AM263Px Sitara™ Microcontrollers With Optional Flash-in-Package
AM263Px Sitara™ Microcontrollers With Optional Flash-in-Package
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com
3 Description
The AM263Px Sitara™ Arm® Microcontrollers are built to meet the complex real-time processing needs of
next generation industrial and automotive embedded products. The AM263Px MCU family consists of multiple
pin-to-pin compatible devices with up to four 400MHz Arm® Cortex®-R5F cores. As an option, the Arm® R5F
subsystem can be programmed to run in lockstep or dual-core mode for multiple functional safety configurations.
The industrial communications subsystem (PRU-ICSS) enables integrated industrial Ethernet communication
protocols such as PROFINET®, Ethernet/IP®, EtherCAT® (among many others), standard Ethernet connectivity,
and even custom I/O interfaces. The family is designed for the future of motor control and digital power
applications with advanced analog sensing and digital actuation modules.
The multiple R5F cores are arranged in cluster subsystems with 256KB of shared tightly coupled memory (TCM)
along with 3MB of shared SRAM, greatly reducing the need for external memory. Extensive ECC is included
for on-chip memories, peripherals, and interconnects for enhanced reliability. Granular firewalls managed by the
Hardware Security Manager (HSM) enable developers to implement stringent security-minded system design
requirements. Cryptographic acceleration and secure boot are also available on AM263Px devices.
TI provides a complete set of microcontroller software and development tools for the AM263Px family of
microcontrollers.
Package Information
PART NUMBER(1) (2) PACKAGE PACKAGE SIZE(3)
AM263P4...ZCZ ZCZ (nFBGA, 324) 15.0mm × 15.0mm
AM263P2...ZCZ ZCZ (nFBGA, 324) 15.0mm × 15.0mm
AM263P4...ZCZQ1 ZCZ (nFBGA, 324) 15.0mm × 15.0mm
AM263P2...ZCZQ1 ZCZ (nFBGA, 324) 15.0mm × 15.0mm
System Services
A. AM263Px is available with 4 and 2 core options. Refer to the Device Comparison table for more peripheral specific details.
B. Each R5F cluster supports 256KB of Tightly-Coupled Memory (TCM). When configured as Single-Core or Lockstep operating mode,
individual cores can utilize all 256KB. While in Dual-Core mode, each core may only utilize its designated half (128KB TCM).
C. The Resolver subsystem is available for the ZCZ_S and ZCZ_F packages only.
Table of Contents
1 Features............................................................................1 6.9 VPP Specifications for One-Time Programmable
2 Applications..................................................................... 3 (OTP) eFuses..............................................................86
3 Description.......................................................................4 6.10 Thermal Resistance Characteristics....................... 87
3.1 Functional Block Diagram........................................... 5 6.11 Timing and Switching Characteristics..................... 88
4 Device Comparison......................................................... 7 6.12 Decoupling Capacitor Requirements.................... 147
4.1 Device Identification....................................................9 7 Detailed Description....................................................148
4.2 Related Products...................................................... 10 7.1 Overview................................................................. 148
5 Terminal Configuration and Functions........................ 11 7.2 Processor Subsystems........................................... 149
5.1 Pin Diagram.............................................................. 11 8 Applications, Implementation, and Layout............... 150
5.2 Pin Attributes.............................................................14 8.1 Device Connection and Layout Fundamentals....... 150
5.3 Signal Descriptions................................................... 46 9 Device and Documentation Support..........................152
5.4 Pin Connectivity Requirements.................................72 9.1 Device Nomenclature..............................................152
6 Specifications................................................................ 73 9.2 Tools and Software................................................. 156
6.1 Absolute Maximum Ratings...................................... 73 9.3 Documentation Support.......................................... 156
6.2 Electrostatic Discharge (ESD) Extended 9.4 Support Resources................................................. 157
Automotive Ratings..................................................... 74 9.5 Trademarks............................................................. 157
6.3 Electrostatic Discharge (ESD) Industrial Ratings......74 9.6 Electrostatic Discharge Caution..............................157
6.4 Power-On Hours (POH) Summary............................74 9.7 Glossary..................................................................157
6.5 Recommended Operating Conditions.......................76 10 Revision History........................................................ 157
6.6 Operating Performance Points..................................76 11 Mechanical, Packaging, and Orderable
6.7 Power Consumption Summary................................. 77 Information.................................................................. 159
6.8 Electrical Characteristics...........................................78
4 Device Comparison
Table 4-1 shows a comparison between devices, highlighting the differences.
Table 4-1. Device Comparison
REFERENCE AM263P4 AM263P2
FEATURES
NAME AM263P4-Q1 AM263P2-Q1
JTAG User ID
DEVICE_ID[31:13](1) D: 0x30884 0x30844
(Base Part Number)
E: 0x30885 0x30845
K: 0x3088B 0x3084B
L: 0x3088C 0x3084C
M: 0x3088D 0x3084D
N: 0x3088E -
PROCESSORS AND ACCELERATORS
Speed Grade See Section 6.6, Operating Performance Points
Arm® Cortex-R5F R5FSS 4 (2× Dual Core w/ Lockstep) 2 (1× Dual Core w/ Lockstep)
Trigonometric Math Unit TMU Yes
Hardware Security Module HSM Yes
Crypto Accelerators Security Yes
PROGRAM AND DATA STORAGE
On-Chip Shared Memory (RAM) OCSRAM See Section 6.6, Operating Performance Points
R5F Tightly Coupled Memory (TCM) TCM Up to 512KB(10)
PERIPHERALS
Modular Controller Area Network with Full CAN-FD MCAN 8
General-Purpose I/O GPIO Up to 139
Serial Peripheral Interface SPI 8
Universal Asynchronous Receiver and Transmitter UART 6
Local Interconnect Network LIN 5
Inter-Integrated Circuit Interface I2C 4
Analog-to-Digital Converter ADC 3(2) or 5(3) 3(2) or 5(3)
Resolver (ADC12B3M)(4) RDC 0(8) or 2(9) 0(8) or 2(9)
ADC 0(8) or 2(9) 0(8) or 2(9)
(1) Values listed here for DEVICE_ID are bits [31:13] of the TOP_CTRL.EFUSE_JTAG_USERCODE_ID register. For full JTAG ID's please
refer to the Device Part Number Identifier table.
(2) Standard Analog configuration contains 3x ADC, 16x EHRPWM, 8x eCAP, 2x EQEP, 1x SDFM, 12x CMPSS
(3) Enhanced Analog configuration contains 5x ADC, 32x EHRPWM, 16x eCAP, 3x EQEP, 2x SDFM, 20x CMPSS
(4) The 2x Resolver ADC12B3M modules can be used as either Resolver ADCs or general-purpose ADCs
(5) Programmable Real-Time Unit Subsystem is available when selecting an orderable part number that includes a feature code of D, E, F,
K, L, M, or N. Refer to the Nomenclature Description table for definition of feature codes.
(6) Industrial Communication Subsystem Support is available when selecting an orderable part number that includes a feature code of D,
E, F, K, L, M, or N. Refer to the Nomenclature Description table for definition of feature codes.
(7) AEC-Q100 qualification is applicable to select part number variants as indicated by the Automotive Designator (Q1) identifier in the
Nomenclature Description table.
(8) Applies to devices in the ZCZ-C Package only and have a Special Features code of C. Refer to the Nomenclature Description table for
definition of Special Features codes.
(9) Applies to devices in the ZCZ-S Package and the ZCZ-F Package that have a Special Features code of F or S. Refer to the
Nomenclature Description table for definition of Special Features codes.
(10) Each R5FSS cluster supports 256KB of Tightly-Coupled Memory (TCM). When configured as Single-Core or Lockstep operating
mode, individual cores can utilize the entire 256KB of TCM memory, while in Dual-Core mode, each core may only utilize its
designated half (128KB TCM).
(11) The Flash-in-Package variant connects the OSPI interface to an OSPI Flash die included in the package, disabling the external OSPI
interface for application use. The flash device in the Flash-in-Package(ZCZ_F) variant does not support RWW(Read While Write) while
performing XIP(eXecute-In-Place) operations.
(12) The Flash-in-Package variant is limited by the OSPI Flash device in the package to 125°C.
The manufacturer identity, the boundary scan part number, and the silicon revision of the device can be read
from the configuration port via JTAG.
The diagrams in this section are used in conjunction with the other Terminal Configuration and Functions tables
to locate signal names and ball grid numbers.
