0% found this document useful (0 votes)
28 views21 pages

Dapus

The document is a compilation of various research articles focusing on phytochemical analyses, medicinal properties, and the effects of different plant extracts and compounds on health and agriculture. It includes studies on specific plants, their secondary metabolites, and their potential applications in medicine and pest management. The articles cover a range of topics, including alkaloid biosynthesis, antimicrobial activities, and the impact of environmental factors on plant chemistry.

Uploaded by

ergi2436
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
28 views21 pages

Dapus

The document is a compilation of various research articles focusing on phytochemical analyses, medicinal properties, and the effects of different plant extracts and compounds on health and agriculture. It includes studies on specific plants, their secondary metabolites, and their potential applications in medicine and pest management. The articles cover a range of topics, including alkaloid biosynthesis, antimicrobial activities, and the impact of environmental factors on plant chemistry.

Uploaded by

ergi2436
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 21

Arif, M., Warsito, S., Lamid, M., Lokapirnasari, W., Khairullah, A., Ayuti, S., … & Gangil, R. (2024).

Phytochemical analysis of curry leaf extract (murraya koenigii l.) as a potential animal feed and
medicinal ingredient. Pharmacognosy Journal, 16(2), 471-477. https://doi.org/10.5530/pj.2024.16.75

Boppré, M. and Colegate, S. (2015). Recognition of pyrrolizidine alkaloid esters in the invasive aquatic
plant gymnocoronis spilanthoides

(asteraceae). Phytochemical Analysis, 26(3), 215-225. https://doi.org/10.1002/pca.2555

Ejsmond, M. and Provenza, F. (2018). Is doping of cognitive performance an anti‐herbivore


adaptation? alkaloids inhibiting acetylcholinesterase as a case. Ecosphere, 9(2).
https://doi.org/10.1002/ecs2.2129

Gebrewbet, G. and Hndeya, A. (2023). Phytochemical screening and antibacterial activity studies on
the crude leaf extract of solanum sisymbriifolium: traditional ethiopian medicinal plant. Advanced
Gut & Microbiome Research, 2023, 1-7. https://doi.org/10.1155/2023/5525606

Ibrahim, I. and Mahmoud, M. (2016). Assessment of two newly introduced parsley varieties for
productivity and quality as affected by iron and magnesium foliar application under upper egypt
conditions. Assiut Journal of Agricultural Sciences, 47(1), 75-88.
https://doi.org/10.21608/ajas.2016.500

Irmer, S., Podzun, N., Langel, D., Heidemann, F., Kaltenegger, E., Schemmerling, B., … & Ober, D.
(2015). New aspect of plant–rhizobia interaction: alkaloid biosynthesis in

crotalaria

depends on nodulation. Proceedings of the National Academy of Sciences, 112(13), 4164-


4169. https://doi.org/10.1073/pnas.1423457112

Kariñho‐Betancourt, E., Vázquez‐Lobo, A., & Núñez‐Farfán, J. (2023). Effect of plant defenses and
plant nutrients on the performance of specialist and generalist herbivores of datura: a
macroevolutionary study. Plants, 12(14), 2611. https://doi.org/10.3390/plants12142611

Lahare, R., Yadav, H., Bisen, Y., & Dashahre, A. (2021). Estimation of total phenol, flavonoid, tannin
and alkaloid content in different extracts of catharanthus roseus from durg district, chhattisgarh,
india. Scholars Bulletin, 7(1), 1-6. https://doi.org/10.36348/sb.2021.v07i01.001

Miranda-Pérez, A., Castillo, G., Hernández‐Cumplido, J., Valverde, P., Borbolla, M., Cruz, L., … &
Núñez‐Farfán, J. (2016). Natural selection drives chemical resistance ofdatura stramonium. Peerj, 4,
e1898. https://doi.org/10.7717/peerj.1898

Qin, T., Shi, X., Yin, J., Qu, Y., Deng, Y., Wei, X., … & Ren, A. (2024). Fungal endophytes enhanced insect
resistance by improving the defenses of achnatherum sibiricum before locust feeding. Pest
Management Science, 81(4), 2009-2019. https://doi.org/10.1002/ps.8599

Tayjanov, K., Mamadalieva, N., & Wink, M. (2017). Diversity of the mountain flora of central asia with
emphasis on alkaloid-producing plants. Diversity, 9(1), 11. https://doi.org/10.3390/d9010011

Wilson, J., Tseng, A., Potter, K., Davidowitz, G., & Hildebrand, J. (2017). The effects of the alkaloid
scopolamine on the performance and behavior of two caterpillar species. Arthropod-Plant
Interactions, 12(1), 21-29. https://doi.org/10.1007/s11829-017-9548-y
Zenkner, F., Margis‐Pinheiro, M., & Cagliari, A. (2019). Nicotine biosynthesis innicotiana: a metabolic
overview. Tobacco Science, 56(1), 1-9. https://doi.org/10.3381/18-063Corte, L., Noventa, M.,
Ciebiera, M., Magliarditi, M., Sleiman, Z., Karaman, E., … & Garzon, S. (2020). Phytotherapy in
endometriosis: an up-to-date review. Journal of Complementary and Integrative Medicine, 17(3).
https://doi.org/10.1515/jcim-2019-0084

Karimi‐Jafari, M., Firouzi, R., Ashouri, M., & Poursoleiman, A. (2022). A database of chemical
compositions of persian medicinal herbs.. https://doi.org/10.26434/chemrxiv-2022-8rrwp

Kehinde, I., Ramharack, P., Nlooto, M., & Gordon, M. (2019). The pharmacokinetic properties of hiv-1
protease inhibitors: a computational perspective on herbal phytochemicals. Heliyon, 5(10), e02565.
https://doi.org/10.1016/j.heliyon.2019.e02565

Languon, S., Tuffour, I., Quayson, E., Appiah–Opong, R., & Quaye, O. (2018). In vitro evaluation of
cytotoxic activities of marketed herbal products in ghana. Journal of Evidence-Based Integrative
Medicine, 23. https://doi.org/10.1177/2515690x18790723

Maroyi, A. (2019). A review of botany, therapeutic value, phytochemistry, and pharmacology of


cussonia paniculata. Asian Journal of Pharmaceutical and Clinical Research, 1-6.
https://doi.org/10.22159/ajpcr.2019.v12i9.34434

Maroyi, A. (2019). Cussonia spicata thunb. in tropical africa: phytochemistry, pharmacology, and
medicinal potential. Asian Journal of Pharmaceutical and Clinical Research, 39-45.
https://doi.org/10.22159/ajpcr.2019.v12i9.34464

Morankar, P. and Jain, A. (2019). Extraction, qualitative and quantitative determination of secondary
metabolites of aerial parts of clematis heynei and solanum virginianum. Journal of Drug Delivery and
Therapeutics, 9(1-s), 260-264. https://doi.org/10.22270/jddt.v9i1-s.2346

Ncume, P., Salau, V., Mtshali, S., Olofinsan, K., Erukaınure, O., & Matsabisa, M. (2023). Phytochemical
properties of croton gratissimus burch (lavender croton) herbal tea and its protective effect against
iron-induced oxidative hepatic injury. Plants, 12(16), 2915. https://doi.org/10.3390/plants12162915

Pant, H., Kumar, V., Giri, B., Wu, Q., Lobo, V., Singh, I., … & Sharma, A. (2022). Potential roles of
phytochemicals in combating severe acute respiratory syndrome coronavirus infection. Plant Science
Today. https://doi.org/10.14719/pst.1525

Prasetyo, W., Kusumaningsih, T., & Firdaus, M. (2020). Nature as a treasure trove for anti-covid-19:
luteolin and naringenin from indonesian traditional herbal medicine reveal potential sars-cov-2 mpro
inhibitors insight from in silico studies.. https://doi.org/10.26434/chemrxiv.13356842

Rizvi, A., Ahmed, B., Khan, M., El‐Beltagi, H., Umar, S., & Lee, J. (2022). Bioprospecting plant growth
promoting rhizobacteria for enhancing the biological properties and phytochemical composition of
medicinally important crops. Molecules, 27(4), 1407. https://doi.org/10.3390/molecules27041407

Vaghela, N. and Gohel, S. (2022). Medicinal plant‐associated rhizobacteria enhance the production of
pharmaceutically important bioactive compounds under abiotic stress conditions. Zeitschrift Für
Allgemeine Mikrobiologie, 63(3-4), 308-325. https://doi.org/10.1002/jobm.202200361Benslimani,
N., Khelifi-Slaoui, M., Morsli, A., Djerrad, A., Al-Ramamneh, E., Makhzoum, A., … & Khélifi, L. (2019).
Effects of gamma irradiation on the alkaloid content in seeds of datura stramonium and the
radiosensitivity of derived seedlings. Plant Science Today, 6(4), 533-540.
https://doi.org/10.14719/pst.2019.6.4.634
Billore, V., Khatediya, L., & Jain, M. (2016). Sink ? source system of in vitro suspension culture of
celastrus paniculatus under regulation of monochromatic lights. Plant Tissue Culture and
Biotechnology, 26(2), 175-185. https://doi.org/10.3329/ptcb.v26i2.30567

Dan, H., Wang, K., Long, F., Zhang, W., Yao, X., & Chen, S. (2022). Effects of endophytic fungi on the
secondary metabolites of hordeum bogdanii under alkaline stress. Amb Express, 12(1).
https://doi.org/10.1186/s13568-022-01414-w

Freitas, A. and Carvalho, A. (2023). Evaluation of antimicrobial activity of extracts and fractions of
species of the genus psychotria.. https://doi.org/10.56238/colleinternhealthscienv1-033

Furrianca, M., Alvear, M., Zambrano, T., Fajardo, V., & Salazar, L. (2017). Phytochemical constituents
of the root of berberis microphylla. Asian Journal of Pharmaceutical and Clinical Research, 10(6), 225.
https://doi.org/10.22159/ajpcr.2017.v10i6.17803

Gizaw, A., Marami, L., Teshome, I., Sarba, E., Admasu, P., Babele, D., … & Abdisa, K. (2022).
Phytochemical screening and in vitro antifungal activity of selected medicinal plants against candida
albicans and aspergillus niger in west shewa zone, ethiopia. Advances in Pharmacological and
Pharmaceutical Sciences, 2022, 1-8. https://doi.org/10.1155/2022/3299146

Gnanasekaran, N., John, J., Sakthivel, G., & Kalavathy, S. (2016). The comparative studies of the
phytochemical levels and the in vitro antioxidant activity of tridax procumbens l. from different
habitats. Free Radicals and Antioxidants, 7(1), 50-56. https://doi.org/10.5530/fra.2017.1.8

