KSZ 8041
KSZ 8041
10Base-T/100Base-TX
Physical Layer Transceiver
General Description
The KSZ8041NL represents a new level of features and
The KSZ8041NL is a single supply 10Base-T/100Base-TX
performance and is an ideal choice of physical layer
Physical Layer Transceiver, which provides MII/RMII
transceiver for 10Base-T/100Base-TX applications.
interfaces to transmit and receive data. An unique mixed
signal design extends signaling distance while reducing The KSZ8041NL comes in a 32-pin, lead-free MLF® (QFN
power consumption. per JDEC) package (See Ordering Information).
HP Auto MDI/MDI-X provides the most robust solution for Data sheets and support documentation can be found on
eliminating the need to differentiate between crossover Micrel’s web site at: www.micrel.com.
and straight-through cables.
Functional Diagram
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com
Features Applications
• Single-chip 10Base-T/100Base-TX physical layer • Printer
solution • LOM
• Fully compliant to IEEE 802.3u Standard • Game Console
• Low power CMOS design, power consumption of • IPTV
<180mW
• IP Phone
• HP auto MDI/MDI-X for reliable detection and
• IP Set-top Box
correction for straight-through and crossover cables
with disable and enable option
• Robust operation over standard cables Ordering Information
• Power down and power saving modes
Part Number Temp. Range Package Lead Finish
• MII interface support ®
KSZ8041NL 0°C to 70°C 32-Pin MLF Pb-Free
• RMII interface support with external 50MHz system
®
clock KSZ8041NLI -40°C to 85°C 32-Pin MLF Pb-Free
• MIIM (MDC/MDIO) management bus for PHY register
configuration
• Interrupt pin option
• Programmable LED outputs for link, activity and
speed
• ESD rating (6kV)
• Single power supply (3.3V)
• Built-in 1.8V regulator for core
• Available in 32-pin (5mm x 5mm) MLF® package
Revision History
Revision Date Summary of Changes
1.0 10/13/06 Data sheet created
Contents
Pin Configuration .................................................................................................................................................................. 8
Pin Description ...................................................................................................................................................................... 9
Strapping Options............................................................................................................................................................... 12
Functional Description ....................................................................................................................................................... 13
100Base-TX Transmit....................................................................................................................................................... 13
100Base-TX Receive........................................................................................................................................................ 13
PLL Clock Synthesizer...................................................................................................................................................... 13
Scrambler/De-scrambler (100Base-TX only).................................................................................................................... 13
10Base-T Transmit ........................................................................................................................................................... 13
10Base-T Receive ............................................................................................................................................................ 13
SQE and Jabber Function (10Base-T only)...................................................................................................................... 14
Auto-Negotiation ............................................................................................................................................................... 14
MII Management (MIIM) Interface .................................................................................................................................... 16
Interrupt (INTRP) .............................................................................................................................................................. 16
MII Data Interface ............................................................................................................................................................. 16
MII Signal Definition.......................................................................................................................................................... 17
Transmit Clock (TXC) ...................................................................................................................................................................17
Transmit Enable (TXEN)..............................................................................................................................................................17
Transmit Data [3:0] (TXD[3:0]) ...................................................................................................................................................17
Receive Clock (RXC) .....................................................................................................................................................................17
Receive Data Valid (RXDV) ..........................................................................................................................................................18
Receive Data [3:0] (RXD[3:0])......................................................................................................................................................18
Receive Error (RXER)...................................................................................................................................................................18
Carrier Sense (CRS) ......................................................................................................................................................................18
Collision (COL) .............................................................................................................................................................................18
Reduced MII (RMII) Data Interface................................................................................................................................... 18
RMII Signal Definition ....................................................................................................................................................... 19
Reference Clock (REF_CLK) .......................................................................................................................................................19
Transmit Enable (TX_EN)............................................................................................................................................................19
Transmit Data [1:0] (TXD[1:0]) ...................................................................................................................................................19
Carrier Sense/Receive Data Valid (CRS_DV) ..............................................................................................................................19
Receive Data [1:0] (RXD[1:0])......................................................................................................................................................19
Receive Error (RX_ER).................................................................................................................................................................19
