= t , 9)
tunetim
ano i u Varuable but in ikolihog funein
h Variable and i fxed,
th paraneta
but fo liklibnk,
L=
F()
Md.ShahidulHoque
Associate Professor
Dept.ofStatistics
UniversityofChittagong
{(x,) The Sinhatho 5,= Al,
SuiintE Stotaie;
(5,5- Sr ) h(4,4n)
non
Whre t h(4)
indepondent
Only
tHrngi the f A() b(4a) An(K )
A(H-- a) inde endent oft 8. Then
SS S jönH,
a rA. orm the dinity
Then
Gmplate.
binonial Bhos?
io4 ith parame e,tun show tha
T= X% : nat a a lomplafe sutfiient Stohnhic
bt T, XtX; Conglate 5wticient Stutinhe.
’E() E -E%) = -9 =0
not CsS Sine E)=D but Ti D
Ex +f)=0
Ex+E)=0+0 24 20O
22ro T 0 WhihtptUy
Complete suficnt sbatiohie.
prphien o suficitn statiohie
Su4hünt slahiohe Uniqud
sttiohie alo a
funein of sutiint
WAny paramt.
staiatht tn th Sam
Siient
the mant efiint
Sutfiient buitic u
xint.
a Conintent e hmator
K,,.
0,J,2,
1 0,1,2,
() btiyen that
a) = (-ay
The oint
(=)
6(-0)
-P
) (-) n
-(.e) A()
r (n-e)! Which
n indspman
sufint sb~ohe fn 6.
ABttrnaiye 6fi vemthat
=t (-9y',wan,Tst Z
5ine X ~ B , ) ten
8(n, e)
2) st(-8)t
With
2) siven that,
tae)= ()6-)"- ,1 o,.2. m
fune Hm
n
4 Con,)
-()-(m)-e.()ö*
/m
Whre, mn and
) With ndepindnt f.
a
(3) 6iym 4hat,
The joint
- , ) ={u) 4) (Inb)
skere,
) tivn that,
t(n)
V
-4-e)v
tE-28i+9)
) ; ( n g 20T)
n).ohl4 1n)
wWh.
Whith
hlH- n)
where 1 anl
) 2n)2 whih indeprdmt
4 Ku x,x, X bt a rh. from a uni tom pop? on o,01.
, 8) =Bn
(
n[
h-l
) o-e)
n-+
m-1+|
1.
n-)T
0-8)
n e
-Dy
n o - 8)
n
Xa bo a P.b. tom the normal. popustion
With
funeion
(e.6) i) 1
282i+ney
Wire,
~wlo,)
t.e,
)
N XSinee
. meon pop the enhnator
o lontintent a
mean
X Sample thin o), N(U, X~ VExomgle
im
im
a be toboid wtn eaimat An
be to aid
pop th ofDimat
si2 mple so
Thus
evi Buni 9 notmaly 8iotibutod. with meen 22p7
p(2)
No).
MS
e lh
. ahi
H du
olqu
gona
Unive
o rC
sf
ih
tyittagor
DotS
.ftatistics
im
n’
ma
detndfmmi Jonple.
(@ onsiotent eotmato is not Vnigue.
A Conioent eohimatn is not necesainiyy Unbi nhed
iv) Varian ee Coninte eaimat tendnto
l
Corbiatnt tolda invatúanee
propnyt
a Consinteat enhmati
diatr. then to
K6
hae, We
inaguali
Sira then
po}oihve ont
Vor(t)
D
en im
onthat Shb ORy
y the thConliion
Conin
fore for cent Aufi the »What OR
Prafiv)
on vnhin .tnimat af o, ie,
thim
E(ta)=o
We o ,
Ky n
Vonlt)
Vontn)
Now, lim
no Var(tr) =p thun We hre m
lim
n’
be
nogaive
Whieh implien that ta ú. a Coniatent-lohmar of
im
to 2e n>
(V) We hve.to sho that to Coindlat
W n00 thal
lim
im
im
im
im
n
wshre,
im
et2te
im
im
inplien that
WiLh imoien to ý a ConJintent eha
ne nbianed mat
y X BCn, ) ,then Show that n a Con inent enhimatm
Ournouli 8int.
> Sinee xn Bn,)
tun E(u)-n,Vor(i) nol) Vor) oll-o)
E() = 0 k
Vor a)
hY
Yor ) n
ny
&l-e)
Ver )
k
81-0)
im
Hw
Xn be a r . tom a poi%on iN
Witth paname o. sho that Somple. meen
meen an apienee
KV
nev
im
ba aat ton one
. Wich implin ttat
Vor ()
An eatmaton badto b men squa tn
oriotent mean
im
/
E(th-e)o
X~ e, , thn ShDw that n Siple lonislt
MsE Content eotimatoy Sf 8.
as
5in x~N(0.o)
N(o,1)
NOW,
6
6
im
n>
Cm o = o
£(-)2im
MSE( ) : m gR-)Y:
Hathe of Momento(MH) *
The methad otof mom&nte into Aueo A karl peoitJe
ra mDment
a Kinon
fumeim
oblinad
methos f momens. so that tue
Kporameters denitt
funeion we areL [olveLte
=m
M m
Thws
On eepoental
dintr ith dut to,8) =
not butmormal
OTe MH The
enhnaten Coniioy,
the Aenena quite Unden )
enimaty.
pnvitn mH
ie,moment populahon pong Covreh
ot
me lohmato Convinfent aremomen% Sample (
dave, We MM Hen
Here
ah n a
2-1
We
2
+sa -2
u+62)
2% -
E()
No),
have We ’
moment mtho
imate an
fom r.Ar.A onide
a
Bintr.
momnt the
mlhod Thin
iklihooA
meihbd.
f ne tho tom bthine o tho than
meth of momnt
2-2u
-o
) -
26Y
Va
6n
J
6 Sine e) &
No). MM,
Am.
X be
Ta
Kl)
the MH
MM
m
’m ) m
m
- M m,'
Fnn
nz
Xi-)
ny
Zoi-)
<
ni
z-)
*Eahnate aB n he Ca ot paarorn T
diotr methd of moment.
tahmate the MH,
We have
m x
Now,
t d
7e t -1
the MH
m
m -m
m'
44Eh-)v
<
Iu-)
a, ) pla)
Eoinate MH.
ond m = Iu
pla) (-)
pla-b)
aty latp
lath atp
1atb lat
1a atbt (at)lot at
Tat at)a a
a
atbti) atb) ats
acati)
th
MH atb) at bti)
m
alat)
bolvi
(-) (En)
+
b
Fom )
1-X
+) +bri)
76(b+-z)
(I- )
(I-)
76(ab-7+1)
b(b- +)
(
bn
(R-1)Y-01
(7-) -n+)
Ti-)
1-X
Aorple
bvori ate opulaim or en
DE
=0 2,
Hene
bhal the erhna
usieh Cala leat squa lohmato.
éxomçle
are
3-2 Z-8,*) =0
- 2 Zx(-Rx) = o
From
Fom ()
-8
Zny -
n indeponnt vóriel):
me
tom
be
knowh moy be Unknodn. Aume that 2ach
[amle peint Unil rovi des intmalion on VoruableA
Wheu the Voruable Y is asud.
Bepenant on ohon varuabl en X,, X
X!
In
Whe
Y= |1
hx1
1 yn n
EU) =0,
ate Cottelaod
('
Here u th
Squaen
one depsnhent Varuoble onb one
-( ' (xo+u)
6,ne
uu x )
Pronf- 2 The asUm moll
TRe leanl
Squas eninar
a ineo ebtmatore.
other ineon asd,ins
onbi
Gyy
eatimator .hat Wh an
bËnee
have
E()
Sine E)D
(-) )
+ 6D'
v(o) + 6
m)
poihve deii}o matrix, soD 0
=
v (@)
The meihod of
minimwm ci square 1s
fa fittg the theoruticoad Siat". Frr th mthol we
nul a stutintie KnoWn chi- 59 uate denotod.
The prDebute aeplaine. belo
bo
popr With
of iz n drawn tom
Papame,2nittfunein ) where oin the
Supposehee obapvakor Conthwows
meaumnt gpd. in
in
thin clsen With hypothai cal prba bilHe l)P,e)-pO
ni = obsanad equncien in the ith cla%
fio= yPohical pnbatiitis of the ith clas
(6)9
(8-9
atimotrn. fiient
OE
idenical
HMe and MLE Sonpla arge. hp
biatibutal.
otu
not eahmatory The
necsAi
MeHo
Qaination
on byian
on
nati nethodo
of -ciCal Non
thenatho& cloical non- In
MLS ()
MLE
spaU paramee the in Volue
take ean Which Unknon an
ixed
etor mhoßs
the claica To
methol;
I, Clossical *
*prim da
be
Witth
funehon
prior
Presantel
llner in (986. wherL too
Paramtets
(9»86) Zallner shon
on
The ()
adit nenti oex Gnd
al ith
acombines tuail tenei
on ThL
D-070 when
alment ond bLD D=8- wisnineang
mont ass uncion los LINEX he
C70,
D=-0>0. When
ineon tur
amA &-020
on D=when
ponentially
ineetim either
in
quile funeion
is LoM ihea Ct0, Eat )
LINEX
Squane error lox fonen (+:8) =(t-8)
()
0-4 ty
= 0, 4 lt-&|< k
Quadraht funeion:
the
pOs\.eni o dinitt unefon then poseruo Pinm
is defnad
Then
Qotmoto
be
anl et9)be
the tuN
Rotr8) = E
Jf4ks)
måmmite the 2A pretiom Wihin braeket. But the
Apreion Wihin bracket is the pON-erç ot tunk.
hant that
that Raimab
phmaot
rolem-o: a . dradn tom
prion
8l-0)
0 sho that aatihr is not nbiasod but
oti aly unbiaseb ond eonintent. AHbo shod
thad po Nerýitt boy eohmar is the inear Combination
og the somple meon ond the mneon of the suggstd
prion
WhvL,
(-,8) =e-)l
and
n-Z4
n
(-e)
E (8)
ptn-I%-)
(-B)
(K+ptn) |otptn
K+tn
ukích is the poatetuoh
iasea not ehmaot
(s Bates Porteriot Hne,
nE)+
E(n)=E
(atptna)(atptn
oslenjon the Wiisth
(1-)
lim
E(G in n(0+ )
-im
|+
im
Hene, PeE
im
Ope)7, 40, PoE conhtent.
Foo &I-8)
K+ni) hp- nz)
E(®n)(Kn)(na-n9)
30,
im
n E(ps) n n(0t%) n-o +/n)
n(Itht P:n(6th+)
(etn)8)+)
im
n( t«) n (it /n - )
(
(Pr) = X -)
n to
PB
A\)+-A)
Tree, pOsterion
and eon
with papamn . et the prir a
gomma Binl with aranet
Wt hove
) X 0 , 1, - -
and
pooteri toneti en
f(0t) =
ng
len)a
(tn) 9 T
12
{ot) = -en)e
entinaton
funetim.
PO
(nt)
nt
n t
ollo beta
Swppose. he paromejen if a int
ind th
iolr Wth mean
privo
m Bn
With poramtet
The p. 8. beta diat
,n-1
(-e)
elmyn)
(-&)
plm)
Imty n -
3
|mtnt)
m m
Tm(m-tn) mtn
m
(
2) 3m
Sh
9
+
(0-1) (-u
(u't+u)d
1,
(+u
S)
Eley=
t20
Again,
r 2-B
-B8
8iat gommna .& The
prion the find Varionee
20 and mNeen With
gomna fpllown bint apopamotna T
)
Pl34)
4(0i3.6)
nonfno
3
|D
10
2
The
prim Ainhbt
S
e:s.n)
C .
an om qon
-netial &int th poraneten &.onh the prioo 8inily
gamma &int With potameten x,p. find bay
Gn
-nT
Jao
(pt7)nta
(pn +n+)0
|nta
the
n-fat)
nrta
T) Rtn3)
Con fi denee interva Wig Lage sample meto :
4, , n r.a obb^.s from
is
pop" havi denit fonetionf o ) oes.14
asumed hat . The ike bi hooduneten
of the Sompla
obervoions
L =T i )
1t w ned that the rgu eriy Conitioy are
Vaid r the intn and henet ML oinator
obtai nab solvia the sauation
N(o.1)
outined nm the tlloi epuatfn:
or,
Pwbobilit Tabli.
n obseVoim
pop". With
fiven That
L=
li-e)
2n%
Q3
VorDloge
2n)
2n9
93
2n
+-9)o)
TRArefre, t00
fm th
Vñ(i-)
ri-)
n(+-o)
A4
Vn
We have,
p =() ) 0,J, 2,- , n
|-P
R(r)-W-)P
PC--)
p p (-P)
nel) Nn-n)
n
n NnlI-)
+
J
Nn I-P +p
P()
PLI-P)
) -- EP) PlI-)
We Con Write
(R-Np) ~No4)
P)
fom the
2=
Vn
Vn(-Np)
VNPlI)
NPI-D)
n (-Np)Y= NPU-D)
2%) (n+N 2
Pa
have aguation
We thin
Puatin
im quadraie
Dq i
aa isqwaton thu Her
NR-P(2nnNA
* ivotal Hothod to Find Canlidene Tnteval:
a r.s. of n obbepvahonh
5eleeted om a
ObsieVotHory Gnd
Colled pivotad qanit For
N(o,1) n
5inee We need to
po bsi laSamples
the inaqualily 4<ac
inagualiy
, thern
wwlo.1)
piotul
5ueh fhat
22 + 3842 0
2
No
Conide the ónal
T, then the Conidenee intals 1s
T=0.45
wher,
bo n 0689'n
ume
( when 6
When
When
Whon UnknoWn
Cabe-i We hoVL
&=
nHt
tee,
We have two umbA Sueh that,
5uehthat Thaefre
pilal
Here aiatributed Wich
f t that, Know We
Knoln Whon
that Swh thre
pivaa
NNO,1)
(ase thia In
Iki-) Caimatol Here
6
when
6
Case-:
Hene|n ,nAYis a1or- ci. for 6.
15 a
Case-V: Unkeno n
We Kno E(-) (0-)AV
-)AY Jih is o,buto
6Y
pivotad
qporh
that,
fr (a) t two Values 2 ond2 5uh
6Y
(h)
|00
ndomy seleetd ne born babi
E0Y*% 08 -
unknn 45/%
) 2-78- |:96
11
2:St, 299
goin,
-)Y
4ere,
(-1)x009 S6
4b-)x 0.0956 3-247
20.5
Interval
).
nterva enimalion is a 4ehnique in whih
attempt to hn oul On int00Val of on enhmato
5uh 1hat the pon dno nonol Will ontun the
Unknon papame}e With bome
nqecifod. probabii
be a 6f bite n
noem poputahon with
ih mean u andarisne
Lntmate
Buh that tn Knon s on the ain sfsnpl abn
the probabiit that
in the intepval
The nethod
inepvad eoimaHon.
There may o4
bome Coni denee lo-fent. Amorng these contidlnte
intepvad With he shertent length o colled
Shontent Conflene inteoval.
Whre,
be. choosen
(n on infnihe
numhe sahinfga Conitions)
Heneo Hhere aeniniBe
'nteevalh OnVoulo be With the sam Conioen
Co-iiet («) onstht Confdenes nierval
a pop ih Pd.
And 100(to)
meth
6tiyen that,
2 2
J
-[E0)]
(=2£
E ) 2 x =0
Henee T 2X
2 2X
4en
is the 10 (-a)
2n
2