Han, D., Wang, K., Long, F., Zhang, W., Yao, X., & Chen, S. (2021). Influence of epichloë bromicola
endophytic fungi on secondary metabolites following alkali tolerance improvement in host, hordeum
bogdanii.. https://doi.org/10.21203/rs.3.rs-1097685/v1

Hayatou, M., Tembe, E., Hervé, B., Borgia, N., & Fokunang, C. (2023). Qualitative and quantitative
phytochemical characterization of leaf extracts of mimosa pudica (mimosaceae). Journal of
Complementary and Alternative Medical Research, 23(2), 1-13.
https://doi.org/10.9734/jocamr/2023/v23i2472

Kishimoto, S., Sato, M., Tsunematsu, Y., & Watanabe, K. (2016). Evaluation of biosynthetic pathway
and engineered biosynthesis of alkaloids. Molecules, 21(8), 1078.
https://doi.org/10.3390/molecules21081078

Kong, Y., Tay, K., Su, Y., Wong, C., Tan, W., & Khaw, K. (2021). Potential of naturally derived alkaloids as
multi-targeted therapeutic agents for neurodegenerative diseases. Molecules, 26(3), 728.
https://doi.org/10.3390/molecules26030728

Kumar, S., Keshamma, E., Trivedi, U., Janjua, D., Shaw, P., Kumar, R., … & Saha, P. (2022). A meta
analysis of different herbs (leaves, roots, stems) used in treatment of cancer cells. Journal for
Research in Applied Sciences and Biotechnology, 1(3), 92-101. https://doi.org/10.55544/jrasb.1.3.12

Raharjo, D., S, A., & Aminnulloh, M. (2023). Antihyperuresemia activity of ethanol extracts and
fractions of nipah leaf fronds (nypa fruticans. wurmb). Proceeding of International Conference on
Science Health and Technology, 4(1), 237-243. https://doi.org/10.47701/icohetech.v4i1.3397

Raymond, K., Dan, E., & Udo, U. (2018). Comparative phytochemical, antinutrient and trace metal
composition of the leaf, flower and seed of moringa oleifera l. grown in southern nigeria. Chemical
Science International Journal, 23(4), 1-10. https://doi.org/10.9734/csji/2018/43004
Ushie, O., Ochepo, E., Nkom, P., Ago, M., & Gani, J. (2023). Medicinal uses of nitrogen group
containing secondary metabolites: a review. Tropical Journal of Science and Technology, 4(1), 71-82.
https://doi.org/10.47524/tjst.v4i1.72

Zhou, J., Liu, Z., Wang, S., Li, J., Li, Y., Chen, W., … & Wang, R. (2020). Fungal endophytes promote the
accumulation of amaryllidaceae alkaloids in lycoris radiata. Environmental Microbiology, 22(4), 1421-
1434. https://doi.org/10.1111/1462-2920.14958

Adnan, M., Siddiqui, A., Hamadou, W., Snoussi, M., Badraoui, R., Ashraf, S., … & Patel, M. (2021).
Deciphering the molecular mechanism responsible for efficiently inhibiting metastasis of human non-
small cell lung and colorectal cancer cells targeting the matrix metalloproteinases by selaginella
repanda. Plants, 10(5), 979. https://doi.org/10.3390/plants10050979

Afonso, S., Ferreira, V., & Moreira‐Santos, M. (2024). Comparing the sensitivity of aquatic organisms
relative to daphnia sp. toward essential oils and crude extracts: a meta-analysis. The Science of the
Total Environment, 908, 168467. https://doi.org/10.1016/j.scitotenv.2023.168467

Anand, U., Jacobo‐Herrera, N., Altemimi, A., & Lakhssassi, N. (2019). A comprehensive review on
medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery.
Metabolites, 9(11), 258. https://doi.org/10.3390/metabo9110258

Benamar, H., Marouf, A., & Bennaceur, M. (2021). Analysis and chemotaxonomic significance of
pyrrolizidine alkaloids from two boraginaceae species growing in algeria. Zeitschrift Für
Naturforschung C, 76(5-6), 205-212. https://doi.org/10.1515/znc-2020-0225

Bhambhani, S., Kondhare, K., & Giri, A. (2021). Diversity in chemical structures and biological
properties of plant alkaloids. Molecules, 26(11), 3374. https://doi.org/10.3390/molecules26113374

Desmet, S., Morreel, K., & Dauwe, R. (2021). Origin and function of structural diversity in the plant
specialized metabolome. Plants, 10(11), 2393. https://doi.org/10.3390/plants10112393

Malá, L., Laloučková, K., & Skřivanová, E. (2021). Bacterial skin infections in livestock and plant-based
alternatives to their antibiotic treatment. Animals, 11(8), 2473. https://doi.org/10.3390/ani11082473

Mohammed, N., Al-Behadili, W., & Al-fahham, A. (2024). The chemical structure, classification and
clinical significance of alkaloids. International Journal of Health & Medical Research, 03(10).
https://doi.org/10.58806/ijhmr.2024.v3i10n10

Molen, M., Berasategui, A., Coolen, S., Jansen, R., & Welte, C. (2023). Microbial degradation of plant
toxins. Environmental Microbiology, 25(12), 2988-3010. https://doi.org/10.1111/1462-2920.16507

Ng, W., Hung, L., Lam, Y., Chan, S., Pang, K., Chong, Y., … & Mak, T. (2019). Poisoning by toxic plants in
hong kong: a 15-year review. Hong Kong Medical Journal. https://doi.org/10.12809/hkmj187745

Rao, M., Duan, M., Wei, X., Zuo, H., Ma, L., Qamar, M., … & Wang, L. (2022). lc–ms/ms‐based
metabolomics approach revealed novel phytocompounds from sugarcane rind with promising
pharmacological value. Journal of the Science of Food and Agriculture, 102(14), 6632-6642.
https://doi.org/10.1002/jsfa.12030

Sadiq, S., Joy, M., Aiswarya, S., Ajmani, A., Keerthana, C., Rayginia, T., … & Anto, R. (2024). Unlocking
nature’s pharmacy: an in-depth exploration of phytochemicals as potential sources of anti-cancer
and anti-inflammatory molecules. Explor Drug Sci, 2(6), 744-784.
https://doi.org/10.37349/eds.2024.00073
Seshadri, K., Abad, A., Nagasawa, K., Yost, K., Johnson, C., Dror, M., … & Tang, Y. (2025). Synthetic
biology in natural product biosynthesis. Chemical Reviews, 125(7), 3814-3931.
https://doi.org/10.1021/acs.chemrev.4c00567

Sireesha, B., Reddy, B., Basha, S., Chandra, K., & ANASUYA, D. (2019). A review on pharmacological
activities of alkaloids. World Journal of Current Medical and Pharmaceutical Research, 01(06), 230-
234. https://doi.org/10.37022/wjcmpr.2019.01068

Wei, W., Chen, X., Guo, T., Liu, X., Zhao, Y., Wang, L., … & Wang, Z. (2021). A review on classification
and biological activities of alkaloids from the genus zanthoxylum species. Mini-Reviews in Medicinal
Chemistry, 21(3), 336-361. https://doi.org/10.2174/1389557520666200910091905

Zhang, L., Luo, Z., Cui, S., Xie, L., Yu, J., Tang, D., … & Mou, Y. (2019). Residue of paclobutrazol and its
regulatory effects on the secondary metabolites of ophiopogon japonicas. Molecules, 24(19), 3504.
https://doi.org/10.3390/molecules24193504Al-Subaie, S., Alowaifeer, A., & Mohamed, M. (2022).
Pyrrolizidine alkaloid extraction and analysis: recent updates. Foods, 11(23), 3873.
https://doi.org/10.3390/foods11233873

Eljounaidi, K., Radzikowska, B., Whitehead, C., Conde, S., Davis, W., Dowle, A., … & Lichman, B.
(2022). Integrative metabolomics reveal the organisation of alkaloid biosynthesis in daphniphyllum
macropodum.. https://doi.org/10.1101/2022.05.25.493403

Faisal, S., Badshah, S., Kubra, B., Emwas, A., & Jaremko, M. (2023). Alkaloids as potential antivirals. a
comprehensive review. Natural Products and Bioprospecting, 13(1). https://doi.org/10.1007/s13659-
022-00366-9

Kim, N., Chavez, B., Stewart, C., & D’Auria, J. (2021). Structure and function of enzymes involved in
the biosynthesis of tropane alkaloids., 21-50. https://doi.org/10.1007/978-981-33-4535-5_2

Pérez, P., Pablo, P., Pardo, R., Alseekh, S., Rojas-Contreras, S., Sierra, G., … & Roda, F. (2024). Genetic
basis of alkaloid divergence in the solanaceae.. https://doi.org/10.21203/rs.3.rs-4849145/v1

Santos, C., Angolini, C., Neves, K., Costa, E., Souza, A., Pinheiro, M., … & Silva, F. (2020). Molecular
networking‐based dereplication of strictosidine‐derived monoterpene indole alkaloids from the
curare ingredient strychnos peckii. Rapid Communications in Mass Spectrometry, 34(S3).
https://doi.org/10.1002/rcm.8683

Tallini, L., Carrasco, A., León, K., Vinueza, D., Bastida, J., & Oleas, N. (2021). Alkaloid profiling and
cholinesterase inhibitory potential of crinum × amabile donn. (amaryllidaceae) collected in ecuador.
Plants, 10(12), 2686. https://doi.org/10.3390/plants10122686

Vuković, G., Stojanović, T., Fabijan, A., Konstantinović, B., Puvača, N., Marinković, D., … & Bursić, V.
(2021). Tropane alkaloids in mint teas at the serbian market. Агрознање, 22(4).
https://doi.org/10.7251/agren2104117v

Alamzeb, M., Ali, S., Khan, B., Adnan, A., Omer, M., Ullah, I., … & Shah, A. (2021). Antileishmanial
potential of berberine alkaloids from berberis glaucocarpa roots: molecular docking suggests
relevant leishmania protein targets. Natural Product Communications, 16(9).
https://doi.org/10.1177/1934578x211031148

Deng, N., Xia, J., Wickstrom, L., Lin, C., Wang, K., He, P., … & Yang, D. (2019). Ligand selectivity in the
recognition of protoberberine alkaloids by hybrid-2 human telomeric g-quadruplex: binding free
energy calculation, fluorescence binding, and nmr experiments. Molecules, 24(8), 1574.
https://doi.org/10.3390/molecules24081574

Gholam, G. and Firdausy, I. (2023). Molecular docking study of nigella sativa alkaloid compounds as
the inhibitor of papain-like protease sars-cov-2. Journal of Tropical Pharmacy and Chemistry, 7(1), 33-
40. https://doi.org/10.25026/jtpc.v7i1.420