Collision Detection ........................................................................................................................................................................20
HP Auto MDI/MDI-X.......................................................................................................................................................... 20
Straight Cable ................................................................................................................................................................................20
Crossover Cable .............................................................................................................................................................................21
Power Management.......................................................................................................................................................... 22
Power Saving Mode.......................................................................................................................................................................22
Power Down Mode ........................................................................................................................................................................22
Reference Clock Connection Options............................................................................................................................... 22
List of Figures
Figure 1. Auto-Negotiation Flow Chart................................................................................................................................. 15
Figure 2. Typical Straight Cable Connection ....................................................................................................................... 20
Figure 3. Typical Crossover Cable Connection ................................................................................................................... 21
Figure 4. 25MHz Crystal / Oscillator Reference Clock for MII Mode ................................................................................... 22
Figure 5. 50MHz Oscillator Reference Clock for RMII Mode............................................................................................... 22
Figure 6. KSZ8041NL Power and Ground Connections...................................................................................................... 23
Figure 7. MII SQE Timing (10Base-T) ................................................................................................................................. 33
Figure 8. MII Transmit Timing (10Base-T) ........................................................................................................................... 34
Figure 9. MII Receive Timing (10Base-T) ............................................................................................................................ 35
Figure 10. MII Transmit Timing (100Base-TX)..................................................................................................................... 36
Figure 11. MII Receive Timing (100Base-TX)...................................................................................................................... 37
Figure 12. RMII Timing – Data Received from RMII ............................................................................................................ 38
Figure 13. RMII Timing – Data Input to RMII ....................................................................................................................... 38
Figure 14. Auto-Negotiation Fast Link Pulse (FLP) Timing ................................................................................................. 39
Figure 15. MDC/MDIO Timing.............................................................................................................................................. 40
Figure 16. Reset Timing....................................................................................................................................................... 41
Figure 17. Recommended Reset Circuit.............................................................................................................................. 42
Figure 18. Recommended Reset Circuit for interfacing with CPU/FPGA Reset Output...................................................... 42
Figure 19. Reference Circuits for LED Strapping Pins......................................................................................................... 43
List of Tables
Table 1. MII Management Frame Format ............................................................................................................................ 16
Table 2. MII Signal Definition ............................................................................................................................................... 17
Table 3. RMII Signal Description.......................................................................................................................................... 19
Table 4. MDI/MDI-X Pin Definition ....................................................................................................................................... 20
Table 5. KSZ8041NL Power Pin Description ....................................................................................................................... 23
Table 6. MII SQE Timing (10Base-T) Parameters ............................................................................................................... 33
Table 7. MII Transmit Timing (10Base-T) Parameters ........................................................................................................ 34
Table 8. MII Receive Timing (10Base-T) Parameters ......................................................................................................... 35
Table 9. MII Transmit Timing (100Base-TX) Parameters .................................................................................................... 36
Table 10. MII Receive Timing (100Base-TX) Parameters ................................................................................................... 37
Table 11. RMII Timing Parameters ...................................................................................................................................... 38
Table 12. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters ............................................................................... 39
Table 13. MDC/MDIO Timing Parameters ........................................................................................................................... 40
Table 14. Reset Timing Parameters .................................................................................................................................... 41
Table 15. Transformer Selection Criteria ............................................................................................................................. 44
Table 16. Qualified Single Port Magnetics........................................................................................................................... 44
Table 17. Typical Reference Crystal Characteristics ........................................................................................................... 44
Pin Configuration
®
32-Pin (5mm x 5mm) MLF
Pin Description
(1)
Pin Number Pin Name Type Pin Function
1 GND Gnd Ground
2 VDDPLL_1.8 P 1.8V analog VDD
3 VDDA_3.3 P 3.3V analog VDD
4 RX- I/O Physical receive or transmit signal (- differential)
5 RX+ I/O Physical receive or transmit signal (+ differential)
6 TX- I/O Physical transmit or receive signal (- differential)
7 TX+ I/O Physical transmit or receive signal (+ differential)
8 XO O Crystal feedback
This pin is used only in MII mode when a 25 MHz crystal is used.