A B C D E F G H J K L M N P R T U V
PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_MDIO0 RGMII1_TX RGMII1 RGMII1 RGMII1_RX RGMII1 RGMII1
18 VSS VSS
_GPIO11 _GPIO9 _GPIO8 _GPIO3 _GPIO0 _GPIO10 _GPIO16 _GPIO2 _GPIO1 _MDC _CTL _TXC _TD2 _CTL _RD3 _RD2
PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_MDIO0 RGMII1 RGMII1 RGMII1 RGMII1 RGMII1
17 MDIO0_MDC EPWM14_A
_GPIO15 _GPIO12 _GPIO14 _GPIO10 _GPIO2 _GPIO9 _GPIO5 _GPIO13 _GPIO3 _GPIO0 _MDIO _TD3 _TD1 _RXC _RD1 _RD0
SDFM0 SDFM0 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 MDIO0 RGMII1
16 RSVD_J16 EPWM15_B EPWM14_B ADC_CAL0 VSSA
_CLK1 _CLK0 _GPIO16 _GPIO13 _GPIO6 _GPIO4 _GPIO1 _GPIO14 _GPIO4 _GPIO15 _GPIO11 _MDIO _TD0
ADC
14 EQEP0_B EQEP0_A SDFM0_D3 SDFM0_D0 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS ADC0_AIN5 ADC0_AIN2 ADC0_AIN3 _VREFHI
_G0
ADC
13 I2C0_SCL I2C0_SDA SDFM0_D2 SDFM0_D1 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS VSSA DAC_VREF0 ADC0_AIN4 _VREFLO
_G0
EQEP0
12 MCAN2_RX MCAN2_TX VDDS33 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA ADC1_AIN5 ADC1_AIN2 ADC1_AIN4 ADC1_AIN3
_STROBE
EQEP0 ADC
11 SPI0_CLK SPI0_D1 SPI0_CS0 VDD VDD VSS VSS VSS VSS VSS VSS VSS VDDA33 VDDA18 ADC1_AIN0 ADC1_AIN1 _VREFLO
_INDEX _G1
ADC
10 SPI1_CLK SPI1_D0 SPI0_D0 VDDAR2 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA ADC2_AIN0 ADC2_AIN1 ADC2_AIN2 _VREFHI
_G1
9 LIN1_RXD LIN1_TXD SPI1_CS0 SPI1_D1 VDD VDD VSS VSS VSS VSS VSS VSS VSS VDDA33 VDD ADC2_AIN3 ADC3_AIN5 ADC2_AIN4
8 LIN2_TXD LIN2_RXD I2C1_SDA VDDS33 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA VDDA18 ADC2_AIN5 ADC3_AIN1 ADC3_AIN4
VDDA18 ADC
6 UART0_TXD MMC0_CLK MMC0_WP VDDS18 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSSA DAC_VREF1 ADC4_AIN0 _VREFHI
_LDO _G2
5 MMC0_CD MMC0_D0 TDI TMS VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS VSSA DAC_OUT ADC4_AIN3 ADC4_AIN1
SAFETY VDDA18
4 MMC0_CMD MMC0_D1 TDO EPWM4_B EPWM7_A EPWM10_A VDDS33 EPWM12_B EPWM13_A VDDS18 QSPI0_D2 QSPI0_D1 VDDS33 RSVD_T4 ADC4_AIN5 ADC4_AIN2
_ERRORn _OSC_PLL
QSPI0 VDDS18
3 MMC0_D2 TCK WARMRSTn EPWM1_A EPWM3_B EPWM6_B EPWM8_A VDDAR3 EPWM10_B EPWM13_B UART1_RXD UART1_TXD VPP QSPI0_D3 RSVD_U3 ADC4_AIN4
_CSn1 _LDO
EXT
2 MMC0_D3 EPWM0_A EPWM2_A EPWM1_B EPWM3_A EPWM5_A EPWM5_B EPWM8_B EPWM9_B EPWM12_A MCAN1_RX CLKOUT0 QSPI0_CLK PORz VSS VSYS_MON RSVD_V2
_REFCLK0
QSPI0
1 VSS EPWM0_B EPWM2_B EPWM4_A EPWM6_A EPWM7_B EPWM9_A EPWM11_A EPWM11_B MCAN1_TX MCAN0_TX MCAN0_RX QSPI0_D0 XTAL_XO XTAL_XI RSVD_U1 VSSA
_CSn0
Not to scale
A B C D E F G H J K L M N P R T U V
PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_MDIO0 ADC_R1 ADC_R1 ADC_R0 ADC_R0
18 VSS GPIO36 GPIO35 VSSA
_GPIO11 _GPIO9 _GPIO8 _GPIO3 _GPIO0 _GPIO10 _GPIO16 _GPIO2 _GPIO1 _MDC _AIN2 _AIN1 _AIN0 _AIN2
PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_MDIO0 ADC_R1 ADC_R0 ADC
17 MDIO0_MDC ADC_CAL3 GPIO29 ADC_CAL2 _VREFHI
_GPIO15 _GPIO12 _GPIO14 _GPIO10 _GPIO2 _GPIO9 _GPIO5 _GPIO13 _GPIO3 _GPIO0 _MDIO _AIN3 _AIN3 _G3
SDFM0 SDFM0 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 MDIO0 ADC_R1 ADC_R0 ADC
16 RSVD_J16 GPIO37 ADC_CAL0 _VREFLO
_CLK1 _CLK0 _GPIO16 _GPIO13 _GPIO6 _GPIO4 _GPIO1 _GPIO14 _GPIO4 _GPIO15 _GPIO11 _MDIO _AIN0 _AIN1 _G3
ADC
14 EQEP0_B EQEP0_A SDFM0_D3 SDFM0_D0 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS ADC0_AIN5 ADC0_AIN2 ADC0_AIN3 _VREFHI
_G0
ADC
13 I2C0_SCL I2C0_SDA SDFM0_D2 SDFM0_D1 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS VSSA DAC_VREF0 ADC0_AIN4 _VREFLO
_G0
EQEP0
12 MCAN2_RX MCAN2_TX VDDS33 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA ADC1_AIN5 ADC1_AIN2 ADC1_AIN4 ADC1_AIN3
_STROBE
EQEP0 ADC
11 SPI0_CLK SPI0_D1 SPI0_CS0 VDD VDD VSS VSS VSS VSS VSS VSS VSS VDDA33 VDDA18 ADC1_AIN0 ADC1_AIN1 _VREFLO
_INDEX _G1
ADC
10 SPI1_CLK SPI1_D0 SPI0_D0 VDDAR2 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA ADC2_AIN0 ADC2_AIN1 ADC2_AIN2 _VREFHI
_G1
9 LIN1_RXD LIN1_TXD SPI1_CS0 SPI1_D1 VDD VDD VSS VSS VSS VSS VSS VSS VSS VDDA33 VDD ADC2_AIN3 ADC3_AIN5 ADC2_AIN4
8 LIN2_TXD LIN2_RXD I2C1_SDA VDDS33 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA VDDA18 ADC2_AIN5 ADC3_AIN1 ADC3_AIN4
VDDA18 ADC
6 UART0_TXD MMC0_CLK MMC0_WP VDDS18 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSSA DAC_VREF1 ADC4_AIN0 _VREFHI
_LDO _G2
5 MMC0_CD MMC0_D0 TDI TMS VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS VSSA DAC_OUT ADC4_AIN3 ADC4_AIN1
SAFETY VDDA18
4 MMC0_CMD MMC0_D1 TDO EPWM4_B EPWM7_A EPWM10_A VDDS33 EPWM12_B EPWM13_A VDDS18 QSPI0_D2 QSPI0_D1 VDDS33 RSVD_T4 ADC4_AIN5 ADC4_AIN2
_ERRORn _OSC_PLL
QSPI0 VDDS18
3 MMC0_D2 TCK WARMRSTn EPWM1_A EPWM3_B EPWM6_B EPWM8_A VDDAR3 EPWM10_B EPWM13_B UART1_RXD UART1_TXD VPP QSPI0_D3 RSVD_U3 ADC4_AIN4
_CSn1 _LDO
EXT
2 MMC0_D3 EPWM0_A EPWM2_A EPWM1_B EPWM3_A EPWM5_A EPWM5_B EPWM8_B EPWM9_B EPWM12_A MCAN1_RX CLKOUT0 QSPI0_CLK PORz VSS VSYS_MON RSVD_V2
_REFCLK0
QSPI0
1 VSS EPWM0_B EPWM2_B EPWM4_A EPWM6_A EPWM7_B EPWM9_A EPWM11_A EPWM11_B MCAN1_TX MCAN0_TX MCAN0_RX QSPI0_D0 XTAL_XO XTAL_XI RSVD_U1 VSSA
_CSn0
Not to scale
A B C D E F G H J K L M N P R T U V
PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_MDIO0 ADC_R1 ADC_R1 ADC_R0 ADC_R0
18 VSS GPIO36 GPIO35 VSSA
_GPIO11 _GPIO9 _GPIO8 _GPIO3 _GPIO0 _GPIO10 _GPIO16 _GPIO2 _GPIO1 _MDC _AIN2 _AIN1 _AIN0 _AIN2
PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_MDIO0 ADC_R1 ADC_R0 ADC
17 MDIO0_MDC ADC_CAL3 GPIO29 ADC_CAL2 _VREFHI
_GPIO15 _GPIO12 _GPIO14 _GPIO10 _GPIO2 _GPIO9 _GPIO5 _GPIO13 _GPIO3 _GPIO0 _MDIO _AIN3 _AIN3 _G3
SDFM0 SDFM0 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 MDIO0 ADC_R1 ADC_R0 ADC
16 RSVD_J16 GPIO37 ADC_CAL0 _VREFLO
_CLK1 _CLK0 _GPIO16 _GPIO13 _GPIO6 _GPIO4 _GPIO1 _GPIO14 _GPIO4 _GPIO15 _GPIO11 _MDIO _AIN0 _AIN1 _G3
ADC
14 EQEP0_B EQEP0_A SDFM0_D3 SDFM0_D0 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS ADC0_AIN5 ADC0_AIN2 ADC0_AIN3 _VREFHI
_G0
ADC
13 I2C0_SCL I2C0_SDA SDFM0_D2 SDFM0_D1 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS VSSA DAC_VREF0 ADC0_AIN4 _VREFLO
_G0
EQEP0
12 MCAN2_RX MCAN2_TX VDDS33 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA ADC1_AIN5 ADC1_AIN2 ADC1_AIN4 ADC1_AIN3
_STROBE
EQEP0 ADC
11 SPI0_CLK SPI0_D1 SPI0_CS0 VDD VDD VSS VSS VSS VSS VSS VSS VSS VDDA33 VDDA18 ADC1_AIN0 ADC1_AIN1 _VREFLO
_INDEX _G1
ADC
10 SPI1_CLK SPI1_D0 SPI0_D0 VDDAR2 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA ADC2_AIN0 ADC2_AIN1 ADC2_AIN2 _VREFHI
_G1
9 LIN1_RXD LIN1_TXD SPI1_CS0 SPI1_D1 VDD VDD VSS VSS VSS VSS VSS VSS VSS VDDA33 VDD ADC2_AIN3 ADC3_AIN5 ADC2_AIN4
8 LIN2_TXD LIN2_RXD I2C1_SDA VDDS33 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA VDDA18 ADC2_AIN5 ADC3_AIN1 ADC3_AIN4
VDDA18 ADC
6 UART0_TXD MMC0_CLK MMC0_WP VDDS18 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSSA DAC_VREF1 ADC4_AIN0 _VREFHI
_LDO _G2
5 MMC0_CD MMC0_D0 TDI TMS VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS VSSA DAC_OUT ADC4_AIN3 ADC4_AIN1
SAFETY VDDA18
4 MMC0_CMD MMC0_D1 TDO EPWM4_B EPWM7_A EPWM10_A VDDS33 NC NC VDDS18 NC QSPI0_D1 VDDS33 RSVD_T4 ADC4_AIN5 ADC4_AIN2
_ERRORn _OSC_PLL
EXT
2 MMC0_D3 EPWM0_A EPWM2_A EPWM1_B EPWM3_A EPWM5_A EPWM5_B EPWM8_B EPWM9_B NC NC CLKOUT0 QSPI0_CLK PORz VSS VSYS_MON RSVD_V2
_REFCLK0
OSPI0_ZCZ
1 VSS EPWM0_B EPWM2_B EPWM4_A EPWM6_A EPWM7_B EPWM9_A NC NC MCAN1_TX NC QSPI0_D0 NC XTAL_XO XTAL_XI RSVD_U1 VSSA
_F_WP
Not to scale
Note
The Pin Attributes table, defines the SoC pin multiplexed signal function implemented at the pin
and does not define secondary multiplexing of signal functions implemented in device subsystems.