Salminen, K., Rahnasto‐Rilla, M., Väänänen, R., Imming, P., Meyer, A., Horling, A., … & Lahtela‐
Kakkonen, M. (2015). Time-dependent inhibition of cyp2c19 by isoquinoline alkaloids: in vitro and in
silico analysis. Drug Metabolism and Disposition, 43(12), 1891-1904.
https://doi.org/10.1124/dmd.115.065755

Song, C., Zhang, Y., Manzoor, M., & Li, G. (2022). Identification of alkaloids and related intermediates
of dendrobium officinale by solid-phase extraction coupled with high-performance liquid
chromatography tandem mass spectrometry. Frontiers in Plant Science, 13.
https://doi.org/10.3389/fpls.2022.952051

Su, C., Cheng, Y., Chang, Y., Kung, T., Chen, Y., Lai, K., … & Yang, Y. (2022). Untargeted lc-ms/ms-based
multi-informative molecular networking for targeting the antiproliferative ingredients in tetradium
ruticarpum fruit. Molecules, 27(14), 4462. https://doi.org/10.3390/molecules27144462

Sánchez, G., Estrada, O., Acha, G., Cardozo, A., Peña, F., Ruiz, M., … & Alvarado-Castillo, C. (2018). The
norpurpureine alkaloid from annona purpurea inhibits human platelet activation in vitro. Cellular &
Molecular Biology Letters, 23(1). https://doi.org/10.1186/s11658-018-0082-4

Vergoten, G. and Bailly, C. (2024). Interaction of norsecurinine-type monomeric and dimeric alkaloids
with α-tubulin: a molecular docking study. Explor Drug Sci, 277-291.
https://doi.org/10.37349/eds.2024.00047

Wang, Y., Yang, Z., Huang, T., Pan, L., Ding, J., & Liu, Z. (2025). Experimental and computational
investigation of the target and mechanisms of gelsemium alkaloids in the central nervous system.
International Journal of Molecular Sciences, 26(3), 1312. https://doi.org/10.3390/ijms26031312

Xue, X., Jiao, Q., Jin, R., Wang, X., Li, P., Shi, S., … & Chen, S. (2021). The combination of uhplc-hrms
and molecular networking improving discovery efficiency of chemical components in chinese
classical formula. Chinese Medicine, 16(1). https://doi.org/10.1186/s13020-021-00459-6Casciaro, B.,
Mangiardi, L., Cappiello, F., Romeo, I., Loffredo, M., Iazzetti, A., … & Quaglio, D. (2020). Naturally-
occurring alkaloids of plant origin as potential antimicrobials against antibiotic-resistant infections.
Molecules, 25(16), 3619. https://doi.org/10.3390/molecules25163619

González‐Ruiz, V., Cores, Á., Martín-Cámara, O., Orellana, K., Cervera-Carrascón, V., Michalska, P., … &
Menéndez, J. (2021). Enhanced stability and bioactivity of natural anticancer topoisomerase i
inhibitors through cyclodextrin complexation. Pharmaceutics, 13(10), 1609.
https://doi.org/10.3390/pharmaceutics13101609

Hadjiakhondí, A., Ebrahimi, E., Aboosaber, M., & Safarian, L. (2021). Isolation and characterization of
alkaloids from thalictrum minus. Laplage Em Revista, 7(Extra-D), 600-604.
https://doi.org/10.24115/s2446-622020217extra-d1143p.600-604

Mohammed, A. and Ado, B. (2022). Phytochemical and antibacterial study of ethanol and ethyl
acetate extracts from leaves of alchornea cordifolia against isolates from infected wounds. Equity
Journal of Science and Technology, 8(1), 70-73. https://doi.org/10.4314/equijost.v8i1.11
Osborne, P., Pasupuleti, R., Lee, C., & Ponnusamy, V. (2024). Towards a replacement therapy for
stimulant betel quid dependence: a proof of concept study. Addiction Biology, 29(2).
https://doi.org/10.1111/adb.13371

Sireesha, B., Reddy, B., Basha, S., Chandra, K., & ANASUYA, D. (2019). A review on pharmacological
activities of alkaloids. World Journal of Current Medical and Pharmaceutical Research, 01(06), 230-
234. https://doi.org/10.37022/wjcmpr.2019.01068

Song, Z., Li, S., Guan, Y., Wang, S., Wang, Y., Yang, G., … & Chen, L. (2020). Facile synthesis of zirconia-
coated mesoporous silica particles by hydrothermal strategy under low potential of hydrogen
conditions and functionalization with dodecylphosphonic acid for high-performance liquid
chromatography. Journal of Chromatography A, 1612, 460659.
https://doi.org/10.1016/j.chroma.2019.460659

Tiwari, A. and Singh, M. (2023). Insights into the origin and therapeutic implications of benzopyran
and its derivatives. Chemistryselect, 8(20). https://doi.org/10.1002/slct.202300220

Yang, Y., Zhang, Y., Zhang, B., Bao, Y., Xu, S., Tang, X., … & Li, R. (2023). In vitro antioxidative activity of
fritillaria cirrhosa d. don straw ethanolic extract and its effect on lipid, protein oxidation, and quality
of chinese‐style sausage. Journal of Food Science, 88(11), 4745-4772. https://doi.org/10.1111/1750-
3841.16757

Zhang, Y., Guo, J., Zhou, X., Zhao, J., Liu, X., Jiang, Q., … & Ren, F. (2022). Transcriptome and
metabolome studies on pre-harvest nitrogen impact on fruit yield and quality of peach (prunus
persica l.). Metabolites, 12(10), 905. https://doi.org/10.3390/metabo12100905Bougoffa-Sadaoui, K.,
Gontier, É., Telliez, M., Lequart‐Pillon, M., Ouadid‐Ahidouch, H., & Maiza-Benabdesselam, F. (2015).
Characterization of isoquinolin alkaloids from fumaria agraria and evaluation of their antiproliferative
activity against human breast cancer cell lines. Phytothérapie, 14(3), 188-195.
https://doi.org/10.1007/s10298-015-0981-8

Krstić, Đ., Tosti, T., Đurović, S., Akšić, M., Đorđević, B., Milojković‐Opsenica, D., … & Trifković, J.
(2022). Primary metabolite chromatographic profiling as a tool for chemotaxonomic classification of
seeds from berry fruits. Food Technology and Biotechnology, 60(3), 406-417.
https://doi.org/10.17113/ftb.60.03.22.7505

Moreira, V., Vieira, I., & Braz‐Filho, R. (2015). Chemistry and biological activity of condamineeae
tribe: a chemotaxonomic contribution of rubiaceae family. American Journal of Plant Sciences,
06(16), 2612-2631. https://doi.org/10.4236/ajps.2015.616264

Nugroho, A., Akbar, F., Wiyani, A., & Sudarsono, S. (2015). Cytotoxic effect and constituent profile of
alkaloid fractions from ethanolic extract of ficus septica burm. f. leaves on t47d breast cancer cells.
Asian Pacific Journal of Cancer Prevention, 16(16), 7337-7342.
https://doi.org/10.7314/apjcp.2015.16.16.7337

Rasamison, V., Brodie, P., Merino, E., Cassera, M., Ratsimbason, M., Rakotonandrasana, S., … &
Harinantenaina, L. (2016). Furoquinoline alkaloids and methoxyflavones from the stem bark of
melicope madagascariensis (baker) t.g. hartley. Natural Products and Bioprospecting, 6(5), 261-265.
https://doi.org/10.1007/s13659-016-0106-6

Reddy, K., Stafford, G., & Makunga, N. (2024). Skeletons in the closet? using a bibliometric lens to
visualise phytochemical and pharmacological activities linked to sceletium, a mood enhancer.
Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1268101
Saha, P., Sengupta, M., & Jha, S. (2016). Ribosomal dna its1, 5.8s and its2 secondary structure,
nuclear dna content and phytochemical analyses reveal distinctive characteristics of four subclades
of protasparagus. Journal of Systematics and Evolution, 55(1), 54-70.
https://doi.org/10.1111/jse.12221

Wang, L., Yao, Z., Li, P., Chen, S., So, P., Shi, Z., … & Xin, G. (2015). Global detection and semi‐
quantification of fritillaria alkaloids in fritillariae ussuriensis bulbus by a non‐targeted multiple
reaction monitoring approach. Journal of Separation Science, 39(2), 287-295.
https://doi.org/10.1002/jssc.201500880

Wieczorek, D., Żyszka-Haberecht, B., Kafka, A., & Lipok, J. (2021). Phosphonates as unique
components of plant seeds—a promising approach to use phosphorus profiles in plant
chemotaxonomy. International Journal of Molecular Sciences, 22(21), 11501.
https://doi.org/10.3390/ijms222111501Bougoffa-Sadaoui, K., Gontier, É., Telliez, M., Lequart ‐Pillon,
M., Ouadid‐Ahidouch, H., & Maiza-Benabdesselam, F. (2015). Characterization of isoquinolin
alkaloids from fumaria agraria and evaluation of their antiproliferative activity against human breast
cancer cell lines. Phytothérapie, 14(3), 188-195. https://doi.org/10.1007/s10298-015-0981-8

Krstić, Đ., Tosti, T., Đurović, S., Akšić, M., Đorđević, B., Milojković‐Opsenica, D., … & Trifković, J.
(2022). Primary metabolite chromatographic profiling as a tool for chemotaxonomic classification of
seeds from berry fruits. Food Technology and Biotechnology, 60(3), 406-417.
https://doi.org/10.17113/ftb.60.03.22.7505

Moreira, V., Vieira, I., & Braz‐Filho, R. (2015). Chemistry and biological activity of condamineeae
tribe: a chemotaxonomic contribution of rubiaceae family. American Journal of Plant Sciences,
06(16), 2612-2631. https://doi.org/10.4236/ajps.2015.616264

Nugroho, A., Akbar, F., Wiyani, A., & Sudarsono, S. (2015). Cytotoxic effect and constituent profile of
alkaloid fractions from ethanolic extract of ficus septica burm. f. leaves on t47d breast cancer cells.
Asian Pacific Journal of Cancer Prevention, 16(16), 7337-7342.
https://doi.org/10.7314/apjcp.2015.16.16.7337

Rasamison, V., Brodie, P., Merino, E., Cassera, M., Ratsimbason, M., Rakotonandrasana, S., … &
Harinantenaina, L. (2016). Furoquinoline alkaloids and methoxyflavones from the stem bark of
melicope madagascariensis (baker) t.g. hartley. Natural Products and Bioprospecting, 6(5), 261-265.
https://doi.org/10.1007/s13659-016-0106-6

Reddy, K., Stafford, G., & Makunga, N. (2024). Skeletons in the closet? using a bibliometric lens to
visualise phytochemical and pharmacological activities linked to sceletium, a mood enhancer.
Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1268101

Saha, P., Sengupta, M., & Jha, S. (2016). Ribosomal dna its1, 5.8s and its2 secondary structure,
nuclear dna content and phytochemical analyses reveal distinctive characteristics of four subclades
of protasparagus. Journal of Systematics and Evolution, 55(1), 54-70.
https://doi.org/10.1111/jse.12221

Wang, L., Yao, Z., Li, P., Chen, S., So, P., Shi, Z., … & Xin, G. (2015). Global detection and semi‐
quantification of fritillaria alkaloids in fritillariae ussuriensis bulbus by a non‐targeted multiple
reaction monitoring approach. Journal of Separation Science, 39(2), 287-295.
https://doi.org/10.1002/jssc.201500880
Wieczorek, D., Żyszka-Haberecht, B., Kafka, A., & Lipok, J. (2021). Phosphonates as unique
components of plant seeds—a promising approach to use phosphorus profiles in plant
chemotaxonomy. International Journal of Molecular Sciences, 22(21), 11501.
https://doi.org/10.3390/ijms222111501 (2022). Alkaloids i., 264-315.
https://doi.org/10.1039/bk9781839165641-00264

Arend, K. and Bandow, J. (2021). Influence of amino acid feeding on production of calcimycin and
analogs in streptomyces chartreusis. International Journal of Environmental Research and Public
Health, 18(16), 8740. https://doi.org/10.3390/ijerph18168740

Bajguz, A. and Piotrowska‐Niczyporuk, A. (2023). Biosynthetic pathways of hormones in plants.