This pin is a no connect if oscillator or external clock source is used, or if RMII
mode is selected.
9 XI / I Crystal / Oscillator / External Clock Input
REFCLK MII Mode: 25MHz +/-50ppm (crystal, oscillator, or external clock)
RMII Mode: 50MHz +/-50ppm (oscillator, or external clock only)
10 REXT I/O Set physical transmit output current
Pull-down this pin with a 6.49KΩ resistor to ground.
11 MDIO I/O Management Interface (MII) Data I/O
This pin requires an external 4.7KΩ pull-up resistor.
12 MDC I Management Interface (MII) Clock Input
This pin is synchronous to the MDIO data interface.
(2)
13 RXD3 / Ipu/O MII Mode: Receive Data Output[3] /
PHYAD0 Config Mode: The pull-up/pull-down value is latched as PHYADDR[0] during
power-up / reset. See “Strapping Options” section for details.
(2)
14 RXD2 / Ipd/O MII Mode: Receive Data Output[2] /
PHYAD1 Config Mode: The pull-up/pull-down value is latched as PHYADDR[1] during
power-up / reset. See “Strapping Options” section for details.
(2)
15 RXD1 / Ipd/O MII Mode: Receive Data Output[1] /
RXD[1] / (3)
RMII Mode: Receive Data Output[1] /
PHYAD2 Config Mode: The pull-up/pull-down value is latched as PHYADDR[2] during
power-up / reset. See “Strapping Options” section for details.
(2)
16 RXD0 / Ipu/O MII Mode: Receive Data Output[0] /
RXD[0] / (3)
RMII Mode: Receive Data Output[0] /
DUPLEX Config Mode: Latched as DUPLEX (register 0h, bit 8) during power-up /
reset. See “Strapping Options” section for details.
17 VDDIO_3.3 P 3.3V digital VDD
18 RXDV / Ipd/O MII Mode: Receive Data Valid Output /
CRSDV / RMII Mode: Carrier Sense/Receive Data Valid Output /
CONFIG2 Config Mode: The pull-up/pull-down value is latched as CONFIG2 during
power-up / reset. See “Strapping Options” section for details.
19 RXC O MII Mode: Receive Clock Output
Strapping Options
(1)
Pin Number Pin Name Type Pin Function
15 PHYAD2 Ipd/O The PHY Address is latched at power-up / reset and is configurable to any value from
14 PHYAD1 Ipd/O 1 to 7.
28 CONFIG0 Ipd/O
CONFIG[2:0] Mode
000 MII (default)
001 RMII
010 Reserved – not used
011 Reserved – not used
100 PCS Loopback
101 Reserved – not used
110 Reserved – not used
111 Reserved – not used
20 ISO Ipd/O ISOLATE mode
Pull-up = Enable
Pull-down (default) = Disable
During power-up / reset, this pin value is latched into register 0h bit 10.
31 SPEED Ipu/O SPEED mode
Pull-up (default) = 100Mbps
Pull-down = 10Mbps
During power-up / reset, this pin value is latched into register 0h bit 13 as the Speed
Select, and also is latched into register 4h (Auto-Negotiation Advertisement) as the
Speed capability support.
16 DUPLEX Ipu/O DUPLEX mode
Pull-up (default) = Full Duplex
Pull-down = Half Duplex
During power-up / reset, this pin value is latched into register 0h bit 8 as the Duplex
Mode, and also is latched into register 4h (Auto-Negotiation Advertisement) as the
Duplex capability support.