Secondary multiplexing of signal functions are not described in this table. For more information on
secondary multiplexed signal functions, see the respective peripheral chapter of the device TRM.
4. Mux Mode: The MUXMODE value associated with each pin multiplexed signal function:
• MUXMODE 0 is the primary pin multiplexed signal function. However, the primary pin multiplexed signal
function is not necessarily the default pin multiplexed signal function.
• MUXMODE values 1 through 15 are possible for pin multiplexed signal functions. However, not all
MUXMODE values have been implemented. The only valid MUXMODE values are those defined as pin
multiplexed signal functions within the Pin Attributes table. Only defined valid values of MUXMODE can
be used.
• Bootstrap defines SOC configuration pins, where the logic state applied to each pin is latched on
the rising edge of PORz. These input signal functions are fixed to their respective pins and are not
programmable via MUXMODE.
• An empty box or "-" means Not Applicable.
Note
• The value found in the MUX MODE AFTER RESET column defines the default pin multiplexed
signal function selected when PORz is deasserted.
• Configuring two pins to the same pin multiplexed signal function can yield unexpected results and is
not supported. This can be prevented with proper software configuration.
• Configuring a pad to an undefined multiplexing mode results in undefined behavior and must be
avoided.
6. Ball State During Reset (RX/TX/PULL): State of the terminal while PORz is asserted, where RX defines
the state of the input buffer, TX defines the state of the output buffer, and PULL defines the state of internal
pull resistors:
• RX (Input buffer)
– Off: The input buffer is disabled.
Note
Configuring two pins to the same pin multiplexed signal function is not supported as this yields
unexpected results. Issues can be easily prevented with the proper software configuration.
When a pad is set into a multiplexing mode which is not defined by pin multiplexing, that pad’s
behavior is undefined. This must be avoided.
13. Buffer Type: This column defines the buffer type associated with a terminal. This information can be used to
determine the applicable Electrical Characteristics table.
• An empty box, NA, or "-" means Not Applicable.
For electrical characteristics, refer to the appropriate buffer type table in Electrical Characteristics.
14. Pad Configuration Register Name: This is the name of the device pad/pin configuration register.
15. Pad Configuration Register Address: This is the memory address of the device pad/pin configuration
register.
16. Pad Configuration Register Default Value: This is the default value of the register device pad/pin
configuration register after PORz is deasserted.
B1 B1 B1 EPWM0_B EPWM0_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM0_B_CFG_REG GPIO44 7 IO
0x5310 00B0
0x0000 05F7 EPWM0_B 10 O
D3 D3 D3 EPWM1_A EPWM1_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM1_A_CFG_REG GPIO45 7 IO
0x5310 00B4
0x0000 05F7 EPWM1_A 10 O
D2 D2 D2 EPWM1_B EPWM1_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM1_B_CFG_REG GPIO46 7 IO
0x5310 00B8
0x0000 05F7 EPWM4_B 10 O
C2 C2 C2 EPWM2_A EPWM2_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM2_A_CFG_REG GPIO47 7 IO
0x5310 00BC
0x0000 05F7 EPWM2_A 10 O
E2 E2 E2 EPWM3_A EPWM3_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM3_A_CFG_REG GPIO49 7 IO
0x5310 00C4
0x0000 05F7 EPWM3_A 10 O
E3 E3 E3 EPWM3_B EPWM3_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM3_B_CFG_REG GPIO50 7 IO
0x5310 00C8
0x0000 05F7 EPWM6_A 10 O
D1 D1 D1 EPWM4_A EPWM4_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM4_A_CFG_REG GPIO51 7 IO
0x5310 00CC
0x0000 05F7 EPWM4_A 10 O
E4 E4 E4 EPWM4_B EPWM4_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM4_B_CFG_REG FSITX1_CLK 6 O
0x5310 00D0
0x0000 05F7 GPIO52 7 IO
EPWM1_B 10 O
F2 F2 F2 EPWM5_A EPWM5_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM5_A_CFG_REG SPI5_CS0 3 IO
0x5310 00D4
0x0000 05F7 FSITX1_DATA0 6 O
GPIO53 7 IO
EPWM5_A 10 O
G2 G2 G2 EPWM5_B EPWM5_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM5_B_CFG_REG SPI5_CLK 3 IO
0x5310 00D8
0x0000 05F7 FSITX1_DATA1 6 O
GPIO54 7 IO
EPWM8_B 10 O
E1 E1 E1 EPWM6_A EPWM6_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM6_A_CFG_REG SPI5_D0 3 IO
0x5310 00DC
0x0000 05F7 FSIRX1_CLK 6 I
GPIO55 7 IO
EPWM3_B 10 O
F3 F3 F3 EPWM6_B EPWM6_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM6_B_CFG_REG SPI5_D1 3 IO
0x5310 00E0
0x0000 05F7 FSIRX1_DATA0 6 I
GPIO56 7 IO
EPWM6_B 10 O
R3 R3 R3 QSPI0_CSn1 OSPI0_CSn1 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
QSPI0_CSn1_CFG_REG MCAN5_TX 2 O
0x5310 0004
0x0000 05F7 SPI4_CS1 4 IO
XBAROUT0 5 O
UART2_RTSn 6 O
GPIO1 7 IO
FSIRX2_DATA1 8 I
EPWM10_B 10 O
P3 P3 QSPI0_D3 OSPI0_D3 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
QSPI0_D3_CFG_REG OSPI0_D4 6 IO
0x5310 0018
0x0000 05F7 GPIO6 7 IO
R17 RGMII1_RXC RGMII1_RXC 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_RXC_CFG_REG RMII1_REF_CLK 1 IO
0x5310 0074
0x0000 05F7 MII1_RXCLK 2 I
FSITX0_CLK 6 O
GPIO29 7 IO
EQEP2_A 8 I
EPWM14_A 10 O
R18 RGMII1_RX_CTL RGMII1_RX_CTL 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_RX_CTL_CFG_REG RMII1_RX_ER 1 I
0x5310 0078
0x0000 05F7 MII1_RXDV 2 I
FSITX0_DATA0 6 O
GPIO30 7 IO
EQEP2_B 8 I
D13 D13 D13 SDFM0_D1 PR0_PRU1_GPIO17 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SDFM0_D1_CFG_REG UART5_CTSn 2 I
0x5310 01F4
0x0000 05F7 PR0_IEP0_EDIO_DATA_IN_OUT30 3 IO
GPIO125 7 IO
SDFM0_D1 8 I
C13 C13 C13 SDFM0_D2 UART5_RXD 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SDFM0_D2_CFG_REG GPIO127 7 IO
0x5310 01FC
0x0000 05F7 SDFM0_D2 8 I
ADC_EXTCH_XBAROUT0 9 O
C14 C14 C14 SDFM0_D3 MCAN3_RX 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SDFM0_D3_CFG_REG GPIO129 7 IO
0x5310 0204
0x0000 05F7 SDFM0_D3 8 I
ADC_EXTCH_XBAROUT1 9 O
A6 A6 A6 UART0_TXD UART0_TXD 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
UART0_TXD_CFG_REG LIN0_TXD 1 IO
0x5310 0070
0x0000 05F7 GPIO28 7 IO
L3 L3 L3 UART1_RXD UART1_RXD 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
UART1_RXD_CFG_REG LIN1_RXD 1 IO
0x5310 012C
0x0000 05F7 OSPI0_LBCLKO 2 O
EPWM16_A 5 O
GPIO75 7 IO
EPWM16_A 10 O
EPWM10_A 11 O
M3 M3 M3 UART1_TXD UART1_TXD 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
UART1_TXD_CFG_REG LIN1_TXD 1 IO
0x5310 0130
0x0000 05F7 OSPI0_DQS 2 I
EPWM16_B 5 O
GPIO76 7 IO
EPWM16_B 10 O
E11, E9, E11, E9, E11, E9, VDD VDD PWR 1.2V
F11, F9, F11, F9, F11, F9,
G13, G13, G13,
G14, G5, G14, G5, G14, G5,
G6, K13, G6, K13, G6, K13,
K14, K5, K14, K5, K14, K5,
K6, N13, K6, N13, K6, N13,
N14, N5, N14, N5, N14, N5,
N6, R9 N6, R9 N6, R9
R11, R8 R11, R8 R11, R8 VDDA18 VDDA18 PWR 1.8V
R6 R6 R6 VDDA18_LDO VDDA18_LDO PWR 1.8V
R4 R4 R4 VDDA18_OSC_PLL VDDA18_OSC_PLL PWR 1.8V
P11, P7, P11, P7, P11, P7, VDDA33 VDDA33 PWR 3.3V
P9 P9 P9
J15 J15 J15 VDDAR1 VDDAR1 PWR 1.2V
Many signals are available on multiple pins, according to the software configuration of the pin multiplexing
options.
The following list describes the column headers:
1. SIGNAL NAME: The name of the signal passing through the pin.
Note
Signal names and descriptions provided in each Signal Descriptions table, represent the pin
multiplexed signal function which is implemented at the pin and selected via IOMUX pad configuration
registers. Some device subsystems provide secondary multiplexing of signal functions, which are not
described in these tables. For more information on secondary multiplexed signal functions, see the
respective peripheral chapter of the device TRM.
For more information on the I/O cell configurations, see the Pad Configuration Registers section within the
Device Configuration chapter of the device TRM.
5.3.1 ADC
Table 5-2. ADC0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
ADC Analog Input 0 (+IN0)
ADC0_AIN0 I V15 V15 V15
CMPSSA0: inH (+IN)
ADC Analog Input 1 (-IN0)
ADC0_AIN1 I U15 U15 U15
CMPSSA0: inL (-IN)
ADC Analog Input 2 (+IN1)
ADC0_AIN2 I T14 T14 T14
CMPSSA1: inH (+IN)
ADC Analog Input 3 (-IN1)
ADC0_AIN3 I U14 U14 U14
CMPSSA1: inL (-IN)
ADC Analog Input 4 (+IN2)
ADC0_AIN4 I U13 U13 U13
CMPSSB0: inH/inL (+IN/-IN)
ADC Analog Input 5 (-IN2)
ADC0_AIN5 I R14 R14 R14
CMPSSB1: inH/inL (+IN/-IN)
+
+
+
+
+
–
–
–
–
–
ATB
INP-0
INM-0
INP-1
INM-1 12-bit
4 MSPS
INP-2
INM-2
CAL-0
CAL-1
Note
In the ADC Input column in ADC-CMPSS Signal Connectivity Table above, "inp" stands for positive
inputs and "inm" stands for negative inputs.