Metabolites, 13(8), 884. https://doi.org/10.3390/metabo13080884

Cotinguiba, F., Debonsi, H., Silva, R., Pioli, R., Pinto, R., Felippe, L., … & Furlan, M. (2022). Amino acids
l-phenylalanine and l-lysine involvement in trans and cis piperamides biosynthesis in two piper
species. Brazilian Journal of Biology, 82. https://doi.org/10.1590/1519-6984.268505

Galanie, S. and Smolke, C. (2015). Optimization of yeast-based production of medicinal


protoberberine alkaloids. Microbial Cell Factories, 14(1). https://doi.org/10.1186/s12934-015-0332-3

Garcia, A., Qian, Y., Lynch, J., & Dudareva, N. (2017). Linking the cytosolic phenylalanine pathway, and
the auxin biosynthetic pathway. The Faseb Journal, 31(S1).
https://doi.org/10.1096/fasebj.31.1_supplement.628.1

Lim, S., Park, S., Ha, S., Choi, M., Kim, D., Lee, J., … & Kim, Y. (2015). Biosynthetic pathway of
shikimate and aromatic amino acid and its metabolic engineering in plants. Journal of Plant
Biotechnology, 42(3), 135-153. https://doi.org/10.5010/jpb.2015.42.3.135

Roberts, M., Strack, D., & Wink, M. (2018). Biosynthesis of alkaloids and betalains., 20-91.
https://doi.org/10.1002/9781119312994.apr0424

Sheridan, K., Dolan, S., & Doyle, S. (2015). Endogenous cross-talk of fungal metabolites. Frontiers in
Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00732

Widhalm, J., Gutensohn, M., Yoo, H., Adebesin, F., Qian, Y., Guo, L., … & Dudareva, N. (2015).
Identification of a plastidial phenylalanine exporter that influences flux distribution through the
phenylalanine biosynthetic network. Nature Communications, 6(1).
https://doi.org/10.1038/ncomms9142

Zukher, I., Pavlov, M., Tsibulskaya, D., Kulikovsky, A., Zyubko, T., Bikmetov, D., … & Severinov, K.
(2019). Reiterative synthesis by the ribosome and recognition of the n-terminal formyl group by
biosynthetic machinery contribute to evolutionary conservation of the length of antibiotic microcin c
peptide precursor. Mbio, 10(2). https://doi.org/10.1128/mbio.00768-19Ain, Q., Khan, H., Mubarak,
M., & Pervaiz, A. (2016). Plant alkaloids as antiplatelet agent: drugs of the future in the light of recent
developments. Frontiers in Pharmacology, 7. https://doi.org/10.3389/fphar.2016.00292

Athipornchai, A. (2018). A review on tabernaemontana spp.: multipotential medicinal plant. Asian


Journal of Pharmaceutical and Clinical Research, 11(5), 45.
https://doi.org/10.22159/ajpcr.2018.v11i5.11478

Barati, M. and Chahardehi, A. (2024). Alkaloids: the potential of their antimicrobial activities of
medicinal plants.. https://doi.org/10.5772/intechopen.112364
Du, E., Nellore, A., Pfeifer, C., Norfleet, G., Scalzo, A., & Riley, S. (2021). Statement of removal.
Toxicology Communications, 5(1), 109-111. https://doi.org/10.1080/24734306.2021.1918898

Dudley, Q., Jo, S., Guerrero, D., Chhetry, M., Smedley, M., Harwood, W., … & Patron, N. (2022).
Reconstitution of monoterpene indole alkaloid biosynthesis in genome engineered nicotiana
benthamiana. Communications Biology, 5(1). https://doi.org/10.1038/s42003-022-03904-w

Hiyama, H., Ozawa, A., Kumazawa, H., & Takeda, O. (2017). Stabilization of ephedrine alkaloid
content in <i>ephedra sinica</i> by selective breeding and stolon propagation. Biological
and Pharmaceutical Bulletin, 40(1), 43-48. https://doi.org/10.1248/bpb.b16-00531

Javeed, M., Rasul, A., Hussain, G., Jabeen, F., Rasool, B., Riaz, A., … & Ali, M. (2018). Harmine and its
derivatives: biological activities and therapeutic potential in human diseases. Bangladesh Journal of
Pharmacology, 13(3), 203. https://doi.org/10.3329/bjp.v13i3.34990

Jesus, M., Hungerford, N., Carter, S., Anuj, S., Blanchfield, J., Voss, J., … & Fletcher, M. (2019).
Pyrrolizidine alkaloids of blue heliotrope (heliotropium amplexicaule) and their presence in australian
honey. Journal of Agricultural and Food Chemistry, 67(28), 7995-8006.
https://doi.org/10.1021/acs.jafc.9b02136

Khalifa, M., Attia, E., Fahim, J., & Kamel, M. (2018). An overview on the chemical and biological
aspects of lycorine alkaloid. Journal of Advanced Biomedical and Pharmaceutical Sciences, 1(2), 41-
49. https://doi.org/10.21608/jabps.2018.4088.1016

Meechuen, M., Pimsawang, L., Chaisan, T., Samipak, S., Pluempanupat, W., & Juntawong, P. (2023).
Comparative transcriptome analysis reveals genes associated with alkaloid diversity in javanese long
pepper (piper retrofractum) fruits. International Journal of Plant Biology, 14(4), 896-909.
https://doi.org/10.3390/ijpb14040066

Mushin, A. and Shami, M. (2016). Untitled. Annals of Chromatography and Separation Techniques,
2(1). https://doi.org/10.36876/acst.v2i1

P.K.M, A. and Malarvizh, A. (2023). Evaluation of the phytochemical profile and pharmacognostic
indicator of crude whole plant powder of azolla microphylla by fluorescence analysis with different
chemical reagents. International Journal of Zoological Investigations, 9(Special Issue 3), 53-58.
https://doi.org/10.33745/ijzi.2023.v09ispl3.008

Umer, S., Solangi, M., Khan, K., & Saleem, R. (2022). Indole-containing natural products 2019–2022:
isolations, reappraisals, syntheses, and biological activities. Molecules, 27(21), 7586.
https://doi.org/10.3390/molecules27217586

Verma, V., Sharma, S., Gaur, K., & Kumar, N. (2022). Role of vinca alkaloids and their derivatives in
cancer therapy. World Journal of Advanced Research and Reviews, 16(3), 794-800.
https://doi.org/10.30574/wjarr.2022.16.3.1378Carriel, D., Garcia, P., Castelli, F., Lamourette, P.,
Fenaille, F., Brochier‐Armanet, C., … & Gutsche, I. (2018). A novel subfamily of bacterial aat-fold basic
amino acid decarboxylases and functional characterization of its first representative: pseudomonas
aeruginosa ldca. Genome Biology and Evolution. https://doi.org/10.1093/gbe/evy228

Galkina, S., Fedorova, N., Ksenofontov, A., Stadnichuk, V., Baratova, L., & Sud’ina, G. (2018).
Neutrophils as a source of branched-chain, aromatic and positively charged free amino acids. Cell
Adhesion & Migration, 13(1), 98-105. https://doi.org/10.1080/19336918.2018.1540903
Ma, X., Jiang, K., Zhou, C., Xue, Y., & Ma, Y. (2022). Identification and characterization of a novel gnat
superfamily nα‐acetyltransferase from salinicoccus halodurans h3b36. Microbial Biotechnology,
15(5), 1652-1665. https://doi.org/10.1111/1751-7915.13998

Monteiro, M., Mársico, E., Mutz, Y., Castro, V., Moreira, R., Álvares, T., … & Conté-Júnior, C. (2020).
Combined effect of oxygen-scavenger packaging and uv-c radiation on shelf life of refrigerated tilapia
(oreochromis niloticus) fillets. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-61293-8

Olgaç, A., Yenicesu, İ., Özgül, R., Biberoğlu, G., & Tümer, L. (2020). Lysinuric protein intolerance: an
overlooked diagnosis. Egyptian Journal of Medical Human Genetics, 21(1).
https://doi.org/10.1186/s43042-020-00084-2

Pícha, J., Budêšínský, M., Macháčková, K., Collinsová, M., & Jiráček, J. (2017). Optimized syntheses of
fmoc azido amino acids for the preparation of azidopeptides. Journal of Peptide Science, 23(3), 202-
214. https://doi.org/10.1002/psc.2968

Rahmoune, B., Zerrouk, I., Bouzaa, S., Morsli, A., Khelifi-Slaoui, M., Ludwig ‐Müller, J., … & Khelifi, L.
(2019). Amino acids profiling in datura stramonium and study of their variations after inoculation
with plant growth promoting rhizobacteria. Biologia, 74(10), 1373-1383.
https://doi.org/10.2478/s11756-019-00287-y

Vigouroux, A., Sahili, A., Lang, J., Aumont‐Nicaise, M., Dessaux, Y., Faure, D., … & Moréra, S. (2017).
Structural basis for high specificity of octopine binding in the plant pathogen agrobacterium
tumefaciens. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-18243-8Chen, X., Zhang,
X., Jia, A., Xu, G., Hu, H., Hu, X., … & Hu, L. (2016). Jasmonate mediates salt-induced nicotine
biosynthesis in tobacco (nicotiana tabacum l.). Plant Diversity, 38(2), 118-123.
https://doi.org/10.1016/j.pld.2016.06.001