30 NWAYEN Ipu/O Nway Auto-Negotiation Enable
Pull-up (default) = Enable Auto-Negotiation
Pull-down = Disable Auto-Negotiation
During power-up / reset, this pin value is latched into register 0h bit 12.
Note:
1. Ipu/O = Input with internal pull-up during power-up/reset; output pin otherwise.
Ipd/O = Input with internal pull-down during power-up/reset; output pin otherwise.
Pin strap-ins are latched during power-up or reset. In some systems, the MAC receive input pins may drive high during
power-up or reset, and consequently cause the PHY strap-in pins on the MII/RMII signals to be latched high. In this case,
it is recommended to add 1K pull-downs on these PHY strap-in pins to ensure the PHY does not strap-in to ISOLATE or
PCS Loopback mode, or is not configured with an incorrect PHY Address.
Functional Description
The KSZ8041NL is a single 3.3V supply Fast Ethernet transceiver. It is fully compliant with the IEEE 802.3u Specification.
On the media side, the KSZ8041NL supports 10Base-T and 100Base-TX with HP auto MDI/MDI-X for reliable detection of
and correction for straight-through and crossover cables.
The KSZ8041NL offers a choice of MII or RMII data interface connection with the MAC processor. The MII management
bus option gives the MAC processor complete access to the KSZ8041NL control and status registers. Additionally, an
interrupt pin eliminates the need for the processor to poll for PHY status change.
Physical signal transmission and reception are enhanced through the use of patented analog circuitries that make the
design more efficient and allow for lower power consumption and smaller chip die size.
100Base-TX Transmit
The 100Base-TX transmit function performs parallel-to-serial conversion, 4B/5B coding, scrambling, NRZ-to-NRZI
conversion, and MLT3 encoding and transmission.
The circuitry starts with a parallel-to-serial conversion, which converts the MII data from the MAC into a 125MHz serial bit
stream. The data and control stream is then converted into 4B/5B coding, followed by a scrambler. The serialized data is
further converted from NRZ-to-NRZI format, and then transmitted in MLT3 current output.
The output current is set by an external 6.49kΩ 1% resistor for the 1:1 transformer ratio. It has typical rise/fall times of 4
ns and complies with the ANSI TP-PMD standard regarding amplitude balance, overshoot and timing jitter. The wave-
shaped 10Base-T output drivers are also incorporated into the 100Base-TX drivers.
100Base-TX Receive
The 100Base-TX receiver function performs adaptive equalization, DC restoration, MLT3-to-NRZI conversion, data and
clock recovery, NRZI-to-NRZ conversion, de-scrambling, 4B/5B decoding, and serial-to-parallel conversion.
The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted pair
cable. Since the amplitude loss and phase distortion is a function of the cable length, the equalizer must adjust its
characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on
comparisons of incoming signal strength against some known cable characteristics, and then tunes itself for optimization.
This is an ongoing process and self-adjusts against environmental changes such as temperature variations.
Next, the equalized signal goes through a DC restoration and data conversion block. The DC restoration circuit is used to
compensate for the effect of baseline wander and to improve the dynamic range. The differential data conversion circuit
converts the MLT3 format back to NRZI. The slicing threshold is also adaptive.
The clock recovery circuit extracts the 125MHz clock from the edges of the NRZI signal. This recovered clock is then used
to convert the NRZI signal into the NRZ format. This signal is sent through the de-scrambler followed by the 4B/5B
decoder. Finally, the NRZ serial data is converted to the MII format and provided as the input data to the MAC.
10Base-T Transmit
The 10Base-T drivers are incorporated with the 100Base-TX drivers to allow for transmission using the same magnetic.
The drivers also perform internal wave-shaping and pre-emphasize, and output 10Base-T signals with a typical amplitude
of 2.5V peak. The 10Base-T signals have harmonic contents that are at least 27dB below the fundamental frequency
when driven by an all-ones Manchester-encoded signal.