5.3.3 ADC_CAL
Table 5-11. ADC_CAL Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
ADC_CAL0 (1) I ADC Calibration Pin 0 U16 U16 U16
ADC_CAL1 (1) I ADC Calibration Pin 1 T15 T15 T15
ADC_CAL2 (2) A ADC Calibration Pin 2 U17 U17
ADC_CAL3 (3) A ADC Calibration Pin 3 N17 N17
5.3.5 CPSW
Table 5-13. CPSW0 RGMII1 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
RGMII1_RXC I RGMII Receive Clock R17 R17 R17
RGMII1_RX_CTL I RGMII Receive Control R18
RGMII1_TXC O RGMII Transmit Clock N18 N18 N18
RGMII1_TX_CTL O RGMII Transmit Control M18 M18 M18
RGMII1_RD0 I RGMII Receive Data 0 U17
RGMII1_RD1 I RGMII Receive Data 1 T17
RGMII1_RD2 I RGMII Receive Data 2 U18
RGMII1_RD3 I RGMII Receive Data 3 T18
RGMII1_TD0 O RGMII Transmit Data 0 P16 P16 P16
RGMII1_TD1 O RGMII Transmit Data 1 P17
RGMII1_TD2 O RGMII Transmit Data 2 P18
RGMII1_TD3 O RGMII Transmit Data 3 N17
5.3.6 CPTS
Table 5-20. CPTS0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
CPTS0_TS_SYNC O CPTS Time Stamp Counter Bit Output A16 A16 A16
5.3.7 DAC
Table 5-21. DAC Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
DAC_OUT O DAC Output T5 T5 T5
DAC_VREF0 (1) (2) A DAC Voltage Reference 0 T13 T13 T13
DAC_VREF1 (1) (2) A DAC Voltage Reference 1 T6 T6 T6
(1) See the Layout Guidelines sections for details on connecting these pins.
(2) This pin can be connected (shorted) to VDDA18_LDO.
5.3.8 EPWM
Table 5-22. EPWM0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM0_A O EPWM Output A B2 B2 B2
EPWM0_B O EPWM Output B B1 B1 B1
5.3.9 EQEP
Table 5-54. EQEP0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EQEP0_A I EQEP Quadrature Input A B14, U18 B14 B14
EQEP0_B I EQEP Quadrature Input B A14, T18 A14 A14
EQEP0_INDEX IO EQEP Index D11, N18 D11, N18 D11, N18
EQEP0_STROBE IO EQEP Strobe C12, M18 C12, M18 C12, M18
(1) EQEP2_A is implemented with the I2C OD FS (Open Drain Fail Safe) voltage buffer.
(2) EQEP2_B is implemented with the I2C OD FS (Open Drain Fail Safe) voltage buffer.
5.3.10 FSI
Table 5-57. FSIRX0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
FSIRX0_CLK I FSI Clock A10, T17 A10 A10
FSIRX0_DATA0 I FSI Data 0 B10, U18 B10 B10
FSIRX0_DATA1 I FSI Data 1 D9, T18 D9 D9
5.3.11 GPIO
Table 5-65. GPIO Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
GPIO0 IO General Purpose Input/Output P1 P1
GPIO1 IO General Purpose Input/Output R3 R3 R3
GPIO2 IO General Purpose Input/Output N2 N2 N2
GPIO3 IO General Purpose Input/Output N1 N1 N1
GPIO4 IO General Purpose Input/Output N4 N4 N4
GPIO5 IO General Purpose Input/Output M4 M4
GPIO6 IO General Purpose Input/Output P3 P3
GPIO7 IO General Purpose Input/Output M1 M1
GPIO8 IO General Purpose Input/Output L1 L1
GPIO9 IO General Purpose Input/Output L2 L2
GPIO10 IO General Purpose Input/Output K1 K1 K1
GPIO11 IO General Purpose Input/Output C11 C11 C11
GPIO12 IO General Purpose Input/Output A11 A11 A11
GPIO13 IO General Purpose Input/Output C10 C10 C10
GPIO14 IO General Purpose Input/Output B11 B11 B11
GPIO15 IO General Purpose Input/Output C9 C9 C9
GPIO16 IO General Purpose Input/Output A10 A10 A10
GPIO17 IO General Purpose Input/Output B10 B10 B10
GPIO18 IO General Purpose Input/Output D9 D9 D9
GPIO19 IO General Purpose Input/Output A9 A9 A9
GPIO100 IO General Purpose Input/Output M15 M15 M15
GPIO101 IO General Purpose Input/Output H17 H17 H17
GPIO102 IO General Purpose Input/Output H16 H16 H16
GPIO103 IO General Purpose Input/Output F15 F15 F15
(1) GPIO134 is implemented with the I2C OD FS (Open Drain Fail Safe) voltage buffer.
(2) GPIO135 is implemented with the I2C OD FS (Open Drain Fail Safe) voltage buffer.
(3) This pin is is only supported in the ZCZ_C package option
5.3.12 I2C
Table 5-66. I2C0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
I2C0_SCL (2) IOD I2C Clock A13 A13 A13
I2C0_SDA (1) IOD I2C Data B13 B13 B13
(1) I2C0_SDA is implemented with the I2C OD FS (Open Drain Fail Safe) voltage buffer.
(2) I2C0_SCL is implemented with the I2C OD FS (Open Drain Fail Safe) voltage buffer.
(1) I2C1_SCL is implemented with the typical LVCMOS voltage buffer and should be properly configured to operate as an Input/Output
Open Drain signal type.
(2) I2C1_SDA is implemented with the typical LVCMOS voltage buffer and should be properly configured to operate as an Input/Output
Open Drain signal type.
(1) I2C2_SCL is implemented with the typical LVCMOS voltage buffer and should be properly configured to operate as an Input/Output
Open Drain signal type.
(2) I2C2_SDA is implemented with the typical LVCMOS voltage buffer and should be properly configured to operate as an Input/Output
Open Drain signal type.
(1) I2C3_SDA is implemented with the typical LVCMOS voltage buffer and should be properly configured to operate as an Input/Output
Open Drain signal type.
(2) I2C3_SCL is implemented with the typical LVCMOS voltage buffer and should be properly configured to operate as an Input/Output
Open Drain signal type.
Note
I2C signals that are implemented on an LVCMOS voltage buffer pin can be configured to operate
as open-drain outputs by configuring the I2C module to source a constant low output and toggle the
output enable. The output buffer drives low when enabled and is high impedance when disabled.
The (I2C OD FS) are the only IO voltage buffers which are fail-safe. These are implemented for I2C0
pins only. Other IOs do not allow any potential greater than (VDD + 0.3V) to be applied. This means
you can not source any potential to these pins when power is off. All attached devices that can source
a potential to these IOs must be powered from the same power supply that is sourcing the respective
IO power rail.
5.3.13 LIN
Table 5-70. LIN0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
LIN0_RXD IO LIN Receive Data A7, B6 A7, B6 A7, B6
LIN0_TXD IO LIN Transmit Data A4, A6 A4, A6 A4, A6
5.3.14 MCAN
Table 5-75. MCAN0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
MCAN0_RX I MCAN Receive Data B6, E16, M1 B6, E16, M1 B6, E16
MCAN0_TX O MCAN Transmit Data A4, F16, L1 A4, F16, L1 A4, F16
(1) The SPI0_CLK pin is also used as SOP2 bootmode configuration pin.
(2) The SPI0_D0 pin is also used as SOP3 bootmode configuration pin.
5.3.16 MMC
Table 5-91. MMC0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
MMC0_CD I MMC/SD Card Detect A5 A5 A5
MMC0_CLK IO MMC/SD Clock B6 B6 B6
MMC0_CMD IO MMC/SD Command A4 A4 A4
MMC0_WP I MMC/SD Write Protect C6 C6 C6
MMC0_D0 IO MMC/SD Data B5 B5 B5
(1) The OSPI0_D0 pin is also used as SOP0 boot mode configuration pin.
(2) The OSPI0_D1 pin is also used as SOP1 boot mode configuration pin.
(3) OSPI0_LBCLKO is a clock loopback output signal used for peripheral timing.
(4) OSPI0_CLKLB is a clock loopback signal used internally for retiming purposes.
(5) OSPI0_ZCZ_F_WP is the Write Protect signal for the OSPI flash die in ZCZ_F Package. Refer to OSPI Connections for Flash-in-
Package (ZCZ_F) Section for more details.
(6) OSPI0_ZCZ_F_RESET_OUT0 is the Reset signal for the OSPI flash die in ZCZ_F Package. Refer to OSPI Connections for Flash-in-
Package (ZCZ_F) Section for more details.
(1) See the Layout Guidelines sections for details on connecting this pin.
(2) PCB should directly route VDDA18_LDO to all of the VDDA18 pins and the VDDA_OSC_PLL pin.
(3) PCB should directly route VDDS18_LDO to all of the VDDS18 pins.
5.3.19 PRU-ICSS
Table 5-94. PRU-ICSS ECAP Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
PRU-ICSS Enhanced Capture (ECAP) Input or ECAP
PR0_ECAP0_APWM_OUT O D14 D14 D14
Auxiliary PWM (APWM) Output
5.3.20 SDFM
Table 5-99. SDFM0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
SDFM0_CLK0 I SDFM Channel 0 Clock B16 B16 B16
SDFM0_CLK1 I SDFM Channel 1 Clock A16 A16 A16
SDFM0_CLK2 I SDFM Channel 2 Clock B15 B15 B15
SDFM0_CLK3 I SDFM Channel 3 Clock A15 A15 A15
SDFM0_D0 I SDFM Channel 0 Data D14 D14 D14
SDFM0_D1 I SDFM Channel 1 Data D13 D13 D13
SDFM0_D2 I SDFM Channel 2 Data C13 C13 C13
SDFM0_D3 I SDFM Channel 3 Data C14 C14 C14
(1) SDFM1_CLK2 is implemented with the I2C OD FS (Open Drain Fail Safe) voltage buffer.
(2) SDFM1_CLK3 is implemented with the I2C OD FS (Open Drain Fail Safe) voltage buffer.
5.3.21.2 Clocking
Table 5-102. XTAL Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
XTAL_XI (1) I External Crystal (XTAL) Input T1 T1 T1
XTAL_XO (1) O External Crystal (XTAL) Output R1 R1 R1
5.3.21.4 SYSTEM
Table 5-107. System Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
PORz I Device Power-On (PORz) cold reset R2 R2 R2
SAFETY_ERRORn IO ESM Safety Error Signal D4 D4 D4
Warm Reset Request (Input) / Warm Reset Status
WARMRSTn IO C3 C3 C3
(Output)
5.3.21.5 VMON
Table 5-108. VMON Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
VSYS_MON (1) A External Voltage Monitor with 0.9 V (+/-3%) setpoint. U2 U2 U2
(1) See the Electrical Specifications - Safety Comparators section for additional details on this pin.