Guo, X., Luo, T., Han, D., & Wu, Z. (2019). Analysis of metabolomics associated with quality
differences between room‐temperature‐ and low‐temperature‐stored litchi pulps. Food Science &
Nutrition, 7(11), 3560-3569. https://doi.org/10.1002/fsn3.1208

Kurotani, K., Hirakawa, H., Shirasawa, K., Tagiri, K., Mori, M., Ichihashi, Y., … & Notaguchi, M. (2023).
Establishing a comprehensive web-based analysis platform fornicotiana benthamianagenome and
transcriptome.. https://doi.org/10.1101/2023.09.03.556139

Kurotani, K., Hirakawa, H., Shirasawa, K., Tagiri, K., Mori, M., Ramadan, A., … & Notaguchi, M. (2024).
Establishing a comprehensive web‐based analysis platform for nicotiana benthamiana genome and
transcriptome. The Plant Journal, 121(1). https://doi.org/10.1111/tpj.17178

Sui, X., Xie, H., Tong, Z., Zhang, H., Song, Z., Gao, Y., … & Wang, B. (2020). Unravel the mystery ofnic1-
locus on nicotine biosynthesis regulation in tobacco.. https://doi.org/10.1101/2020.07.04.187922

Vollheyde, K., Dudley, Q., Yang, T., Öz, M., Mancinotti, D., Fedi, M., … & Patron, N. (2023). An
improved nicotiana benthamiana bioproduction chassis provides novel insights into nicotine
biosynthesis. New Phytologist, 240(1), 302-317. https://doi.org/10.1111/nph.19141

Vollheyde, K., Dudley, Q., Yang, T., Öz, M., Mancinotti, D., Fedi, M., … & Patron, N. (2023). An
improvednicotiana benthamianabioproduction chassis provides novel insights into nicotine
biosynthesis.. https://doi.org/10.1101/2023.03.06.531326
Xu, S., Brockmöller, T., Navarro‐Quezada, A., Kuhl, H., Gase, K., Ling, Z., … & Baldwin, I. (2017). Wild
tobacco genomes reveal the evolution of nicotine biosynthesis. Proceedings of the National Academy
of Sciences, 114(23), 6133-6138. https://doi.org/10.1073/pnas.1700073114

Yang, L., Li, J., Ji, J., Li, P., Yu, L., Allah, E., … & Hu, X. (2016). High temperature induces expression of
tobacco transcription factor ntmyc2a to regulate nicotine and ja biosynthesis. Frontiers in Physiology,
7. https://doi.org/10.3389/fphys.2016.00465

Yin, G., Wang, W., Niu, H., Ding, Y., Zhang, D., Zhang, J., … & Zhang, H. (2017). Jasmonate-sensitivity-
assisted screening and characterization of nicotine synthetic mutants from activation-tagged
population of tobacco (nicotiana tabacum l.). Frontiers in Plant Science, 8.
https://doi.org/10.3389/fpls.2017.00157Aitouguinane, M., Bouissil, S., Mouhoub, A., Rchid, H.,
Fendri, I., Abdelkafi, S., … & Delattre, C. (2020). Induction of natural defenses in tomato seedlings by
using alginate and oligoalginates derivatives extracted from moroccan brown algae. Marine Drugs,
18(10), 521. https://doi.org/10.3390/md18100521

Groves, R., Hagel, J., Zhang, Y., Kilpatrick, K., Levy, A., Marsolais, F., … & Facchini, P. (2015).
Transcriptome profiling of khat (catha edulis) and ephedra sinica reveals gene candidates potentially
involved in amphetamine-type alkaloid biosynthesis. Plos One, 10(3), e0119701.
https://doi.org/10.1371/journal.pone.0119701

Pompeo, M., Cheah, J., & Movassaghi, M. (2019). Total synthesis and anti-cancer activity of all known
communesin alkaloids and related derivatives. Journal of the American Chemical Society, 141(36),
14411-14420. https://doi.org/10.1021/jacs.9b07397

Um, S., Jeong, H., An, J., Jo, S., Kim, Y., Oh, D., … & Moon, K. (2023). Chromatographic determination
of the absolute configuration in sanjoinine a that increases nitric oxide production. Biomolecules &
Therapeutics, 31(5), 566-572. https://doi.org/10.4062/biomolther.2023.028

Zhang, G., Jiang, N., Song, W., Ma, C., Yang, S., & Chen, J. (2016). De novo sequencing and
transcriptome analysis of pinellia ternata identify the candidate genes involved in the biosynthesis of
benzoic acid and ephedrine. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01209

Zhang, Y., Zhan, L., Li, G., Wang, F., Wang, Y., Li, Y., … & Wang, G. (2016). Dimeric matrine-type
alkaloids from the roots of sophora flavescens and their anti-hepatitis b virus activities. The Journal
of Organic Chemistry, 81(15), 6273-6280. https://doi.org/10.1021/acs.joc.6b00804Booth, T.,
Bozhüyük, K., Liston, J., Batey, S., Lacey, E., & Wilkinson, B. (2022). Bifurcation drives the evolution of
assembly-line biosynthesis. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-
30950-z

Caesar, L., Robey, M., Swyers, M., Islam, M., Ye, R., Vagadia, P., … & Bok, J. (2020). Heterologous
expression of the unusual terreazepine biosynthetic gene cluster reveals a promising approach for
identifying new chemical scaffolds. Mbio, 11(4). https://doi.org/10.1128/mbio.01691-20

Cheng, J., Chen, J., Liu, X., Li, X., Zhang, W., Dai, Z., … & Ma, Y. (2021). The origin and evolution of the
diosgenin biosynthetic pathway in yam. Plant Communications, 2(1), 100079.
https://doi.org/10.1016/j.xplc.2020.100079

Junker, R. (2017). A biosynthetically informed distance measure to compare secondary metabolite


profiles. Chemoecology, 28(1), 29-37. https://doi.org/10.1007/s00049-017-0250-4

Lichman, B. (2021). The scaffold-forming steps of plant alkaloid biosynthesis. Natural Product
Reports, 38(1), 103-129. https://doi.org/10.1039/d0np00031k
Lu, M., Li, K., He, H., Cheng, Y., & Yang, P. (2020). Systematic characterization of alkaloids in eomecon
chionantha hance using ultrahigh‐performance liquid chromatography–tandem quadrupole exactive
orbitrap mass spectrometry with a four‐step screening strategy. Rapid Communications in Mass
Spectrometry, 34(19). https://doi.org/10.1002/rcm.8880

Shuai, H., Myronovskyi, M., Rosenkränzer, B., Paulus, C., Nadmid, S., Stierhof, M., … & Luzhetskyy, A.
(2022). Novel biosynthetic route to the isoquinoline scaffold. Acs Chemical Biology, 17(3), 598-608.
https://doi.org/10.1021/acschembio.1c00869

Wang, L., Xia, H., Wu, Y., Wang, Y., Lin, P., & Lin, S. (2022). Secoyanhusamine a, an oxidatively ring-
opened isoquinoline inner salt from corydalis yanhusuo. Frontiers in Chemistry, 9.
https://doi.org/10.3389/fchem.2021.831173

Yamada, Y., Yoshimoto, T., Yoshida, S., & Sato, F. (2016). Characterization of the promoter region of
biosynthetic enzyme genes involved in berberine biosynthesis in coptis japonica. Frontiers in Plant
Science, 7. https://doi.org/10.3389/fpls.2016.01352Booth, T., Bozhüyük, K., Liston, J., Batey, S.,
Lacey, E., & Wilkinson, B. (2022). Bifurcation drives the evolution of assembly-line biosynthesis.
Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-30950-z

Caesar, L., Robey, M., Swyers, M., Islam, M., Ye, R., Vagadia, P., … & Bok, J. (2020). Heterologous
expression of the unusual terreazepine biosynthetic gene cluster reveals a promising approach for
identifying new chemical scaffolds. Mbio, 11(4). https://doi.org/10.1128/mbio.01691-20

Cheng, J., Chen, J., Liu, X., Li, X., Zhang, W., Dai, Z., … & Ma, Y. (2021). The origin and evolution of the
diosgenin biosynthetic pathway in yam. Plant Communications, 2(1), 100079.
https://doi.org/10.1016/j.xplc.2020.100079

Junker, R. (2017). A biosynthetically informed distance measure to compare secondary metabolite


profiles. Chemoecology, 28(1), 29-37. https://doi.org/10.1007/s00049-017-0250-4

Lichman, B. (2021). The scaffold-forming steps of plant alkaloid biosynthesis. Natural Product
Reports, 38(1), 103-129. https://doi.org/10.1039/d0np00031k

Lu, M., Li, K., He, H., Cheng, Y., & Yang, P. (2020). Systematic characterization of alkaloids in eomecon
chionantha hance using ultrahigh‐performance liquid chromatography–tandem quadrupole exactive
orbitrap mass spectrometry with a four‐step screening strategy. Rapid Communications in Mass
Spectrometry, 34(19). https://doi.org/10.1002/rcm.8880

Shuai, H., Myronovskyi, M., Rosenkränzer, B., Paulus, C., Nadmid, S., Stierhof, M., … & Luzhetskyy, A.
(2022). Novel biosynthetic route to the isoquinoline scaffold. Acs Chemical Biology, 17(3), 598-608.
https://doi.org/10.1021/acschembio.1c00869

Wang, L., Xia, H., Wu, Y., Wang, Y., Lin, P., & Lin, S. (2022). Secoyanhusamine a, an oxidatively ring-
opened isoquinoline inner salt from corydalis yanhusuo. Frontiers in Chemistry, 9.
https://doi.org/10.3389/fchem.2021.831173

Yamada, Y., Yoshimoto, T., Yoshida, S., & Sato, F. (2016). Characterization of the promoter region of
biosynthetic enzyme genes involved in berberine biosynthesis in coptis japonica. Frontiers in Plant
Science, 7. https://doi.org/10.3389/fpls.2016.01352Angelini, R., Rotolo, C., Gerin, D., Abate, D.,
Pollastro, S., & Faretra, F. (2019). Global transcriptome analysis and differentially expressed genes in
grapevine after application of the yeast‐derived defense inducer cerevisane. Pest Management
Science, 75(7), 2020-2033. https://doi.org/10.1002/ps.5317
Berková, V., Berka, M., Griga, M., Kopecká, R., Prokopová, M., Luklová, M., … & Černý, M. (2022).
Molecular mechanisms underlying flax (linum usitatissimum l.) tolerance to cadmium: a case study of
proteome and metabolome of four different flax genotypes. Plants, 11(21), 2931.
https://doi.org/10.3390/plants11212931

Carréra, J., Souza, R., Batista, A., Campolina, G., Júnior, F., Gavilanes, M., … & Mori, F. (2023). Using
underutilized residues of coffee to obtain valuable dietary and antioxidant bioactive compounds.
Journal of the Science of Food and Agriculture, 104(5), 2660-2668.
https://doi.org/10.1002/jsfa.13151