10Base-T Receive
On the receive side, input buffer and level detecting squelch circuits are employed. A differential input receiver circuit and
a PLL performs the decoding function. The Manchester-encoded data stream is separated into clock signal and NRZ data.
A squelch circuit rejects signals with levels less than 400 mV or with short pulse widths to prevent noise at the RX+ and
RX- inputs from falsely trigger the decoder. When the input exceeds the squelch limit, the PLL locks onto the incoming
signal and the KSZ8041NL decodes a data frame. The receive clock is kept active during idle periods in between data
reception.
Auto-Negotiation
The KSZ8041NL conforms to the auto-negotiation protocol, defined in Clause 28 of the IEEE 802.3u specification. Auto-
negotiation is enabled by either hardware pin strapping (pin 30) or software (register 0h bit 12).
Auto-negotiation allows unshielded twisted pair (UTP) link partners to select the highest common mode of operation. Link
partners advertise their capabilities to each other, and then compare their own capabilities with those they received from
their link partners. The highest speed and duplex setting that is common to the two link partners is selected as the mode
of operation.
The following list shows the speed and duplex operation mode from highest to lowest.
• Priority 1: 100Base-TX, full-duplex
• Priority 2: 100Base-TX, half-duplex
• Priority 3: 10Base-T, full-duplex
• Priority 4: 10Base-T, half-duplex
If auto-negotiation is not supported or the KSZ8041NL link partner is forced to bypass auto-negotiation, the KSZ8041NL
sets its operating mode by observing the signal at its receiver. This is known as parallel detection, and allows the
KSZ8041NL to establish link by listening for a fixed signal protocol in the absence of auto-negotiation advertisement
protocol.
The auto-negotiation link up process is shown in the following flow chart.
N Parallel
Force Link Setting Operation
o
Yes
No
Join
Flow
Yes
Interrupt (INTRP)
INTRP (pin 21) is an optional interrupt signal that is used to inform the external controller that there has been a status
update in the KSZ8041NL PHY register. Bits[15:8] of register 1Bh are the interrupt control bits, and are used to enable
and disable the conditions for asserting the INTRP signal. Bits[7:0] of register 1Bh are the interrupt status bits, and are
used to indicate which interrupt conditions have occurred. The interrupt status bits are cleared after reading register 1Bh.
Bit 9 of register 1Fh sets the interrupt level to active high or active low.
By default, the KSZ8041NL is configured in MII mode after it is power-up or reset with the following:
• A 25MHz crystal connected to XI, XO (pins 9, 8), or an external 25MHz clock source (oscillator) connected to XI.
• CONFIG[2:0] (pins 18, 29, 28) set to ‘000’ (default setting).
Direction
MII Direction
(with respect to PHY, Description
Signal Name (with respect to MAC)
KSZ8041NL signal)
TXC Output Input Transmit Clock
(2.5MHz for 10Mbps; 25MHz for 100Mbps)
TXEN Input Output Transmit Enable
TXD[3:0] Input Output Transmit Data [3:0]
RXC Output Input Receive Clock
(2.5MHz for 10Mbps; 25MHz for 100Mbps)
RXDV Output Input Receive Data Valid
RXD[3:0] Output Input Receive Data [3:0]
RXER Output Input, or (not required) Receive Error
CRS Output Input Carrier Sense
COL Output Input Collision Detection
Collision (COL)
COL is asserted in half-duplex mode whenever the transmitter and receiver are simultaneously active on the line. This is
used to inform the MAC that a collision has occurred during its transmission to the PHY.
COL transitions asynchronously with respect to TXC and RXC.
The KSZ8041NL is configured in RMII mode after it is power-up or reset with the following:
• A 50MHz reference clock connected to REFCLK (pin 9).
• CONFIG[2:0] (pins 18, 29, 28) set to ‘001’.
In RMII mode, unused MII signals, TXD[3:2] (pins 27, 26), are tied to ground.