(1) NC pins are No Connect pins, as these pins are connected internally to OSPI flash die in ZCZ_F Package. Refer to OSPI Connections
for Flash-in-Package (ZCZ_F) Section for more details.
5.3.22 UART
Table 5-111. UART0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
UART0_CTSn I UART Clear to Send (active low) A5, B7 A5, B7 A5, B7
UART0_RTSn O UART Request to Send (active low) C6, C7 C6, C7 C6, C7
UART0_RXD I UART Receive Data A7, B6 A7, B6 A7, B6
UART0_TXD O UART Transmit Data A4, A6 A4, A6 A4, A6
5.3.23 XBAR
Table 5-117. Output XBAR Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
XBAROUT0 O OUTPUTXBAR Signal 0 R3 R3 R3
XBAROUT1 O OUTPUTXBAR Signal 1 C9 C9 C9
XBAROUT2 O OUTPUTXBAR Signal 2 A10 A10 A10
XBAROUT3 O OUTPUTXBAR Signal 3 B10 B10 B10
XBAROUT4 O OUTPUTXBAR Signal 4 D9 D9 D9
XBAROUT5 O OUTPUTXBAR Signal 5 A9 A9 A9
XBAROUT6 O OUTPUTXBAR Signal 6 B9 B9 B9
XBAROUT7 O OUTPUTXBAR Signal 7 D7 D7 D7
XBAROUT8 O OUTPUTXBAR Signal 8 C8 C8 C8
XBAROUT9 O OUTPUTXBAR Signal 9 C7 C7 C7
XBAROUT10 O OUTPUTXBAR Signal 10 B7 B7 B7
XBAROUT11 O OUTPUTXBAR Signal 11 D16 D16 D16
XBAROUT12 O OUTPUTXBAR Signal 12 C17 C17 C17
XBAROUT13 O OUTPUTXBAR Signal 13 D15 D15 D15
XBAROUT14 O OUTPUTXBAR Signal 14 C15 C15 C15
XBAROUT15 O OUTPUTXBAR Signal 15 P2 P2 P2
6 Specifications
6.1 Absolute Maximum Ratings
over operating junction temperature range (unless otherwise noted)(1) (2)
PARAMETER MIN MAX UNIT
VDD 1.2V SOC core supply –0.5 1.5 V
VDDAR1 1.2V SRAM Array Supply 1 –0.5 1.5 V
VDDAR2 1.2V SRAM Array Supply 2 –0.5 1.5 V
VDDAR3 1.2V SRAM Array Supply 3 –0.5 1.5 V
1.8V IO Bias Supply from Bias LDO routed
VDDS18 –0.5 2.1 V
through Board
VDDS33 3.3V IO Supply –0.5 4.0 V
1.8V Analog Supply for PLL. Routed from
VDDA18_OSC_PLL –0.5 2.1 V
the 1.8V Analog LDO out through Board
VDDA33 Analog 3.3V Supply –0.5 4.0 V
1.8V Analog Supply. Routed from the 1.8V
VDDA18 –0.5 2.1 V
Analog LDO out through Board
3.3V LVCMOS IO Buffer –0.3 VDDS33(3) + 0.3 V
IO Pin Steady State Voltage 3.3V I2C Open-Drain IO Buffers –0.3 VDDS33(3) + 0.3 V
XTAL Pad –0.5 2.1 V
VDDS33(3) + 0.2 ×VDDS33(3) for up
All Other IO Terminals –0.3 V
Transient to 20% of signal period
Overshoot and XTAL Pad
Undershoot 20% of VDDA18_OSC_PLL for up to 20% 0.2 × VDDA18_OSC_PLL V
of signal period
Latch-up I-test Performance (Current-Pulse
±100 mA
Latch Up Performance Injection on each IO pin)
Class II (150°C) Latch-up Overvoltage Performance (Voltage
1.5 × VDDS33 V
Injection on each IO pin)
Output current Digital output (per pin), IOUT –20 20 mA
Storage temperature(4) Tstg –55 155 °C
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.
(2) All voltage values are with respect to VSS, unless otherwise noted.
(3) VDDS33 is the voltage on the corresponding power-supply pin(s) for the IC.
(4) Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device
life. For additional information, see the Semiconductor and IC Package Thermal Metrics Application Report.
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification
(1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard
terms and conditions for TI semiconductor products.
(2) Unless specified in the table above, all voltage domains and operating conditions are supported in the device at the noted
temperatures.
(3) POH is a function of voltage, temperature, and time. Usage at higher voltages and temperatures results in a reduction in POH.
(4) See Automotive Temperature Profile section
(1) Infrastructure includes all other modules and IP integrated in the device (such as CBASS/Interconnect and other SoC level peripherals)
unless otherwise noted in the table.
(1) VDDS33 is the voltage on the corresponding power-supply pin on the IC.
ADC
ADCINx SW Ron
Cp Ch
VREFLO
(1) VDDA33 is the voltage on the corresponding power-supply pin(s) on the IC.
(1) VDDA33 is the voltage on the corresponding power-supply pin(s) on the IC.
(1) VDDA33 is the voltage on the corresponding power-supply pin(s) on the IC.
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a
JEDEC defined 1S0P system) and change based on environment as well as application. For more information, see these EIA/JEDEC
standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions - Forced Convection (Moving Air)
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Packages
(2) ℃/W = degrees Celsius per watt
(3) m/s = meters per second
tStartup
tPGood
PORz
tWARMRSTn
Pin is Tristate.
WARMRSTn Signal Level determined by external pull or driver.
tSOP_Sampled
SOP[3:0]
tSU_SOP tH_SOP
PORz
RST1
RST3
PORz
ALL SUPPLIES
VALID
RST4 RST5
PORz
RST6
WARMRSTn
(1) This timing parameter is controlled by the TOP_RCM.WARM_RSTTIME1/2/3 registers. See the Reset section of the Technical
Reference Manual for more details.
RST10
WARMRSTn
SFTY1
SAFETY_ERRORn
(PWM Mode Enabled)
SFTY2
SFTY3
SAFETY_ERRORn
(PWM Mode Disabled)
6.11.5 Peripherals
6.11.5.1 2-port Gigabit Ethernet MAC (CPSW)
Note
The CPSW supports two external Ethernet ports and one internal port.
For more details about features and additional description information on the device CPSW (2-port Gigabit
Ethernet MAC), see the corresponding subsections within Signal Descriptions and Detailed Description sections.
6.11.5.1.1 CPSW MDIO Timing
MDIO3
MDIO4
MDIO5
MDIO[x]_MDC
MDIO1
MDIO2
MDIO[x]_MDIO
(input)
MDIO7
MDIO[x]_MDIO
(output)
CPSW2G_MDIO_TIMING_01
RGMII1
RGMII2
RGMII3
(A)
RGMII[x]_RXC
RGMII4
RGMII5
(B)
RGMII[x]_RD[3:0] 1st Half-byte 2nd Half-byte
(B)
RGMII[x]_RX_CTL RXDV RXERR
A. RGMII[x]_RXC must be externally delayed relative to the data and control pins.
B. Data and control information is received using both edges of the clocks. RGMII[x]_RD[3:0] carries data bits 3-0 on the rising edge of
RGMII[x]_RXC and data bits 7-4 on the falling edge of RGMII[x]_RXC. Similarly, RGMII[x]_RX_CTL carries RXDV on rising edge of
RGMII[x]_RXC and RXERR on falling edge of RGMII[x]_RXC.
RGMII6
RGMII7
RGMII8
(A)
RGMII[x]_TXC
RGMII9
(B)
RGMII[x]_TD[3:0] 1st Half-byte 2nd Half-byte
RGMII10
(B)
RGMII[x]_TX_CTL TXEN TXERR
A. TXC is delayed internally before being driven to the RGMII[x]_TXC pin. This internal delay is by default enabled after POR.
B. Data and control information is received using both edges of the clocks. RGMII[x]_TD[3:0] carries data bits 3-0 on the rising edge of
RGMII[x]_TXC and data bits 7-4 on the falling edge of RGMII[x]_TXC. Similarly, RGMII[x]_TX_CTL carries TXEN on rising edge of
RGMII[x]_TXC and TXERR on falling edge of RGMII[x]_TXC.
RMII1
RMII2
RMII[x]_REF_CLK
RMII3
6.11.5.1.3.3 CPSW RMII[x]_RXD[1:0], RMII[x]_CRS_DV, and RMII[x]_RXER Timing Requirements - RMII Mode
NO. PARAMETER DESCRIPTION MIN MAX UNIT
tsu(RXD-REF_CLK) Setup time, RXD[1:0] valid before REF_CLK 4 ns
RMII4 tsu(CRS_DV-REF_CLK) Setup time, CRS_DV valid before REF_CLK 4 ns
tsu(RX_ER-REF_CLK) Setup time, RX_ER valid before REF_CLK 4 ns
th(REF_CLK-RXD) Hold time, RXD[1:0] valid after REF_CLK 2 ns
RMII5 th(REF_CLK-CRS_DV) Hold time, CRS_DV valid after REF_CLK 2 ns
th(REF_CLK-RX_ER) Hold time, RX_ER valid after REF_CLK 2 ns
RMII4
RMII5
RMII[x]_REF_CLK
RMII[x]_RXD[1:0], RMII[x]_CRS_DV,
RMII[x]_RX_ER
RMII6
RMII[x]_REF_CLK
RMII[x]_TXD[1:0], RMII[x]_TX_EN
Figure 6-13. CPSW RMII[x]_TXD[1:0], and RMII[x]_TX_EN Switching Characteristics – RMII Mode
Note
The device has multiple eCAP modules. The generic CAP_ prefix is used to represent the signal
names for all eCAP instances.
For more information, see Enhanced Capture (eCAP) Module section in the device TRM.
6.11.5.2.1 ECAP Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 1 4 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 2 7 pF
CAP1
CAP
EPERIPHERALS_TIMNG_01
(1) Some ECAP signals are pinmuxed with I2C0 SDA and SCL pins. These pins use an alternate open drain voltage buffer and may not
meet the specified parameters. Values are pending additional post-silicon validation.
CAP2
APWM
EPERIPHERALS_TIMNG_02
Note
The device has multiple ePWM modules. The generic EHRPWM_ prefix is used to represent the
signal names for all ePWM instances.
For more information, see Enhanced Pulse Width Modulation (ePWM) Module section in the device TRM.