Chen, Y., Shen, Q., Lv, P., & Sun, C. (2020). Comparative metabolomic analyses of dendrobium
officinale kimura et migo responding to uv-b radiation reveal variations in the metabolisms
associated with its bioactive ingredients. Peerj, 8, e9107. https://doi.org/10.7717/peerj.9107

Fu, Z., Sun, L., Wang, Z., Liu, Y., Hao, J., Gao, C., … & Ge, G. (2023). Effect of different regions on
fermentation profiles, microbial communities, and their metabolomic pathways and properties in
italian ryegrass silage. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1076499

Guo, Z., Chen, J., Lv, Z., Huang, Y., Tan, H., Zhang, L., … & Diao, Y. (2023). Molecular cloning and
functional characterization of bctsa in the biosynthesis of indole alkaloids in baphicacanthus cusia.
Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1174582

Kerbs, A., Burgardt, A., Veldmann, K., Schäffer, T., Lee, J., & Wendisch, V. (2022). Fermentative
production of halogenated tryptophan derivatives with corynebacterium glutamicum overexpressing
tryptophanase or decarboxylase genes. Chembiochem, 23(9).
https://doi.org/10.1002/cbic.202200007

Liu, J., Tong, L., Zhang, X., Zhang, H., Tao, B., Gong, Q., … & Song, Y. (2023). Dynamic nitrogen
reallocation in rice plants upon insect herbivory by a generalist lepidopteran pest spodoptera litura
(fabricius). Plant Cell & Environment, 47(1), 294-307. https://doi.org/10.1111/pce.14736

Ouchaou, K., Maire, F., Salo, O., Ali, H., Hankemeier, T., Marel, G., … & Overkleeft, H. (2015). A
mutasynthesis approach with a penicillium chrysogenum δroqa strain yields new roquefortine d
analogues. Chembiochem, 16(6), 915-923. https://doi.org/10.1002/cbic.201402686

Ravichandran, S., Ragupathy, R., Edwards, T., Domaratzki, M., & Cloutier, S. (2019). Microrna-guided
regulation of heat stress response in wheat. BMC Genomics, 20(1). https://doi.org/10.1186/s12864-
019-5799-6

Shahin, H. (2018). Enhanced production of secondary metabolites by methyl jasmonate and silver
nanoparticles elicitation in tissue culture of catharanthus roseus (apocynaceae). Al-Azhar Journal of
Pharmaceutical Sciences, 57(1), 62-69. https://doi.org/10.21608/ajps.2018.46627

Yang, W., Jiang, T., Wang, Y., Wang, X., & Wang, R. (2023). Combined transcriptomics and
metabolomics analysis reveals the effect of selenium fertilization on lycium barbarum fruit.
Molecules, 28(24), 8088. https://doi.org/10.3390/molecules28248088

Zuo, Y., Quan, M., Liu, G., Zhang, X., Long, N., You, S., … & Deng, H. (2024). Multi‐omics analysis
reveals molecular responses of alkaloid content variations in lycoris aurea across different locations.
Plant Cell & Environment, 48(2), 953-964. https://doi.org/10.1111/pce.15187Feng, J., Li, H., Zhao, W.,
Dang, H., Wang, R., Luo, K., … & Xie, L. (2018). Biological-profiling-based systematic analysis of
rhizoma coptidis from different growing regions and its anticholesterol biosynthesis activity on hepg2
cells. Molecular Pharmaceutics, 15(6), 2234-2245.
https://doi.org/10.1021/acs.molpharmaceut.8b00078

Li, C., Li, D., Shao, F., & Lu, S. (2015). Molecular cloning and expression analysis of wrky transcription
factor genes in salvia miltiorrhiza. BMC Genomics, 16(1). https://doi.org/10.1186/s12864-015-1411-x

Niu, Z., Zhu, F., Fan, Y., Li, C., Zhang, B., Zhu, S., … & Ding, X. (2021). The chromosome-level reference
genome assembly for dendrobium officinale and its utility of functional genomics research and
molecular breeding study. Acta Pharmaceutica Sinica B, 11(7), 2080-2092.
https://doi.org/10.1016/j.apsb.2021.01.019

Qu, J., Dry, I., Liu, L., Guo, Z., & Yin, L. (2021). Transcriptional profiling reveals multiple defense
responses in downy mildew-resistant transgenic grapevine expressing a tir-nbs-lrr gene located at the
mrrun1/mrrpv1 locus. Horticulture Research, 8(1). https://doi.org/10.1038/s41438-021-00597-w

Shan, T., Shi, Y., Xu, J., Zhao, L., Tao, Y., & Wu, J. (2022). Transcriptome analysis reveals candidate
genes related to steroid alkaloid biosynthesis in fritillaria anhuiensis. Physiologia Plantarum, 174(4).
https://doi.org/10.1111/ppl.13755

Sun, K., Sun, H., Qiu, Z., & Liu, Q. (2021). Comparative analyses of phyllosphere bacterial
communities and metabolomes in newly developed needles of cunninghamia lanceolata (lamb.)
hook. at four stages of stand growth. Frontiers in Plant Science, 12.
https://doi.org/10.3389/fpls.2021.717643

Tiwari, D. and Tiwari, M. (2020). Vincristine: beyond on anticancer treatment. International Journal
of Pharmacognosy and Life Science, 1(2), 38-43. https://doi.org/10.33545/27072827.2020.v1.i2a.17

Yang, Y., Fang, A., Yu, Y., Bi, C., & Zhou, C. (2019). Integrated transcriptomic and secretomic
approaches reveal critical pathogenicity factors in pseudofabraea citricarpa inciting citrus target spot.
Microbial Biotechnology, 12(6), 1260-1273. https://doi.org/10.1111/1751-7915.13440

Yuan, Y., Yu, M., Jia, Z., Song, X., Liang, Y., & Zhang, J. (2018). Analysis of dendrobium huoshanense
transcriptome unveils putative genes associated with active ingredients synthesis. BMC Genomics,
19(1). https://doi.org/10.1186/s12864-018-5305-6

Zuo, Y., Quan, M., Liu, G., Zhang, X., Long, N., You, S., … & Deng, H. (2024). Multi‐omics analysis
reveals molecular responses of alkaloid content variations in lycoris aurea across different locations.
Plant Cell & Environment, 48(2), 953-964. https://doi.org/10.1111/pce.15187Behera, B., Naik, H., &
Konkimalla, V. (2024). Peptaloid: a comprehensive database for exploring peptide alkaloid. Journal of
Chemical Information and Modeling, 64(22), 8387-8395. https://doi.org/10.1021/acs.jcim.4c01667

Hu, J., Niu, Z., & Wang, J. (2024). Recent advances in the total synthesis of spirotryprostatin alkaloids.
Molecules, 29(7), 1655. https://doi.org/10.3390/molecules29071655

Kishimoto, S., Matsubara, Y., & Watanabe, K. (2022). Alkaloid biosynthetic enzyme generates
diastereomeric pair via two distinct mechanisms. Journal of the American Chemical Society, 144(12),
5485-5493. https://doi.org/10.1021/jacs.1c13621

Leverett, C., Li, G., France, S., & Padwa, A. (2016). Imdaf cascade approach toward the synthesis of
the alkaloid (±)-minfiensine. The Journal of Organic Chemistry, 81(21), 10193-10203.
https://doi.org/10.1021/acs.joc.6b00771
McClary, B., Zinshteyn, B., Meyer, M., Jouanneau, M., Pellegrino, S., Yusupova, G., … & Liu, J. (2017).
Inhibition of eukaryotic translation by the antitumor natural product agelastatin a. Cell Chemical
Biology, 24(5), 605-613.e5. https://doi.org/10.1016/j.chembiol.2017.04.006

Nguyen, T. and Dang, T. (2021). Cytochrome p450 enzymes as key drivers of alkaloid chemical
diversification in plants. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.682181

Shan, S., Luo, J., Pan, K., Zou, H., & Kong, L. (2016). Rapid screening and identification of lycodine‐
type alkaloids in lycopodiaceae and huperziaceae plants by ultra‐performance liquid chromatography
coupled with quadrupole time‐of‐flight mass spectrometry. Biomedical Chromatography, 30(11),
1861-1872. https://doi.org/10.1002/bmc.3723

Song, T., Tang, M., Ge, H., Chen, M., Lian, X., & Zhang, Z. (2019). Novel bioactive penicipyrroether a
and pyrrospirone j from the marine-derived penicillium sp. zz380. Marine Drugs, 17(5), 292.
https://doi.org/10.3390/md17050292

Wang, Y. and Joullié, M. (2021). Approaches to cyclophane‐types of cyclopeptide alkaloids. The


Chemical Record, 21(4), 906-923. https://doi.org/10.1002/tcr.202100017

Wen, H., Li, Y., Liu, X., Ye, W., Yao, X., & Che, Y. (2015). Fusagerins a–f, new alkaloids from the fungus
fusarium sp.. Natural Products and Bioprospecting, 5(4), 195-203. https://doi.org/10.1007/s13659-
015-0067-1

Wibowo, J., Ahmadi, P., Rahmawati, S., Bayu, A., Putra, M., & Kijjoa, A. (2021). Marine-derived indole
alkaloids and their biological and pharmacological activities. Marine Drugs, 20(1), 3.
https://doi.org/10.3390/md20010003

Zhang, D., Xu, J., Fan, Y., Gan, L., Zhang, H., & Yue, J. (2020). Daphnillonins a and b: alkaloids
representing two unknown carbon skeletons from daphniphyllum longeracemosum. The Journal of
Organic Chemistry, 85(5), 3742-3747. https://doi.org/10.1021/acs.joc.9b03310Bassal, H., Hijazi, A.,
Farhan, H., Trabolsi, C., Ahmad, B., Khalil, A., … & Omar, F. (2021). Study of the antioxidant and anti-
inflammatory properties of the biological extracts of psophocarpus tetragonolobus using two
extraction methods. Molecules, 26(15), 4435. https://doi.org/10.3390/molecules26154435

Burger, T., Mokoka, T., Fouché, G., Steenkamp, P., Steenkamp, V., & Cordier, W. (2018). Solamargine, a
bioactive steroidal alkaloid isolated from solanum aculeastrum induces non-selective cytotoxicity and
p-glycoprotein inhibition. BMC Complementary and Alternative Medicine, 18(1).
https://doi.org/10.1186/s12906-018-2208-7

Bustos-Rangel, A., Muñoz-Cabrera, J., Suárez, L., Arboleda, G., Murillo, M., & Sandoval‐Hernández, A.
(2023). Neuroprotective and antioxidant activities of colombian plants against paraquat and c2-
ceramide exposure in sh-sy5y cells. Frontiers in Natural Products, 2.
https://doi.org/10.3389/fntpr.2023.1169182