Direction
RMII Direction
(with respect to PHY, Description
Signal Name (with respect to MAC)
KSZ8041NL signal)
REF_CLK Input Input, or Output Synchronous 50 MHz clock reference for
receive, transmit and control interface
TX_EN Input Output Transmit Enable
TXD[1:0] Input Output Transmit Data [1:0]
CRS_DV Output Input Carrier Sense/Receive Data Valid
RXD[1:0] Output Input Receive Data [1:0]
RX_ER Output Input, or (not required) Receive Error
Collision Detection
The MAC regenerates the COL signal of the MII from TX_EN and CRS_DV.
HP Auto MDI/MDI-X
HP Auto MDI/MDI-X configuration eliminates the confusion of whether to use a straight cable or a crossover cable
between the KSZ8041NL and its link partner. This feature allows the KSZ8041NL to use either type of cable to connect
with a link partner that is in either MDI or MDI-X mode. The auto-sense function detects transmit and receive pairs from
the link partner, and then assigns transmit and receive pairs of the KSZ8041NL accordingly.
HP Auto MDI/MDI-X is enabled by default. It is disabled by writing a one to register 1F bit 13. MDI and MDI-X mode is
selected by register 1F bit 14 if HP Auto MDI/MDI-X is disabled.
An isolation transformer with symmetrical transmit and receive data paths is recommended to support auto MDI/MDI-X.
The IEEE 802.3u Standard defines MDI and MDI-X as follow:
MDI MDI-X
RJ-45 Pin Signal RJ-45 Pin Signal
1 TD+ 1 RD+
2 TD- 2 RD-
3 RD+ 3 TD+
6 RD- 6 TD-
Straight Cable
A straight cable connects a MDI device to a MDI-X device, or a MDI-X device to a MDI device. The following diagram
depicts a typical straight cable connection between a NIC card (MDI) and a switch, or hub (MDI-X).
1 1
Transmit Pair Receive Pair
2 2
Straight
3 3
Cable
4 4
Receive Pair Transmit Pair
5 5
6 6
7 7
8 8
Crossover Cable
A crossover cable connects a MDI device to another MDI device, or a MDI-X device to another MDI-X device. The
following diagram depicts a typical crossover cable connection between two switches or hubs (two MDI-X devices).
1 Crossover 1
Receive Pair Cable Receive Pair
2 2
3 3
4 4
Transmit Pair Transmit Pair
5 5
6 6
7 7
8 8
Power Management
The KSZ8041NL offers the following power management modes:
Register Map
Register Number (Hex) Description
0h Basic Control
1h Basic Status
2h PHY Identifier 1
3h PHY Identifier 2
4h Auto-Negotiation Advertisement
5h Auto-Negotiation Link Partner Ability
6h Auto-Negotiation Expansion
7h Auto-Negotiation Next Page
8h Link Partner Next Page Ability
9h – 14h Reserved
15h RXER Counter
16h – 1Ah Reserved
1Bh Interrupt Control/Status
1Ch – 1Dh Reserved
1Eh PHY Control 1
1Fh PHY Control 2
Register Description
(1)
Address Name Description Mode Default
0.10 Isolate 1 = Electrical isolation of PHY from MII and RW Set by ISO strapping pin.
TX+/TX- See “Strapping Options” section
0 = Normal operation for details.
0.9 Restart Auto- 1 = Restart auto-negotiation process RW/SC 0
Negotiation 0 = Normal operation.
This bit is self-cleared after a ‘1’ is written to it.
(1)
Address Name Description Mode Default
0.8 Duplex Mode 1 = Full-duplex RW Set by DUPLEX strapping pin.
0 = Half-duplex See “Strapping Options” section
for details.
0.7 Collision Test 1 = Enable COL test RW 0
0 = Disable COL test
0.6:1 Reserved RO 000_000
0.0 Disable 0 = Enable transmitter RW 0
Transmitter 1 = Disable transmitter
[01] =
LED1 : Activity
LED0 : Link
[10] =
Reserved
[11] =
Reserved
1e.13 Polarity 0 = Polarity is not reversed RO
1 = Polarity is reversed
1e.12 Reserved RO 0
1e.11 MDI/MDI-X 0 = MDI RO
State 1 = MDI-X
1e:10:8 Reserved
1e:7 Remote 0 = Normal mode RW 0
loopback 1 = Remote (analog) loop back is enable
1e:6:0 Reserved
Electrical Characteristics(4)
Symbol Parameter Condition Min Typ Max Units
(5)
Supply Current
IDD1 100Base-TX Chip only (no transformer); 53 mA
Full-duplex traffic @ 100% utilization
IDD2 10Base-T Chip only (no transformer); 38 mA
Full-duplex traffic @ 100% utilization
IDD3 Power Saving Mode Ethernet cable disconnected (reg. 1F.10 = 1) 32 mA
IDD4 Power Down Mode Software power down (reg. 0.11 = 1) 4 mA
TTL Inputs
VIH Input High Voltage 2.0 V
VIL Input Low Voltage 0.8 V
IIN Input Current VIN = GND ~ VDDIO -10 10 µA
TTL Outputs
VOH Output High Voltage IOH = -4mA 2.4 V
VOL Output Low Voltage IOL = 4mA 0.4 V
|Ioz| Output Tri-State Leakage 10 µA
100Base-TX Transmit (measured differentially after 1:1 transformer)
VO Peak Differential Output Voltage 100Ω termination across differential output 0.95 1.05 V
VIMB Output Voltage Imbalance 100Ω termination across differential output 2 %
tr, tf Rise/Fall Time 3 5 ns
Rise/Fall Time Imbalance 0 0.5 ns
Duty Cycle Distortion + 0.25 ns
Overshoot 5 %
VSET Reference Voltage of ISET 0.65 V
Output Jitter Peak-to-peak 0.7 1.4 ns
Notes:
1. Exceeding the absolute maximum rating may damage the device. Stresses greater than the absolute maximum rating may cause permanent
damage to the device. Operation of the device at these or any other conditions above those specified in the operating sections of this specification
is not implied. Maximum conditions for extended periods may affect reliability.
2. The device is not guaranteed to function outside its operating rating.
3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.
4. TA = 25°C. Specification for packaged product only.
5. Current consumption is for the single 3.3V supply KSZ8041NL device only, and includes the 1.8V supply voltage (VDDPLL_1.8) that is provided by the
KSZ8041NL. The PHY port’s transformer consumes an additional 45mA @ 3.3V for 100Base-TX and 70mA @ 3.3V for 10Base-T.
Electrical Characteristics(6)
10Base-T Transmit (measured differentially after 1:1 transformer)
VP Peak Differential Output Voltage 100Ω termination across differential output 2.2 2.8 V
Jitter Added Peak-to-peak 3.5 ns
tr, tf Rise/Fall Time 25 ns
10Base-T Receive
VSQ Squelch Threshold 5MHz square wave 400 mV
Notes:
6. TA = 25°C. Specification for packaged product only.
Timing Diagrams
MII SQE Timing (10Base-T)
RMII Timing
Auto-Negotiation Timing
MDC/MDIO Timing
Reset Timing
The KSZ8041NL reset timing requirement is summarized in the following figure and table.
After the de-assertion of reset, it is recommended to wait a minimum of 100 us before starting programming on the MIIM
(MDC/MDIO) Interface.
Reset Circuit
The following reset circuit is recommended for powering up the KSZ8041NL if reset is triggered by the power supply.
The following reset circuit is recommended for applications where reset is driven by another device (e.g., CPU or FPGA).
At power-on-reset, R, C and D1 provide the necessary ramp rise time to reset the KSZ8041NL device. The RST_OUT_n
from CPU/FPGA provides the warm reset after power up.
Figure 18. Recommended Reset Circuit for interfacing with CPU/FPGA Reset Output.
Package Information
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its
use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical
implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user.
A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to
fully indemnify Micrel for any damages resulting from such use or sale.