6.11.5.3.1 EPWM Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 1 4 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 2 7 pF
PWM6
EHRPWM_SYNCI
PWM7
EHRPWM_TZn_IN
EPERIPHERALS_TIMNG_07
PWM1
EHRPWM_A/B
PWM1
PWM2
EHRPWM_SYNCO
PWM5
EHRPWM_SOCA/B
EPERIPHERALS_TIMNG_04
PWM3
EHRPWM_A/B
EHRPWM_TZn_IN
EPERIPHERALS_TIMING_05
PWM4
EHRPWM_A/B
EHRPWM_TZn_IN
(1) The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher
temperature and lower voltage and decrease with lower temperature and higher voltage.
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI
software libraries for details of using SFO functions in end applications. SFO functions help to estimate the number of MEP steps per
SYSCLK period dynamically while the HRPWM is in operation.
Note
The device has multiple eQEP modules. The generic QEP_ prefix is used to represent the signal
names for all eQEP instances.
For more information, see Enhanced Quadrature Encoder Pulse (eQEP) Module section in the device TRM.
6.11.5.4.1 EQEP Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 1 4 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 2 7 pF
QEP1
QEP_A/B
QEP2
QEP_I
QEP3
QEP4
QEP_S
QEP5 EPERIPHERALS_TIMNG_03
Note
The device has multiple FSI modules. FSIn is a generic prefix applied to FSI signal names, where n
represents the specific FSI module.
For more information, see Fast Serial Interface section in the device TRM.
6.11.5.5.1 FSI Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 0.8 4 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 1 7 pF
FSIR1
FSIR2 FSIR2
FSI_RXn_CLK
FSI_RXn_D0
FSI_RXn_D1
FSIR3 FSIR4
FSIT1
FSIT2 FSIT2
FSI_TXn_CLK
FSI_TXn_D0
FSI_TXn_D1
FSIT3
FSIT4
FSIT5 FSIT5
FSI_TXn_CLK
FSIT6
FSI_TXn_D0
FSIT8
FSIT7
FSI_TXn_D1
6.11.5.7.1 I2C
The device contains four multicontroller Inter-Integrated Circuit (I2C) controllers. Each I2C controller was
designed to be compliant to the Philips I2C-bus™ specification version 2.1. However, the device IOs are not
fully compliant to the I2C electrical specification. The speeds supported and exceptions are described per port
below:
• I2C1, I2C2, and I2C3
– Speeds:
• Standard-mode (up to 100Kbits/s)
– 3.3V
• Fast-mode (up to 400Kbits/s)
– 3.3V
– Exceptions:
• The IOs associated with these ports are not compliant to the fall time requirements defined in the I2C
specification because the IOs are implemented with higher performance LVCMOS push-pull IOs that
were designed to support other signal functions that could not be implemented with I2C compatible
IOs. The LVCMOS IOs being used on these ports are connected so they emulate open-drain outputs.
This emulation is achieved by forcing a constant low output and disabling the output buffer to enter the
Hi-Z state.
• The I2C specification defines a maximum input voltage VIH of (VDDmax + 0.5V), which exceeds the
absolute maximum ratings for the device IOs. The system must be designed to provide the I2C signals
never exceed the limits defined in the Absolute Maximum Ratings section of this data sheet.
• I2C0
– Speeds:
• Standard-mode (up to 100Kbits/s)
– 3.3V
• Fast-mode (up to 400Kbits/s)
– 3.3V
– Exceptions:
• The IOs associated with this port were not design to support Hs-mode.
• The rise and fall times of the I2C signals connected to these ports must not exceed a slew rate of
0.8V/ns (or 8E+7V/s). This limit is more restrictive than the minimum fall time limits defined in the I2C
specification. Therefore, it may be necessary to add additional capacitance to the I2C signals to slow
the rise and fall times such that the signals do not exceed a slew rate of 0.8V/ns.
• The I2C specification defines a maximum input voltage VIH of (VDDmax + 0.5V), which exceeds the
absolute maximum ratings for the device IOs. The system must be designed to make sure the I2C
signals never exceed the limits defined in the Absolute Maximum Ratings section of this data sheet.
Refer to the Philips I2C-bus specification version 2.1 for timing details.
For more details about features and additional description information on the device Inter-integrated Circuit, see
the corresponding subsections within Signal Descriptions and Detailed Description sections.
Note
The device has multiple LIN modules. LINn is a generic prefix applied to LIN signal names, where n
represents the specific LIN module.
For more information, see the Local Interconnect Network (LIN) Module section in the device TRM.
6.11.5.8.1 LIN Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 2 15 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 5 20 pF
Note
The device has multiple MCAN modules. MCANn is a generic prefix applied to MCAN signal names,
where n represents the specific MCAN module.
For more information, see Controller Area Network (MCAN) section in the device TRM.
6.11.5.9.1 MCAN Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 2 15 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 5 20 pF
Note
The device has multiple SPI modules. The generic SPI_ prefix is used to represent the signal names
for all SPI instances.
For more information, see the Serial Peripheral Interface (SPI) section in the device TRM.
6.11.5.10.1 SPI Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 2 8.5 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 2 24 pF
PHA=0
EPOL=1
SPI_CS[i] (OUT)
SM1
SM3
SM8 SM2 SM9
SPI_SCLK (OUT) POL=0
SM1
SM3
SM2
POL=1
SPI_SCLK (OUT)
SM5
SM5
SM4 SM4
SPI_D[x] (IN) Bit n-1 Bit n-2 Bit n-3 Bit n-4 Bit 0
PHA=1
EPOL=1
SPI_CS[i] (OUT)
SM2
SM1
SM8 SM3 SM9
SPI_SCLK (OUT) POL=0
SM1
SM2
SM3
POL=1
SPI_SCLK (OUT)
SM5
SM4
SM4 SM5
SPI_D[x] (IN) Bit n-1 Bit n-2 Bit n-3 Bit 1 Bit 0
SPRSP08_TIMING_McSPI_02
PHA=0
EPOL=1
SPI_CS[i] (OUT)
SM1
SM3
SM8 SM2 SM9
SPI_SCLK (OUT) POL=0
SM1
SM3
POL=1 SM2
SPI_SCLK (OUT)
SPI_D[x] (OUT) Bit n-1 Bit n-2 Bit n-3 Bit n-4 Bit 0
PHA=1
EPOL=1
SPI_CS[i] (OUT)
SM1
SM2
SM8 SM3 SM9
SPI_SCLK (OUT) POL=0
SM1
SM2
POL=1 SM3
SPI_SCLK (OUT)
SPI_D[x] (OUT) Bit n-1 Bit n-2 Bit n-3 Bit 1 Bit0
SPRSP08_TIMING_McSPI_01
PHA=0
EPOL=1
SPI_CS[i] (IN)
SS1
SS2
SS8 SS3 SS9
SPI_SCLK (IN) POL=0
SS1
SS2
POL=1 SS3
SPI_SCLK (IN)
SS5 SS4
SS4 SS5
SPI_D[x] (IN) Bit n-1 Bit n-2 Bit n-3 Bit n-4 Bit 0
PHA=1
EPOL=1
SPI_CS[i] (IN)
SS1
SS2
SS8 SS3 SS9
POL=0
SPI_SCLK (IN)
SS1
SS3
POL=1 SS2
SPI_SCLK (IN)
SS4
SS5
SS4 SS5
SPI_D[x] (IN) Bit n-1 Bit n-2 Bit n-3 Bit 1 Bit 0
SPRSP08_TIMING_McSPI_04
PHA=0
EPOL=1
SPI_CS[i] (IN)
SS1
SS2
SS8 SS3 SS9
SPI_SCLK (IN) POL=0
SS1
SS2
POL=1 SS3
SPI_SCLK (IN)
SPI_D[x] (OUT) Bit n-1 Bit n-2 Bit n-3 Bit n-4 Bit 0
PHA=1
EPOL=1
SPI_CS[i] (IN)
SS1
SS2
SS8 SS3 SS9
POL=0
SPI_SCLK (IN)
SS1
SS3
POL=1 SS2
SPI_SCLK (IN)
SPI_D[x] (OUT)
Bit n-1 Bit n-2 Bit n-3 Bit 1 Bit 0
SPRSP08_TIMING_McSPI_03
MMC[x]_CLK
DS1 DS2
MMC[x]_CMD
DS3 DS4
MMC[x]_DAT[3:0]
DS5
DS6 DS7
MMC[x]_CLK
D S8
MMC[x]_CMD
D S9
MMC[x]_DAT[3:0]
MMC[x]_CLK
HS1 H S2
MMC[x]_CMD
HS3 H S4
MMC[x]_DAT[3:0]
HS5
HS6 HS7
MMC[x]_CLK
H S8
MMC[x]_CMD
H S9
MMC[x]_DAT[3:0]
Implementing data training enables proper operation across temperature with a specific process, voltage, and
frequency operating condition, while achieving a higher operating frequency.
Data transmit and receive timing parameters are not defined for the data training use case since they are
dynamically adjusted based on the operating condition.
6.11.5.12.2.1.1 OSPI DLL Delay Mapping for PHY Data Training
OSPI_PHY_CONFIGURATION_REG BIT
MODE DELAY VALUE
FIELD
Transmit
All modes PHY_CONFIG_TX_DLL_DELAY_FLD (1)
Receive
All modes PHY_CONFIG_RX_DLL_DELAY_FLD (2)
(1) Minimum setup and hold time requirements for OSPI0_D[7:0] inputs are not defined when Data Training is used to find the optimum
data valid window.
OSPI_DQS
tO16t tO16t
O15 O15
OSPI_D[i:0]
Figure 6-32. . OSPI0 Timing Requirements – PHY Data Training, DDR with DQS
(6) Minimum and maximum delay times for OSPI0_D[7:0] outputs are not defined when Data Training is used to find the optimum data
valid window.
OSPI_CSn
OSPI_CLK
tO2t
O6 O6 tO1t
OSPI_D[i:0]
Note
Timing parameters defined in this section are only applicable when data training is not implemented
and DLL delays are configured as described in OSPI DLL Delay Mapping for PHY SDR Timing Modes
and OSPI DLL Delay Mapping for PHY DDR Timing Modes.