Chacón, L., Leiva, H., Rojas-Villa, J., Zapata-Vahos, I., Castro-Restrepo, D., Domínguez, M., … & Osorio,
E. (2024). Histochemical localization and cytotoxic potential of alkaloids in phaedranassa lehmannii.
Plants, 13(22), 3251. https://doi.org/10.3390/plants13223251

Chittasupho, C., Tadtong, S., Vorarat, S., Imaram, W., Athikomkulchai, S., Samee, W., … & Kamkaen, N.
(2022). Development of jelly loaded with nanogel containing natural l-dopa from mucuna pruriens
seed extract for neuroprotection in parkinson’s disease. Pharmaceutics, 14(5), 1079.
https://doi.org/10.3390/pharmaceutics14051079
Debalke, D., Birhan, M., Kinubeh, A., & Yayeh, M. (2018). Assessments of antibacterial effects of
aqueous-ethanolic extracts of sida rhombifolia’s aerial part. The Scientific World Journal, 2018, 1-8.
https://doi.org/10.1155/2018/8429809

Hasan, M., Imran, M., Bhuiyan, F., Ahmed, S., Shanzana, P., Moli, M., … & Dabi, S. (2019).
Phytochemical constituency profiling and antimicrobial activity screening of seaweeds extracts
collected from the bay of bengal sea coasts.. https://doi.org/10.1101/680348

Hidanah, S., Sabdoningrum, E., Rachmawati, K., Soeharsono, S., Trika, G., Huda, M., … & Widiati, T.
(2022). The activity of meniran (phyllanthus niruri linn.) extract on salmonella pullorum infected
broilers. Veterinary World, 1373-1382. https://doi.org/10.14202/vetworld.2022.1373-1382

Lu, T., Liu, Y., Zhou, L., Liao, Q., Nie, Y., Wang, X., … & Zhang, Y. (2023). The screening for marine
fungal strains with high potential in alkaloids production by in situ colony assay and lc-ms/ms based
secondary metabolic profiling. Frontiers in Microbiology, 14.
https://doi.org/10.3389/fmicb.2023.1144328

Mamina, О., Kabachny, V., Tomarovska, T., & Bondarenko, N. (2020). Determination of
diphenhydramine by hplc method in biological liquids. Sciencerise Pharmaceutical Science, 0(4 (26)),
18-24. https://doi.org/10.15587/2519-4852.2020.210728

Pratiwi, Y., Handayani, S., & Fatmawati, N. (2023). Identification of alkaloids and steroids in moringa
oleifera leaves as a breastfeeding. JKM (Jurnal Kebidanan Malahayati), 9(1), 53-57.
https://doi.org/10.33024/jkm.v9i1.8510

Ridwanto, R. and Rani, Z. (2023). Determination of total flavonoid content of yellow wood
(arcangelisia flava (l.) merr) extract and antibacterial activity against staphylococcus aureus. Journal
of Agromedicine and Medical Sciences, 9(3), 140. https://doi.org/10.19184/ams.v9i3.42614

Sutomo, A., Ridwan, M., Suswidiantoro, V., Pisacha, I., Daskar, A., & Rosanti, A. (2024). The caffeine
analysis in tea bag and robusta coffee using uhplc methods. IJCS, 1(12), 916-931.
https://doi.org/10.55927/ijcs.v1i12.12040

Umar, A., Ratnadewi, D., Rafi, M., Sulistyaningsih, Y., & Hamim, H. (2021). Metabolite profiling,
distribution of secretory structures, and histochemistry in curculigo orchioides gaertn. and curculigo
latifolia dryand. ex w.t.aiton. Turkish Journal of Botany, 45(5), 421-439. https://doi.org/10.3906/bot-
2009-43

Yuka, M., Spina, R., Slezack‐Deschaumes, S., Genestier, J., Hehn, A., & Laurain‐Mattar, D. (2022).
Screening of endophytic bacteria of leucojum aestivum ‘gravety giant’ as a potential source of
alkaloids and as antagonist to some plant fungal pathogens. Microorganisms, 10(10), 2089.
https://doi.org/10.3390/microorganisms10102089Chennuru, L., Choppari, T., Nandula, R., Zhang, T.,
& Franco, P. (2016). Direct separation of pregabalin enantiomers using a zwitterionic chiral selector
by high performance liquid chromatography coupled to mass spectrometry and ultraviolet detection.
Molecules, 21(11), 1578. https://doi.org/10.3390/molecules21111578

Lima, B., Silva, F., Soares, E., Almeida, R., Filho, F., Barison, A., … & Pinheiro, M. (2020). Integrative
approach based on leaf spray mass spectrometry, hplc-dad-ms/ms, and nmr for comprehensive
characterization of isoquinoline-derived alkaloids in leaves of onychopetalum amazonicum r. e. fr..
Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20190125

Liu, Y., Xie, D., Kang, Y., Wang, Y., Yang, P., Guo, J., … & Huang, J. (2016). Microwave-assisted
extraction followed by solid-phase extraction for the chromatographic analysis of alkaloids
instephania cepharantha. Journal of Chromatographic Science, 54(4), 670-676.
https://doi.org/10.1093/chromsci/bmv191

Punia, A., Joshi, R., & Kumar, R. (2022). Identification and quantification of eight alkaloids in aconitum
heterophyllum using uhplc‐dad‐qtof‐ims: a valuable tool for quality control. Phytochemical Analysis,
33(7), 1121-1134. https://doi.org/10.1002/pca.3164

Sharma, A., Kamble, S., León, F., Chear, N., King, T., Berthold, E., … & Avery, B. (2019). Simultaneous
quantification of ten key kratom alkaloids in mitragyna speciosa leaf extracts and commercial
products by ultra‐performance liquid chromatography−tandem mass spectrometry. Drug Testing and
Analysis, 11(8), 1162-1171. https://doi.org/10.1002/dta.2604

Staniak, M., Wójciak, M., Sowa, I., Strzemski, M., Sawicki, J., Dresler, S., … & Tyszczuk‐Rotko, K.
(2019). Applicability of a monolithic column for separation of isoquinoline alkalodis from
chelidonium majus extract. Molecules, 24(19), 3612. https://doi.org/10.3390/molecules24193612

Wang, H. and Ding, H. (2023). Screening of alkaloids in sophora flavescens with liquid
chromatography tandem data-dependent acquisition mass spectrometry. Journal of Pharmaceutical
Research International, 35(31), 37-47. https://doi.org/10.9734/jpri/2023/v35i317465

Zhu, M., Wei, P., Peng, Q., Qin, S., Zhou, Y., Zhang, R., … & Zhang, L. (2018). Simultaneous qualitative
and quantitative evaluation of toddalia asiatica root by using hplc‐dad and uplc‐qtof‐ms/ms.
Phytochemical Analysis, 30(2), 164-181. https://doi.org/10.1002/pca.2802Appamaraka, S., Senakun,
C., & Saensouk, S. (2022). Tlc profiling and phytochemical screening of various extracts of ochna
integerrima (lour.) merr. from kog dong keng forest, thailand. Pharmacognosy Journal, 14(4), 273-
277. https://doi.org/10.5530/pj.2022.14.96

Conceição, R., Perez, C., Branco, A., Botura, M., & Ifa, D. (2020). Identification of sassafras albidum
alkaloids by high‐performance thin‐layer chromatography tandem mass spectrometry and mapping
by desorption electrospray ionization mass spectrometry imaging. Biological Mass Spectrometry,
56(1). https://doi.org/10.1002/jms.4674

Dalimunthe, A., Muhammad, M., Waruwu, S., Rafi, M., Kaban, V., & Satria, D. (2023). Phytochemicals
and proximate analysis of litsea cubeba lour. barks. Iop Conference Series Earth and Environmental
Science, 1188(1), 012012. https://doi.org/10.1088/1755-1315/1188/1/012012

Devi, S., Ropiqa, M., Murti, Y., & Nugroho, A. (2020). Screening of extraction process and the
estimation of total alkaloids in carica papaya linn. leaf. Majalah Obat Tradisional, 25(2), 90.
https://doi.org/10.22146/mot.52184

Jakatimath, S., Kumar, K., Mesta, R., Raghavendra, S., Gujjala, R., Archana, T., … & Kumar, D. (2024).
Exploring bioactive compounds in prosopis juliflora extracts through comparative lc–ms analysis.
Journal of Phytopathology, 172(5). https://doi.org/10.1111/jph.13404

Khan, S. (2022). Phytoconstituents of nigella sativa and quantitative densitometric analysis of its
bioactive compound thymoquinone. Texila International Journal of Public Health, 10(3), 100-107.
https://doi.org/10.21522/tijph.2013.10.03.art010

Lu, T., Liu, Y., Zhou, L., Liao, Q., Nie, Y., Wang, X., … & Zhang, Y. (2023). The screening for marine
fungal strains with high potential in alkaloids production by in situ colony assay and lc-ms/ms based
secondary metabolic profiling. Frontiers in Microbiology, 14.
https://doi.org/10.3389/fmicb.2023.1144328
Mushin, A. and Shami, M. (2016). Untitled. Annals of Chromatography and Separation Techniques,
2(1). https://doi.org/10.36876/acst.v2i1

Palanuvej, C., Pitakpawasutthi, Y., Thitikornpong, W., & Ruangrungsi, N. (2016). Chlorogenic acid
content, essential oil compositions, and in vitro antioxidant activities of chromolaena odorata leaves.
Journal of Advanced Pharmaceutical Technology Amp Research, 7(2), 37.
https://doi.org/10.4103/2231-4040.177200

Pandey, D., CHAUHAN, R., & Dey, A. (2016). A validated and densitometric hptlc method for the
simultaneous quantification of reserpine and ajmalicine in rauvolfia serpentina and rauvolfia
tetraphylla. Revista Brasileira De Farmacognosia, 26(5), 553-557.
https://doi.org/10.1016/j.bjp.2016.04.002

Ramadhani, F., Kusumawati, I., Primaharinastiti, R., Rullyansyah, S., Sandhori, F., & Prasetyawan, H.
(2023). Comparative study of densitometry and videodensitometry for quantitating the active
pharmaceutical ingredients using thin layer chromatography – systematic review. Jurnal Farmasi Dan
Ilmu Kefarmasian Indonesia, 10(2), 141-150. https://doi.org/10.20473/jfiki.v10i22023.141-150

Ruangrungsi, N., Pitakpawasutthi, Y., & Palanuvej, C. (2018). Quality evaluation of kaempferia
parviflora rhizome with reference to 5,7-dimethoxyflavone. Journal of Advanced Pharmaceutical
Technology Amp Research, 9(1), 26. https://doi.org/10.4103/japtr.japtr_147_17

Xue, X., Zhang, H., Zhang, X., Liu, X., Xi, K., Yan-xia, H., … & Guo, Z. (2017). Tlc bioautography-guided
isolation and antimicrobial, antifungal effects of 12 alkaloids from hylomecon japonica roots§.
Natural Product Communications, 12(9). https://doi.org/10.1177/1934578x1701200914Akhgari, A.,
Laakso, I., Seppänen‐Laakso, T., Yrjönen, T., Vuorela, H., Oksman‐Caldentey, K., … & Rischer, H.
(2015). Analysis of indole alkaloids from rhazya stricta hairy roots by ultra-performance liquid
chromatography-mass spectrometry. Molecules, 20(12), 22621-22634.
https://doi.org/10.3390/molecules201219873

Contreras, M., Bribi, N., Gómez‐Caravaca, A., Gálvez, J., & Segura‐Carretero, A. (2017). Alkaloids
profiling of fumaria capreolata by analytical platforms based on the hyphenation of gas
chromatography and liquid chromatography with quadrupole-time-of-flight mass spectrometry.
International Journal of Analytical Chemistry, 2017, 1-16. https://doi.org/10.1155/2017/5178729

Dong, H., Yan, G., Wang, Z., Wu, C., Cui, B., Ren, Y., … & Yang, C. (2018). Liquid chromatography-
tandem mass spectrometry simultaneous determination and pharmacokinetic study of fourteen
alkaloid components in dog plasma after oral administration of corydalis bungeana turcz extract.
Molecules, 23(8), 1927. https://doi.org/10.3390/molecules23081927

Ippoushi, K., Sasanuma, M., Oike, H., Kobori, M., & Maeda‐Yamamoto, M. (2016). Quantification
method of osmotin-like proteins in sweet pepper and eggplant by liquid chromatography/tandem
mass spectrometry based on the aqua technology. International Journal of Food Properties, 20(1),
213-219. https://doi.org/10.1080/10942912.2016.1154571

Lemmink, I., Willemsen, L., Beij, E., Bovee, T., Zuilhof, H., & Salentijn, G. (2024). Modular point-of-
need tropane alkaloid detection at regulatory levels: combining solid–liquid extraction from
buckwheat with a paper-immobilized liquid-phase microextraction and immuno-detection in
interconnectable 3d-printed devices. Analytical Chemistry, 96(41), 16462-16468.
https://doi.org/10.1021/acs.analchem.4c04811
Mutuku, S., Trim, P., Prabhala, B., Irani, S., Bremert, K., Logan, J., … & Butler, L. (2019). Evaluation of
small molecule drug uptake in patient-derived prostate cancer explants by mass spectrometry.
Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-51549-3

Primiani, C., Pujiati, P., & Setiawan, M. (2022). Bioactive compounds profile of alkaloid on
elaeocarpus sphaericus schum seeds by liquid chromatography-mass spectrometry..
https://doi.org/10.2991/assehr.k.220103.019

Rahayu, I., Sudrajat, S., Sancnia, S., Puspasari, M., & Timotius, K. (2024). The phytochemical
constituents and biological activities of sungkai (peronema canescens jack) leaves hydroethanolic
extracts. Jpbio (Jurnal Pendidikan Biologi), 9(1), 123-132. https://doi.org/10.31932/jpbio.v9i1.3398

Rao, T., Yashwanth, T., & Usha, B. (2024). Liquid chromatography-mass spectrometry: a review.
Journal of Drug Delivery and Therapeutics, 14(6), 298-304. https://doi.org/10.22270/jddt.v14i6.6669

Song, Y., Zhang, N., Jiang, Y., Li, J., Zhao, Y., Shi, S., … & Tu, P. (2015). Simultaneous determination of
aconite alkaloids and ginsenosides using online solid phase extraction hyphenated with polarity
switching ultra-high performance liquid chromatography coupled with tandem mass spectrometry.
RSC Advances, 5(9), 6419-6428. https://doi.org/10.1039/c4ra14088e

Spina, R., Saliba, S., Dupire, F., Ptak, A., Hehn, A., Piutti, S., … & Laurain‐Mattar, D. (2021). Molecular
identification of endophytic bacteria in leucojum aestivum in vitro culture, nmr-based metabolomics
study and lc-ms analysis leading to potential amaryllidaceae alkaloid production. International
Journal of Molecular Sciences, 22(4), 1773. https://doi.org/10.3390/ijms22041773

Tittlemier, S., Drul, D., Roscoe, M., Turnock, D., Taylor, D., & Fu, B. (2019). Fate of ergot alkaloids
during laboratory scale durum processing and pasta production. Toxins, 11(4), 195.
https://doi.org/10.3390/toxins11040195

Wang, H. and Ding, H. (2023). Screening of alkaloids in sophora flavescens with liquid
chromatography tandem data-dependent acquisition mass spectrometry. Journal of Pharmaceutical
Research International, 35(31), 37-47. https://doi.org/10.9734/jpri/2023/v35i317465

Xu, F., Liu, F., Wang, C., & Wei, Y. (2018). Amantadine‐functionalized magnetic microspheres and
stable isotope labeled internal standards for reducing matrix effect in determination of five opium
alkaloids by liquid chromatography‐quadrupole linear ion trap mass spectrometry. Journal of the
Chinese Chemical Society, 66(5), 484-492. https://doi.org/10.1002/jccs.201800310

Zareena, B., Khadim, A., Jeelani, S., Hussain, S., Ali, A., & Musharraf, S. (2021). High-throughput
detection of an alkaloidal plant metabolome in plant extracts using lc-esi-qtof-ms. Journal of
Proteome Research, 20(8), 3826-3839. https://doi.org/10.1021/acs.jproteome.1c00111

Zhang, D., Silva, D., Garrett, T., González, C., & Lorca, G. (2020). Method optimization: analysis of
benzbromarone and tolfenamic acid in citrus tissues and soil using liquid chromatography coupled
with triple-quadrupole mass spectrometry. Frontiers in Plant Science, 11.
https://doi.org/10.3389/fpls.2020.00222

Zhao, J., He, X., Hong, W., Wang, J., Xue, N., Zhao, C., … & Lei, Y. (2024). A method for determining ten
alkaloids in feed: rapid and accurate quantification based on ultra‐high performance liquid
chromatography‐tandem mass spectrometry. Separation Science Plus, 7(12).
https://doi.org/10.1002/sscp.202400245
Ţilea, I., Popa, D., Szakács, X., Daniela, P., Bianca, G., Ţilea, B., … & Varga, A. (2015). Determination of
apixaban levels in human plasma by a high-throughput liquid chromatographic tandem mass
spectrometry assay / determinarea rapidă a apixabanului în plasma umană prin cromatografie de
lichide de înaltă performanță cuplată cu spectrometrie de masă în tandem. Revista Romana De
Medicina De Laborator, 23(1). https://doi.org/10.1515/rrlm-2015-0006Ali, O., Tawfiq, A., & Hasan, Z.
(2023). Qualitative and quantitative estimation of total phenols in narcissus tazettal. bulbs. Ibn Al-
Haitham Journal for Pure and Applied Science, 36(4), 7-20. https://doi.org/10.30526/36.4.3160

Arawande, J., Ayodele, C., Amuho, E., Olatunji, B., Adesuyi, A., & Imoukhuede, B. (2023). Evaluation
of extractive values, qualitative and quantitative phytochemical constituents of red soko (celosia
trigyna) and green soko (celosia argentea). International Journal of Food Science and Agriculture,
0(0), 122-131. https://doi.org/10.26855/ijfsa.2023.03.017

Farouq, A., Muomara, G., Magashi, A., Jodi, S., Nata’ala, M., & Habibu, K. (2019). Phytochemical,
antibacterial and toxicity study of leaf extracts of vernonia amygdalina, delile on salmonella species.
Asian Journal of Research in Medical and Pharmaceutical Sciences, 1-8.
https://doi.org/10.9734/ajrimps/2019/v6i430106

Foley, D., Zinken, S., Corkery, D., Laraia, L., Pahl, A., Wu, Y., … & Waldmann, H. (2020). Phenotyping
reveals targets of a pseudo‐natural‐product autophagy inhibitor. Angewandte Chemie, 132(30),
12570-12576. https://doi.org/10.1002/ange.202000364

Jennings, L., Khan, N., Kaur, N., Rodrigues, D., Morrow, C., Boyd, A., … & Thomas, O. (2019).
Brominated bisindole alkaloids from the celtic sea sponge spongosorites calcicola. Molecules, 24(21),
3890. https://doi.org/10.3390/molecules24213890

Lu, T., Liu, Y., Zhou, L., Liao, Q., Nie, Y., Wang, X., … & Zhang, Y. (2023). The screening for marine
fungal strains with high potential in alkaloids production by in situ colony assay and lc-ms/ms based
secondary metabolic profiling. Frontiers in Microbiology, 14.
https://doi.org/10.3389/fmicb.2023.1144328

Moreira, L., Ferreira, M., Reginaldo, F., Lourenço, E., Zuanazzi, J., Barbosa, E., … & Giordani, R. (2020).
Erythroxylum pungens tropane alkaloids: gc-ms analysis and the bioactive potential of 3-(2-
methylbutyryloxy)tropan-6,7-diol in zebrafish (danio rerio). Planta Medica, 87(01/02), 177-186.
https://doi.org/10.1055/a-1264-4302

Nandakumar, A., Vaganan, M., Sundararaju, P., & Udayakumar, R. (2017). Phytochemical analysis and
nematicidal activity of ethanolic leaf extracts of datura metel, datura innoxia and brugmansia
suaveolens against meloidogyne incognita. Asian Journal of Biology, 2(4), 1-11.
https://doi.org/10.9734/ajob/2017/34241

Rahman, M., Tiruveedhula, V., Stephen, M., Rallapalli, S., Pandey, K., & Cook, J. (2022). Completion of
the total synthesis of several bioactive sarpagine/macroline alkaloids including the important nf-κb
inhibitor n4-methyltalpinine. Molecules, 27(5), 1738. https://doi.org/10.3390/molecules27051738

TV, A. and Sharon, N. (2022). Comparative phytochemical analysis of four medicinal plants
traditionally used for malaria therapy in nigeria. World Journal of Biology Pharmacy and Health
Sciences, 10(1), 080-085. https://doi.org/10.30574/wjbphs.2022.10.1.0069

Tang, Y., He, X., Jian, S., Li, C., Li, L., Sheng, J., … & Ling, D. (2019). Polyphenols and alkaloids in
byproducts of longan fruits (dimocarpus longan lour.) and their bioactivities. Molecules, 24(6), 1186.
https://doi.org/10.3390/molecules24061186vvvv

You might also like