OSPI_CLK
O19 tO20t
OSPI_D[i:0]
Figure 6-34. OSPI0 Timing Requirements – PHY SDR with Internal PHY Loopback
OSPI_DQS
O21 tO22t
OSPI_D[i:0]
Figure 6-35. OSPI0 Timing Requirements – PHY SDR with External Board Loopback
OSPI_CSn
O10 tO11t
tO7t
OSPI_CLK
tO9t tO8t
O12
OSPI_D[i:0]
6.11.5.12.2.2.2.1 OSPI DLL Delay Mapping for PHY DDR Timing Modes
OSPI_PHY_CONFIGURATION_REG BIT
MODE DELAY VALUE
FIELD
Transmit
3.3V PHY_CONFIG_TX_DLL_DELAY_FLD 0x17
Receive
3.3V, DQS PHY_CONFIG_RX_DLL_DELAY_FLD 0xA
3.3V, External Board Loopback PHY_CONFIG_RX_DLL_DELAY_FLD 0x34
All other modes PHY_CONFIG_RX_DLL_DELAY_FLD 0x0
OSPI_DQS
tO16t tO16t
O15 O15
OSPI_D[i:0]
Figure 6-37. OSPI0 Timing Requirements – PHY DDR with External Board Loopback or DQS
OSPI_CSn
OSPI_CLK
tO2t
O6 O6 tO1t
OSPI_D[i:0]
(1) T = OSPI_RD_DATA_CAPTURE_REG[DELAY_FLD]
(2) R = REFCLK cycle time in ns
OSPI_CLK
O19 tO20t
OSPI_D[i:0]
OSPI_CSn
O10 tO11t
tO7t
OSPI_CLK
tO9t tO8t
O12
OSPI_D[i:0]
(1) T = OSPI_RD_DATA_CAPTURE_REG[DELAY_FLD]
(2) R = REFCLK cycle time in ns
OSPI_CLK
tO14t tO14t
O13 O13
OSPI_D[i:0]
OSPI_CSn
OSPI_CLK
tO2t
O6 O6 tO1t
OSPI_D[i:0]
Note
The PRU-ICSS0 supports an internal wrapper multiplexing that expands the device top-level
multiplexing.
Note
The PRU-ICSS PRU signals have different functionality depending on the mode of operation. The
signal naming in this section matches the naming used in the PRU Module Interface section in the
device TRM.
GPO[n:0]
PRDO1 PRU_TIMING_02
A. n in GPO[n:0] = 19.
PRPC1
PRPC3
PRPC2
CLOCKIN
DATAIN
PRPC5
PRPC4 PRU_TIMING_03
Figure 6-44. PRU-ICSS PRU Parallel Capture Timing Requirements – Rising Edge Mode
Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 131
Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com
PRPC1
PRPC3
PRPC2
CLOCKIN
DATAIN
PRPC5
PRPC4 PRU_TIMING_04
Figure 6-45. PRU-ICSS PRU Parallel Capture Timing Requirements – Falling Edge Mode
(1) P = Internal shift in clock period, defined by PRU_GPI_DIV0 and PRU0_GPI_DIV1 bit fields in the GPCFGn register.
PRSI1
PRSI2
DATAIN
PRU_TIMING_05
(1) P = Software programmable shift out clock period, defined by PRU0_GP0_Div0 and PRU0_GPO_DIV1 bit fields in the GPCFGn
register.
(2) The Z parameter is defined as follows:
If PRU0_GPI_DIV0 and PRU0_GPI_DIV1 are INTEGERS -or- if PRU0_GPI_DIV0 is a NON-INTEGER and PRU0_GPI_DIV1 is an
EVEN INTEGER then,
Z equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1).
If PRU0_GPI_DIV0 is a NON-INTEGER and PRU0_GPI_DIV1 is an ODD INTEGER then,
Z equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1 + 0.5).
If PRU0_GPI_DIV0 is an INTEGER and PRU0_GPI_DIV1 is a NON-INTEGER then,
Z equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1 + 0.5 * PRU0_GPI_DIV0).
If PRU0_GPI_DIV0 and PRU0_GPI_DIV1 are NON-INTEGERS then,
Z equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1 + 0.25 * PRU0_GPI_DIV0).
(3) The Y parameter is defined as follows:
If PRU0_GPI_DIV0 and PRU0_GPI_DIV1 are INTEGERS -or- if PRU0_GPI_DIV0 is a NON-INTEGER and PRU0_GPI_DIV1 is an
EVEN INTEGER then,
Y equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1).
If PRU0_GPI_DIV0 is a NON-INTEGER and PRU0_GPI_DIV1 is an ODD INTEGER then,
Y equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1 - 0.5).
If PRU0_GPI_DIV0 is an INTEGER and PRU0_GPI_DIV1 is a NON-INTEGER then,
Y equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1 - 0.5 * PRU0_GPI_DIV0).
If PRU0_GPI_DIV0 and PRU0_GPI_DIV1 are NON-INTEGERS then,
Y1 equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1 - 0.25 * PRU0_GPI_DIV0) and
Y2 equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1 + 0.25 * PRU0_GPI_DIV0), where Y1 is the first high pulse and Y2 is the second high
pulse.
PRSO1
PRSO2H PRSO2L
CLOCKOUT
DATAOUT
PRSO3
PRU_TIMING_06
6.11.5.13.2.1 PRU-ICSS PRU Sigma Delta and Peripheral Interface Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 1 3 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 2 18 pF
PRSD1
PRSD2H
SDx_CLK
PRSD2L
SDx_D
PRSD4
PRSD3 PRU_TIMING_07
PRSD2L
SDx_CLK
SDx_D
PRSD4
PRSD3 PRU_TIMING_08
(1) P = 1x (or TX) clock period, defined by TX_DIV_FACTOR and TX_DIV_FACTOR_FRAC in the CFG_ED_P<n>_TXCFG register.
PRPIF1 PRPIF2
PIF_DATA_IN
PRUPIF_TIMING_01
(1) P = 1x (or TX) clock period, defined by TX_DIV_FACTOR and TX_DIV_FACTOR_FRAC in the CFG_ED_P<n>_TXCFG register.
PRPIF3
PRPIF4 PRPIF5
PIF_CLK
PRPIF6
PIF_DATA_OUT
PRPIF7
PIF_DATA_EN
PWM_A/B
PRPWM1
PRU_PWM_TIMING_01
EDC_SYNC_OUTx
PRIEP2 PRIEP1
PRIEP3
PRIEP4
EDIO_DATA_IN[7:0]
PRU_IEP_TIMING_01
EDIO_DATA_OUT
IEPIO4 PRU_EDIO_DATA_OUT_TIMING_00
PRLA1
EDC_LATCH_INx
PRLA2
PRU_IEP_TIMING_02
PRUR1L
PRUR1H
Start
(1)
PRGi_UART0_RXD Bit
Data Bits
PRUR3L
PRUR3H
Start
(1) Bit
PRGi_UART0_TXD
Data Bits
PRU_UART_TIMING_01
(1) i in PRGi_UART0_RXD and PRGi_UART0_TXD = 0, 1 or 2
PREP1
CAP
PREP2
SYNCI
PRU_ECAP_TIMING_01
PREP3
APWM_OUT
SYNC_OUT
PRI_ECAP_TIMING_02
MDIO3
MDIO4
MDIO5
MDIO[x]_MDC
MDIO1
MDIO2
MDIO[x]_MDIO
(input)
MDIO7
MDIO[x]_MDIO
(output)
CPSW2G_MDIO_TIMING_01
PMIR1
PMIR2 PMIR3
MII_RX_CLK
PRU_MII_RT_TIMING_04
PMIR4
PMIR5
MII_RX_CLK
MII_RXD[3:0],
MII_RX_DV, MII_RX_ER
PMIT1
PMIT2 PMIT3
MII_TX_CLK
PMIT4
MII_TX_CLK
MII_TXD[3:0], MII_TX_EN
J1
J2 J3
TCK
J4 J5 J4 J5
TDI / TMS
J7
J6
TDO
6.11.6.2 Trace
DBTR1
DBTR2 DBTR3
TRC_CLK
(Worst Case 1)
(Ideal)
(Worst Case 2)
DBTR4 DBTR5 DBTR4 DBTR5
DBTR6 DBTR7 DBTR6 DBTR7
TRC_DATA
TRC_CTL
SPRSP08_Debug_01
7 Detailed Description
7.1 Overview
The AM263Px Sitara Arm® Microcontrollers are built to meet the complex real-time processing and control
needs of next generation industrial and automotive embedded projects. AM263Px uniquely combines advanced
computing with industry leading real-time control peripherals to meet the growing performance needs of
applications such as HEV/EV (traction inverters, on-board chargers, and DC-DC converters), motor drives,
renewable energy, energy storage, and other general real-time constrained systems. AM263Px combines up to
four Cortex-R5F MCUs, a real-time control subsystem (CONTROLSS), a Hardware Security Module (HSM), and
one instance of Sitara’s PRU-ICSS, making AM263Px designed for advanced motor control and digital power
control applications.
The multiple R5F cores are arranged in cluster with 256KB of shared tightly coupled memory (TCM) along
with 3MB of shared SRAM. The multiple Arm® cores can be optionally programmed to run in lock-step option
for different functional safety configurations. Extensive ECC is included on on-chip memory, peripherals, and
interconnect for enhanced reliability. Cryptographic acceleration and secure boot are also available on AM263Px
devices in addition to granular firewalls managed by the HSM for developers to design the most secure systems.
The Real-Time Control Subsystem (CONTROLSS) is a revolutionary subsystem integrated into the device.
CONTROLSS contains multiple digital and analog control peripherals including: ADC, CMPSS, EPWM, ECAP,
and EQEP, among others to enable efficient execution of critical sense/process/actuate real-time signal chain
control loops. The integrated crossbar (XBAR) infrastructure enables flexible configuration and routing of
external signals to internal ports and internal signals to external pins.
The PRU-ICSS in AM263Px provides the flexible industrial communications capability necessary to run
EtherCAT®, PROFINET®, Ethernet/IP™, or for standard Ethernet connectivity and custom I/O interfacing. The
PRU also enables additional interfaces in the SoC including sigma delta decimation filters and absolute encoder
interfaces. The CPSW interface also provides two standard Ethernet ports.
TI provides a complete set of microcontroller software and development tools for the AM263Px family of
microcontrollers in addition to multiple pin-to-pin compatible devices for scalability and ease of use.
Note
The Arm® Cortex®-R5F processor is a Cortex-R5 processor that includes the optional Floating-point
Unit (FPU) extension.
For more information, see R5FSS section in Processors and Accelerators chapter in the device TRM.
AM263P
J4 NC
K2 NC
K3 NC
K4 NC
L2 NC
M1 NC
M4 NC
P1 NC
P3 NC
VDDS33
10kΩ
Open-Drain Output
J3 Buffer PORz
X Experimental device that is not necessarily representative of the final device's electrical specifications and
may not use production assembly flow.
P Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical
specifications.
null Production version of the silicon die that is fully qualified.
X and P devices and TMDX development-support tools are shipped against the following disclaimer:
"Developmental product is intended for internal evaluation purposes."
Production devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production
devices. Texas Instruments recommends that these devices not be used in any production system because their
expected end-use failure rate still is undefined. Only qualified production devices are to be used.
For orderable part numbers of AM263Px devices in the ZCZ package type, see the Package Option Addendum
of this document, the TI website (ti.com), or contact your TI sales representative.
Note
Some devices may have a cosmetic circular marking visible on the top of the device package which
results from the production test process. In addition, some devices may also show a color variation in
the package substrate which results from the substrate manufacturer. These differences are cosmetic
only with no reliability impact.
TI
aBBBBBB
BrSZfYtPPPQ1
XXXXXXX
A1 (PIN ONE INDICATOR) YYY ZZZ
(1) BLANK in the symbol or part number is collapsed so there are no gaps between characters.
(2) To designate the stages in the product development cycle, TI assigns prefixes to the part numbers. These prefixes represent
evolutionary stages of product development from engineering prototypes through fully qualified production devices.
Prototype devices are shipped against the following disclaimer:
“This product is still in development and is intended for internal evaluation purposes.”
Notwithstanding any provision to the contrary, TI makes no warranty expressed, implied, or statutory, including any implied warranty of
merchantability of fitness for a specific purpose, of this device.
(3) Applies to device max junction temperature.
not match presumed or documented behaviour. This may include behaviours that affect device performance or
functional correctness.
9.4 Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.
9.5 Trademarks
Ethernet/IP™ is a trademark of ODVA, INC..
Sitara™, Code Composer Studio™, and TI E2E™ are trademarks of Texas Instruments.
CoreSight™ is a trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
EtherCAT® is a registered trademark of Beckhoff Automation GmbH.
PROFINET® is a registered trademark of PROFINET International.
IO-Link® is a registered trademark of PROFIBUS Nutzerorganisation e.V. eingetragener verein (e.v.) FED REP
GERMANY.
is a registered trademark of Arm.
All trademarks are the property of their respective owners.
9.6 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.
9.7 Glossary
TI Glossary This glossary lists and explains terms, acronyms, and definitions.
10 Revision History
Changes from April 25, 2024 to May 30, 2025 (from Revision C (May 2024) to Revision D (May
2025)) Page
• (Technology / Package): Updated the SIP flash part number from IS25LX064-LWLA3 to IS25LX064-JWLA3.1
• (Applications): Updated the list of applications...................................................................................................3
• (Description): Removed instances of single core AM263P1 in package information table................................ 4
• (Device Comparison): Updated table with DEVICE_ID of N variants. Removed column of AM2631. Updated
max Industrial temperature to 125°C. Added details of ZCZ_F Package for AM263P4.....................................7
• (ZCZ_S Pin Diagram): Pin names updated...................................................................................................... 12
• (ZCZ_F Pin Diagram): Pin names updated, multiple pins made NC................................................................ 13
• (Pin Attributes): ADC_VREF and DAC_VREF IO Voltage column updated to 1.8V. All pins connected to
internal Flash Die pins made NC in ZCZ_F package. Pins with GPIO names in ZCZ_F package changed
back to pin names compatible with other packages......................................................................................... 14
• (Reserved and No Connect): NC section added in Reserved and No Connect Section.................................. 69
• (Power Consumption Summary): AM263P PET link added............................................................................. 77
• OSPI0_ZCZ_F_WP and OSPI0_ZCZ_F_RESET_OUT0 pins added as pin connectivity requirements for
ZCZ_F package.............................................................................................................................................. 150
• Added new UART Implementation Section.................................................................................................... 151
• (Device Naming Convention): Added description for letter 'N'. Updated Industrial temperature to 125°C..... 154
• (Documentation Support): Added hyperlink to AM263P Errata document..................................................... 156
Changes from March 16, 2024 to April 25, 2024 (from Revision B (March 2024) to Revision C
(May 2024)) Page
• Title: Changed title of device from "AM263Px Sitara™ Microcontrollers" to "AM263Px Sitara™
Microcontrollers with Optional Flash-in-Package".......................................................................................... 0
• (Features): Updated formatting in Memory, Industrial Connectivity, High Speed Interfaces, Security, and
Technology / Package sections........................................................................................................................1
• (Features): Added information on Timer modules and package specific options............................................... 1
• (Functional Block Diagram): Updated Functional Block Diagram to improve readability and clarity.................. 5
• (Device Comparison): Added Automotive GPN's to column headers.................................................................7
• (Device Comparison): Combined MCAN and CAN-FD rows..............................................................................7
• (Device Comparison): Updated JTAG ID section to list DEVICE_ID (Base Part Number) values instead of full
JTAG ID's............................................................................................................................................................7
• (Device Comparison): Updated Arm® Cortex-R5F row to include Lockstep information....................................7
• (Device Comparison): Updated table notes to reflect ZCZ-F Package options..................................................7
• (Device Identification): AM263Px Device Part Number Identifier table added................................................... 9
• (Related Products): Updated "Products to complete your design" section.......................................................10
• (Power Consumption Summary): Added in Power Consumption - Typical and Power Consumption - Traction
Inverter tables...................................................................................................................................................77
• (Electrical Characteristics): Added values for Input Leakage Current for ADC, ADC_R, CMPSSA, and
CMPSSB tables................................................................................................................................................ 78
• (Safety Comparators): Added "Vref Monitor (ROK2)" line item to Safety Comparators table.......................... 78
• (Safety System): Added Safety System table...................................................................................................78
• (Package Thermal Characteristics): Added values for moving air parameters................................................ 87
• (Peripheral Timings ePWM): Added MEP values for EPWM Characteristics table........................................ 102
• (Peripheral Timing OSPI): Added information and values for OSPI PHY External Loopback mode timing and
switching characteristics................................................................................................................................. 122
www.ti.com 7-Jun-2025
PACKAGING INFORMATION
Orderable part number Status Material type Package | Pins Package qty | Carrier RoHS Lead finish/ MSL rating/ Op temp (°C) Part marking
(1) (2) (3) Ball material Peak reflow (6)
(4) (5)
AM263P2ACOLFZCZR Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR - AM263P
2ACOLFZCZ
867
AM263P2ACOLFZCZR.B Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR See AM263P
AM263P2ACOLFZCZR 2ACOLFZCZ
867
AM263P2ASPDFZCZRQ1 Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 150 AM263P
2ASPDFZCZQ1
867
AM263P4ACOKFZCZRQ1 Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 150 AM263P
4ACOKFZCZQ1
867
AM263P4ACOKFZCZRQ1.B Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 150 AM263P
4ACOKFZCZQ1
867
AM263P4ACOLFZCZR Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 105 AM263P
4ACOLFZCZ
867
AM263P4ACOLFZCZR.B Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 105 AM263P
4ACOLFZCZ
867
AM263P4ACOMFZCZR Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 105 AM263P
4ACOMFZCZ
867
AM263P4ACOMFZCZR.B Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 105 AM263P
4ACOMFZCZ
867
AM263P4AFONFZCZRQ1 Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes SNAGCU Level-3-260C-168 HR -40 to 150 AM263P
4AFONF
548
AM263P4ASOKFZCZRQ1 Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 150 AM263P
4ASOKFZCZQ1
867
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com 7-Jun-2025
Orderable part number Status Material type Package | Pins Package qty | Carrier RoHS Lead finish/ MSL rating/ Op temp (°C) Part marking
(1) (2) (3) Ball material Peak reflow (6)
(4) (5)
AM263P4ASOKFZCZRQ1.B Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 150 AM263P
4ASOKFZCZQ1
867
XAM263P4ACOMFZCZ Active Preproduction NFBGA (ZCZ) | 324 1 | JEDEC TRAY (5+1) - Call TI Call TI -40 to 105
XAM263P4ACOMFZCZ.B Active Preproduction NFBGA (ZCZ) | 324 1 | JEDEC TRAY (5+1) - Call TI Call TI -40 to 105
(1)
Status: For more details on status, see our product life cycle.
(2)
Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance,
reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional
waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.
(3)
RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
(4)
Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum
column width.
(5)
MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown.
Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
(6)
Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two
combined represent the entire part marking for that device.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and
makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative
and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers
and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
PACKAGE OPTION ADDENDUM
www.ti.com 7-Jun-2025
Addendum-Page 3
PACKAGE MATERIALS INFORMATION
www.ti.com 8-Jun-2025
B0 W
Reel
Diameter
Cavity A0
A0 Dimension designed to accommodate the component width
B0 Dimension designed to accommodate the component length
K0 Dimension designed to accommodate the component thickness
W Overall width of the carrier tape
P1 Pitch between successive cavity centers
Sprocket Holes
Q1 Q2 Q1 Q2
Pocket Quadrants
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com 8-Jun-2025
Width (mm)
H
W
Pack Materials-Page 2
PACKAGE OUTLINE
ZCZ0324A NFBGA - 1.4 mm max height
PLASTIC BALL GRID ARRAY
A
15.1
B 14.9
BALL A1 CORNER
15.1
14.9
1.4 MAX
C
SEATING PLANE
0.45 BALL TYP
0.35 13.6 TYP 0.12 C
V
U
T
R
P
N
M
L
K SYMM
13.6
TYP J
H
G 324X Ø0.55
0.45
F
0.15 C A B
E
0.05 C
D
C
B (0.7) TYP
A
0.8 TYP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.8 TYP SYMM (0.7) TYP
4226659/A 03/2021
NOTES: NanoFree is a trademark of Texas Instruments.
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
www.ti.com
EXAMPLE BOARD LAYOUT
ZCZ0324A NFBGA - 1.4 mm max height
PLASTIC BALL GRID ARRAY
SYMM
(0.8) TYP 324X (Ø 0.4)
A
B
(0.8) TYP
C
D
E
F
G
H
J SYMM
K
L
M
N
P
R
T
U
V
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
LAND PATTERN EXAMPLE
SCALE: 8X
(Ø 0.40)
SOLDER MASK (Ø 0.40) EXPOSED SOLDER MASK
OPENING METAL METAL OPENING
NON- SOLDER MASK SOLDER MASK
DEFINED DEFINED
(PREFERRED)
SOLDER MASK DETAILS
NOT TO SCALE
4226659/A 03/2021
NOTES: (continued)
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments
Literature number SNVA009 (www.ti.com/lit/snva009).
www.ti.com
EXAMPLE STENCIL DESIGN
ZCZ0324A NFBGA - 1.4 mm max height
PLASTIC BALL GRID ARRAY
SYMM
(0.8) TYP 324X (Ø 0.4)
A
B
(0.8) TYP
C
D
E
F
G
H
J SYMM
K
L
M
N
P
R
T
U
V
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
4226659/A 03/2021
NOTES: (continued)
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.
www.ti.com
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated