0% found this document useful (0 votes)
45 views168 pages

AM263Px Sitara™ Microcontrollers With Optional Flash-in-Package

The AM263Px Sitara™ Microcontrollers feature up to four 400MHz Arm® Cortex®-R5F cores and are designed for industrial and automotive applications, supporting advanced real-time processing and connectivity. They include extensive memory options, integrated security features, and support for various industrial communication protocols. The microcontrollers are AEC-Q100 qualified and offer a range of functionalities including analog-to-digital conversion, PWM, and enhanced safety features for critical applications.

Uploaded by

Funny POUM
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
45 views168 pages

AM263Px Sitara™ Microcontrollers With Optional Flash-in-Package

The AM263Px Sitara™ Microcontrollers feature up to four 400MHz Arm® Cortex®-R5F cores and are designed for industrial and automotive applications, supporting advanced real-time processing and connectivity. They include extensive memory options, integrated security features, and support for various industrial communication protocols. The microcontrollers are AEC-Q100 qualified and offer a range of functionalities including analog-to-digital conversion, PWM, and enhanced safety features for critical applications.

Uploaded by

Funny POUM
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 168

AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1

SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

AM263Px Sitara™ Microcontrollers with Optional Flash-in-Package


1 Features General Connectivity:
Processor Cores: • 6x Universal Asynchronous RX-TX (UART)
• 8x Serial Peripheral Interface (SPI) controllers
• Single, dual, and quad-core Arm® Cortex®-R5F
• 5x Local Interconnect Network (LIN) ports
MCU with each core running up to 400MHz
• 4x Inter-Integrated Circuit (I2C) ports
– 16KB I-cache with 64-bit ECC per CPU core
• 8x Modular Controller Area Network (MCAN)
– 16KB D-cache with 32-bit ECC per CPU core
modules with CAN-FD support
– x256 integrated VIM per CPU Core
• 4x Fast Serial Interface Transmitters (FSITX)
– 256KB Tightly-Coupled Memory (TCM) with 32-
• 4x Fast Serial Interface Receivers (FSIRX)
bit ECC per CPU core cluster
• Up to 139 General-Purpose I/O (GPIO) pins
– Lockstep or Dual-core capable clusters
• Trigonometric Math Unit (TMU) for accelerating Sensing & Actuation:
trigonometric functions
• Real-time Control Subsystem (CONTROLSS)
– Up to 4x, one per R5F MCU core • Flexible Input/Output Crossbars (XBAR)
Memory: • 5x 12-bit Analog-to-Digital Converters (ADC)
– 6-input SAR ADC up to 4MSPS
• 1x Flash Subsystem with OptiFlash memory
• 6x Single-ended channels OR
technology and eXecute In Place (XIP) support
• 3x Differential channels
– 1x Octal Serial Peripheral Interface (OSPI), up
– Highly Configurable ADC Digital Logic
to 133MHz SDR and DDR
• XBAR Start of Conversion Triggers (SOC)
– AM263P Flash-in-Package (ZCZ_F) variant
• User-defined Sample and Hold (S+H)
includes 8MB OSPI Flash
• Flexible Post-processing Blocks (PPB)
• 3MB of On-Chip RAM (OCSRAM)
• 1x Resolver subsystem (ZCZ-S and ZCZ-F
– 6 Banks x 512KB
packages) with:
– ECC error protection
– 2x Resolver to Digital Converter (RDC) OR
– Internal DMA engine support
– 2x 12-bit ADCs can also be used for general
– Remote L2 Cache for external memory,
purpose
software programmable up to 128KB per CPU
core • 4-input SAR ADC up to 3MSPS
– 4x Single-ended channels OR
System on Chip (SoC) Services and Architecture: – 2x Differential channels
• 1x EDMA to support data movement functions • 10x Analog Comparators with Type-A
– 2x Transfer Controllers (TPTC) programmable DAC reference (CMPSSA)
– 1x Channel Controller (TPCC) • 10x Analog Comparators with Type-B
• Device Boot supported from the following programmable DAC reference (CMPSSB)
interfaces: • 1x 12-bit Digital-to-Analog Converter (DAC)
• 32x Pulse Width Modulation (EPWM) modules
– UART (Primary/Backup)
– QSPI NOR Flash (4S/1S) (Primary) – Single or Dual PWM channels
– OSPI NOR Flash (8S 50MHz SDR Mode0, 8S – Advanced PWM Configurations
25MHz DDR XSPI) (Primary) – Extended HRPWM time resolution
• Interprocessor communication modules • 16x Enhanced Capture (ECAP) modules
• 3x Enhanced Quadrature Encoder Pulse (EQEP)
– SPINLOCK module for synchronizing
modules
processes running on multiple cores
• 2x 4-Ch Sigma-Delta Filter Modules (SDFM)
– MAILBOX functionality implemented through
• Additional Signal-multiplex Crossbars (XBAR)
CTRLMMR registers
• Central Platform Time Sync (CPTS) support with
time-sync and compare-event interrupt routers
• Timer Modules:
– 4x Windowed Watchdog Timer (WWDT)
– 8x Real Time Interrupt (RTI) timer

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Industrial Connectivity: Security:


• Programmable Real-Time Unit - Industrial • Hardware Security Module (HSM) with support for
Communication Subsystem (PRU-ICSS) Auto SHE 1.1/EVITA
– Dual core Programmable Real-Time Unit – Arm® Cortex®-M4F based dedicated security
Subsystem (PRU0 / PRU1) controller
• Deterministic Hardware – Isolated and secured RAMs
• Dynamic Firmware – Peripherals like Timers, WWDT, RTC, Interrupt
– 20-channel enhanced input (eGPI) per PRU Controller
– 20-channel enhanced output (eGPO) per PRU – Safety related peripherals like CRC, ESM,
– Embedded Peripherals and Memory PBIST
• 1x UART, 1x ECAP, 1x MDIO, 1x IEP • Secure boot support
• 1x 32KB Shared General Purpose RAM – Device Take Over Protection
• 2x 8KB Shared Data RAM – Hardware-enforced root-of-trust (RoT)
• 1x 16KB IRAM per PRU • Support for two sets of RoT keys
• ScratchPad (SPAD), MAC/CRC – Authenticated boot support
– Digital encoder and sigma-delta control loops • Encrypted boot support
– The PRU-ICSS enables advanced industrial – SW Anti-rollback protection
protocols including: • Debug security
• EtherCAT®, Ethernet/IP™, – Secure device debug only after cryptographic
• PROFINET®, IO-Link® for order authentication
– Dedicated Interrupt Controller (INTC) – Support for permanent debug/JTAG disable
– Dynamic CONTROLSS XBAR Integration • Device ID and Key Management
High-Speed Interfaces: – Unique ID (SoC ID)
– Support for OTP Memory (FUSEROM)
• Integrated 3-port Gigabit Ethernet switch (CPSW) • Extensive Firewall Support
supporting up to two external ports – System Memory Protection Units (MPU)
– MII (10/100), RMII (10/100), or RGMII present at various interfaces
(10/100/1000) • Cryptographic Acceleration
– IEEE 1588 (2008 Annex D, Annex E, Annex F) – Cryptographic cores with DMA Support
with 802.1AS PTP – AES - 128/192/256-bit key sizes
– Clause 45 MDIO PHY management – SHA2 - 256/384/512-bit support
– 512x ALE engine-based Packet Classifiers – Deterministic random bit generator (DRBG)
– Priority flow control with up to 2KB packet size with pseudo and true random number generator
– Four CPU hardware interrupt pacing (TRNG)
– IP/UDP/TCP checksum offload in hardware – Public Key Accelerator (PKA) to assist in RSA/
Elliptic Curve Cryptography (ECC) processing

2 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Functional Safety: Technology / Package:


• Enables design of systems with functional safety • AEC-Q100 qualified for automotive applications
requirements • 45nm technology
– Error Signaling Module (ESM) with designated • ZCZ Package
SAFETY_ERRORn pin – AM263x Compatible (ZCZ-C)
– ECC or parity on calculation-critical memories • Pin-to-Pin compatible option with AM263x
– 4x Dual Clock Comparators (DCC) – AM263Px Resolver (ZCZ-S)
– 3x Self-Test Controller (STC) • Adds new Resolver Subsystem functionality
– Programmable Built-In Self-Test (PBIST) and – AM263Px Resolver with Flash-in-Package
fault-injection for CPU and on-chip RAM (ZCZ-F)
– Runtime internal diagnostic modules including • Includes 1x internally connected Silicon
voltage, temperature, and clock monitoring, in Package (SIP) 64Mb ISSI IS25LX064-
windowed watchdog timers, CRC engines for JWLA3 OSPI Flash device; up to 133MHz
memory integrity checks SDR and DDR
• Functional Safety-Compliant targeted [Industrial] – 324-pin NFBGA
– Developed for functional safety applications – 15.0mm x 15.0mm
– Documentation to be made available to aid IEC – 0.8mm pitch
61508 functional safety system design
– Systematic capability up to SIL-3 targeted 2 Applications
– Hardware integrity up to SIL-3 targeted
– Safety-related certification • AC Inverter & VF Drives
• IEC 61508 planned • Battery Management Systems
• Functional Safety-Compliant targeted [Automotive] • DC-DC Converters
– Developed for functional safety applications • Zone and Body Domain Controllers
– Documentation to be made available to aid ISO • EV Charging
26262 functional safety system design • Onboard Chargers
– Systematic capability up to ASIL-D targeted • Renewable Energy Storage
– Hardware integrity up to ASIL-D targeted • Single & Multi Axis Servo Drives
– Safety-related certification • Solar Energy
• Traction Inverters
• ISO 26262 planned
• Humanoid Robot
Data Storage • Industrial and collaborative robot
• 1x 4-bit Multi-Media Card/Secure Digital
(MMC/SD) interface
Power Management
• Recommended TPS653860-Q1 Power
Management ICs (PMIC)
– Companion PMIC specially designed to meet
device power supply requirements
– Flexible mapping and factory programmed
configurations to support different use cases

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 3


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

3 Description
The AM263Px Sitara™ Arm® Microcontrollers are built to meet the complex real-time processing needs of
next generation industrial and automotive embedded products. The AM263Px MCU family consists of multiple
pin-to-pin compatible devices with up to four 400MHz Arm® Cortex®-R5F cores. As an option, the Arm® R5F
subsystem can be programmed to run in lockstep or dual-core mode for multiple functional safety configurations.
The industrial communications subsystem (PRU-ICSS) enables integrated industrial Ethernet communication
protocols such as PROFINET®, Ethernet/IP®, EtherCAT® (among many others), standard Ethernet connectivity,
and even custom I/O interfaces. The family is designed for the future of motor control and digital power
applications with advanced analog sensing and digital actuation modules.
The multiple R5F cores are arranged in cluster subsystems with 256KB of shared tightly coupled memory (TCM)
along with 3MB of shared SRAM, greatly reducing the need for external memory. Extensive ECC is included
for on-chip memories, peripherals, and interconnects for enhanced reliability. Granular firewalls managed by the
Hardware Security Manager (HSM) enable developers to implement stringent security-minded system design
requirements. Cryptographic acceleration and secure boot are also available on AM263Px devices.
TI provides a complete set of microcontroller software and development tools for the AM263Px family of
microcontrollers.
Package Information
PART NUMBER(1) (2) PACKAGE PACKAGE SIZE(3)
AM263P4...ZCZ ZCZ (nFBGA, 324) 15.0mm × 15.0mm
AM263P2...ZCZ ZCZ (nFBGA, 324) 15.0mm × 15.0mm
AM263P4...ZCZQ1 ZCZ (nFBGA, 324) 15.0mm × 15.0mm
AM263P2...ZCZQ1 ZCZ (nFBGA, 324) 15.0mm × 15.0mm

(1) For more information, see Section 11.


(2) All devices are available in both tray or tape and reel packaging.
(3) The package size (length x width) is a nominal value and includes pins, where applicable.

4 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

3.1 Functional Block Diagram


Figure 3-1 is the functional block diagram for the device.

Cores Memory Peripherals AM263Px


Realtime Cores (A) Industrial Connectivity
PRU-ICSS
Arm® Arm®
Cortex®-R5F Cortex®-R5F PRU0 PRU1 IEP ECAP MDIO UART

TMU TMU Sensing and Actuation


16x ECAP 2x 4-ch
Resolver 40x analog SDFM
(B) (B) Subsystem (C) Comparators
128KB TCM 128KB TCM including 2x (CMPSS) 32x 3x EQEP
RDC and 2x with EHRPWM
4-ch ADC DAC Ref 5x 6-ch
12-bit DAC 12-bit ADC
Arm® Arm®
Cortex®-R5F Cortex®-R5F
Connectivity
GPIO 8x MCAN 3-port Gb
TMU TMU Ethernet Switch
(CPSW) w/
8x SPI 5x LIN IEEE1588
(B) (B)
128KB TCM 128KB TCM
6x UART 4x I2C MMC/SD

Memory Flash Security


Subsystem Subsystem
OptiFlash M4F PKA Debug TRNG
3 MB SRAM HSM
with ECC (D) (Secure Boot)
OSPI or QSPI MD5 3DES AES SHA

System Services

Power DMA Firewall DCC ECC


System Secure
Manager Monitor Boot
Debug IPC ESM Timers

Figure 3-1. Functional Block Diagram

A. AM263Px is available with 4 and 2 core options. Refer to the Device Comparison table for more peripheral specific details.
B. Each R5F cluster supports 256KB of Tightly-Coupled Memory (TCM). When configured as Single-Core or Lockstep operating mode,
individual cores can utilize all 256KB. While in Dual-Core mode, each core may only utilize its designated half (128KB TCM).
C. The Resolver subsystem is available for the ZCZ_S and ZCZ_F packages only.

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 5


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

D. The ZCZ_F package has an internally connected OSPI flash device.

6 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table of Contents
1 Features............................................................................1 6.9 VPP Specifications for One-Time Programmable
2 Applications..................................................................... 3 (OTP) eFuses..............................................................86
3 Description.......................................................................4 6.10 Thermal Resistance Characteristics....................... 87
3.1 Functional Block Diagram........................................... 5 6.11 Timing and Switching Characteristics..................... 88
4 Device Comparison......................................................... 7 6.12 Decoupling Capacitor Requirements.................... 147
4.1 Device Identification....................................................9 7 Detailed Description....................................................148
4.2 Related Products...................................................... 10 7.1 Overview................................................................. 148
5 Terminal Configuration and Functions........................ 11 7.2 Processor Subsystems........................................... 149
5.1 Pin Diagram.............................................................. 11 8 Applications, Implementation, and Layout............... 150
5.2 Pin Attributes.............................................................14 8.1 Device Connection and Layout Fundamentals....... 150
5.3 Signal Descriptions................................................... 46 9 Device and Documentation Support..........................152
5.4 Pin Connectivity Requirements.................................72 9.1 Device Nomenclature..............................................152
6 Specifications................................................................ 73 9.2 Tools and Software................................................. 156
6.1 Absolute Maximum Ratings...................................... 73 9.3 Documentation Support.......................................... 156
6.2 Electrostatic Discharge (ESD) Extended 9.4 Support Resources................................................. 157
Automotive Ratings..................................................... 74 9.5 Trademarks............................................................. 157
6.3 Electrostatic Discharge (ESD) Industrial Ratings......74 9.6 Electrostatic Discharge Caution..............................157
6.4 Power-On Hours (POH) Summary............................74 9.7 Glossary..................................................................157
6.5 Recommended Operating Conditions.......................76 10 Revision History........................................................ 157
6.6 Operating Performance Points..................................76 11 Mechanical, Packaging, and Orderable
6.7 Power Consumption Summary................................. 77 Information.................................................................. 159
6.8 Electrical Characteristics...........................................78

4 Device Comparison
Table 4-1 shows a comparison between devices, highlighting the differences.
Table 4-1. Device Comparison
REFERENCE AM263P4 AM263P2
FEATURES
NAME AM263P4-Q1 AM263P2-Q1
JTAG User ID
DEVICE_ID[31:13](1) D: 0x30884 0x30844
(Base Part Number)
E: 0x30885 0x30845
K: 0x3088B 0x3084B
L: 0x3088C 0x3084C
M: 0x3088D 0x3084D
N: 0x3088E -
PROCESSORS AND ACCELERATORS
Speed Grade See Section 6.6, Operating Performance Points
Arm® Cortex-R5F R5FSS 4 (2× Dual Core w/ Lockstep) 2 (1× Dual Core w/ Lockstep)
Trigonometric Math Unit TMU Yes
Hardware Security Module HSM Yes
Crypto Accelerators Security Yes
PROGRAM AND DATA STORAGE
On-Chip Shared Memory (RAM) OCSRAM See Section 6.6, Operating Performance Points
R5F Tightly Coupled Memory (TCM) TCM Up to 512KB(10)
PERIPHERALS
Modular Controller Area Network with Full CAN-FD MCAN 8
General-Purpose I/O GPIO Up to 139
Serial Peripheral Interface SPI 8
Universal Asynchronous Receiver and Transmitter UART 6
Local Interconnect Network LIN 5
Inter-Integrated Circuit Interface I2C 4
Analog-to-Digital Converter ADC 3(2) or 5(3) 3(2) or 5(3)
Resolver (ADC12B3M)(4) RDC 0(8) or 2(9) 0(8) or 2(9)
ADC 0(8) or 2(9) 0(8) or 2(9)

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 7


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 4-1. Device Comparison (continued)


REFERENCE AM263P4 AM263P2
FEATURES
NAME AM263P4-Q1 AM263P2-Q1
Comparator Modules CMPSS 12(2) or 20(3) 12(2) or 20(3)
Digital-to-Analog Converter DAC 1
Programmable Real-Time Unit Subsystem(5) PRU-ICSS 0 or 1
Industrial Communication Subsystem Support(6) PRU-ICSS Optional
Gigabit Ethernet Interface CPSW Yes (2(8) or 1(9))
Multi-Media Card/Secure Digital Interface MMCSD 1
Enhanced High-Resolution Pulse-Width Modulator Module EHRPWM 16(2) or 32(3) 16(2) or 32(3)
Enhanced Capture Module ECAP 8(2) or 16(3) 8(2) or 16(3)
Enhanced Quadrature Encoder Pulse Module EQEP 2(2) or 3(3) 2(2) or 3(3)
Sigma Delta Filter Module SDFM 1(2) or 2(3) 1(2) or 2(3)
Fast Serial Interface FSI 4x FSI_RX + 4x FSI_TX
Octal SPI Flash Interface OSPI 1 or 0(11)

Flash-in-Package(ZCZ) Variant available ZCZ_F Yes No

Flash-in-Package density - 64Mb or 8MB -


Miscellaneous
Junction Temperature Extended Industrial: –40°C to 125°C
Extended Automotive: –40°C to 150°C(12)
Automotive Qualification AEC-Q100(7) Option

(1) Values listed here for DEVICE_ID are bits [31:13] of the TOP_CTRL.EFUSE_JTAG_USERCODE_ID register. For full JTAG ID's please
refer to the Device Part Number Identifier table.
(2) Standard Analog configuration contains 3x ADC, 16x EHRPWM, 8x eCAP, 2x EQEP, 1x SDFM, 12x CMPSS
(3) Enhanced Analog configuration contains 5x ADC, 32x EHRPWM, 16x eCAP, 3x EQEP, 2x SDFM, 20x CMPSS
(4) The 2x Resolver ADC12B3M modules can be used as either Resolver ADCs or general-purpose ADCs
(5) Programmable Real-Time Unit Subsystem is available when selecting an orderable part number that includes a feature code of D, E, F,
K, L, M, or N. Refer to the Nomenclature Description table for definition of feature codes.
(6) Industrial Communication Subsystem Support is available when selecting an orderable part number that includes a feature code of D,
E, F, K, L, M, or N. Refer to the Nomenclature Description table for definition of feature codes.
(7) AEC-Q100 qualification is applicable to select part number variants as indicated by the Automotive Designator (Q1) identifier in the
Nomenclature Description table.
(8) Applies to devices in the ZCZ-C Package only and have a Special Features code of C. Refer to the Nomenclature Description table for
definition of Special Features codes.
(9) Applies to devices in the ZCZ-S Package and the ZCZ-F Package that have a Special Features code of F or S. Refer to the
Nomenclature Description table for definition of Special Features codes.
(10) Each R5FSS cluster supports 256KB of Tightly-Coupled Memory (TCM). When configured as Single-Core or Lockstep operating
mode, individual cores can utilize the entire 256KB of TCM memory, while in Dual-Core mode, each core may only utilize its
designated half (128KB TCM).
(11) The Flash-in-Package variant connects the OSPI interface to an OSPI Flash die included in the package, disabling the external OSPI
interface for application use. The flash device in the Flash-in-Package(ZCZ_F) variant does not support RWW(Read While Write) while
performing XIP(eXecute-In-Place) operations.
(12) The Flash-in-Package variant is limited by the OSPI Flash device in the package to 125°C.

8 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

4.1 Device Identification


The device part number identification data can be read in the TOP_CTRL.EFUSE_JTAG_USERCODE_ID
register. See Table 4-2 for more information.
Table 4-2. Device Part Number Identifier
TOP_CTRL.EFUSE_JTAG_USERCOD Value and Description Comment
E_ID
Register Field
[31-13] DEVICE_ID Base Part Number Refer to the Device Comparison section
for the DEVICE_ID value of a given part
number.
[12] SAFETY 0 = Non Functional Safety
1 = Functional Safety
[11] PACKAGE Package
0x06 = ZCZ
Others = Reserved
[10-6] SPEED Device Speed Grade Refer to the Operating Performance
Points section for the supported speed
0x0E (Grade N):
grades and the definitions for a given
400MHz R5F
device.
2MB (Full speed and MIN memory)
0x0F (Grade O):
400MHz R5F
3MB (Full speed and full memory)
0x10 (Grade P):
200MHz R5F
3MB (Half speed and full memory)
[5-3] TEMP Temperature Grade Operating junction temperature range.
0x05 = -40°C to 125°C
0x07 = -40°C to 150°C
Others = Reserved
[2-0] FEATURE Package Feature
0x01 = AM263x compatible package
0x02 = Sensor package + FLASH-in-Package
0x05 = Sensor package

The manufacturer identity, the boundary scan part number, and the silicon revision of the device can be read
from the configuration port via JTAG.

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 9


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

4.2 Related Products


Sitara Microcontrollers Family of Arm® Cortex®-R based high performance microcontrollers with advanced
networking, real-time control, and signal processing accelerators to meet emerging MCU requirements for
industrial and automotive applications.
Sitara™ Microcontrollers - Evaluation Modules TI provides device-specific Evaluation Module (EVM) designs
to help kick-start product development. See the AM263Px ControlCard and AM263Px LaunchPad for more
information.
MCU-PLUS-SDK-AM263PX The AM263Px microcontroller (MCU) plus software development kit (SDK) is a
unified software platform for embedded processors providing easy setup and fast out-of-the-box access to
examples, benchmarks and demonstrations. For more info on ecosystem and tools, check out the “Design and
development” section of the device on ti.com.
Products to complete your design The following list of products are frequently purchased or used in
conjunction with the AM263Px device to meet your system design requirements.
• TPS653860-Q1 - Functional safety-compliant multi-rail power supply for safety MCUs for Q100 grade-0
applications.
• TPS3704-Q1 - Automotive multichannel window supervisor with very-high accuracy and compact form factor.
• DP83TG720S-Q1 - 1000BASE-T1 automotive Ethernet PHY with RGMII.
• DP83826E - Low latency 10/100Mbps Ethernet PHY with MII interface and enhanced mode.
• TCAN1043A-Q1 - Automotive CAN FD transceiver with wake/inhibit/sleep.
• TCAN1044A-Q1 - Enhanced automotive CAN transceiver with standby.
• TLIN2029-Q1 - Fault Protected Local Interconnect Network (LIN) Transceiver With Dominant State Timeout.

10 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

5 Terminal Configuration and Functions


5.1 Pin Diagram
Note
The terms "ball", "pin", and "terminal" are used interchangeably throughout the document. An attempt
is made to use "ball" only when referring to the physical package.

The diagrams in this section are used in conjunction with the other Terminal Configuration and Functions tables
to locate signal names and ball grid numbers.

5.1.1 ZCZ_C Pin Diagram

A B C D E F G H J K L M N P R T U V

PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_MDIO0 RGMII1_TX RGMII1 RGMII1 RGMII1_RX RGMII1 RGMII1
18 VSS VSS
_GPIO11 _GPIO9 _GPIO8 _GPIO3 _GPIO0 _GPIO10 _GPIO16 _GPIO2 _GPIO1 _MDC _CTL _TXC _TD2 _CTL _RD3 _RD2

PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_MDIO0 RGMII1 RGMII1 RGMII1 RGMII1 RGMII1
17 MDIO0_MDC EPWM14_A
_GPIO15 _GPIO12 _GPIO14 _GPIO10 _GPIO2 _GPIO9 _GPIO5 _GPIO13 _GPIO3 _GPIO0 _MDIO _TD3 _TD1 _RXC _RD1 _RD0

SDFM0 SDFM0 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 MDIO0 RGMII1
16 RSVD_J16 EPWM15_B EPWM14_B ADC_CAL0 VSSA
_CLK1 _CLK0 _GPIO16 _GPIO13 _GPIO6 _GPIO4 _GPIO1 _GPIO14 _GPIO4 _GPIO15 _GPIO11 _MDIO _TD0

SDFM0 SDFM0 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0


15 VDDS18 VDDS33 VDDAR1 VDDS33 VDDS18 EPWM15_A VDDS33 ADC_CAL1 ADC0_AIN1 ADC0_AIN0
_CLK3 _CLK2 _GPIO18 _GPIO19 _GPIO5 _GPIO8 _GPIO6 _GPIO12

ADC
14 EQEP0_B EQEP0_A SDFM0_D3 SDFM0_D0 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS ADC0_AIN5 ADC0_AIN2 ADC0_AIN3 _VREFHI
_G0

ADC
13 I2C0_SCL I2C0_SDA SDFM0_D2 SDFM0_D1 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS VSSA DAC_VREF0 ADC0_AIN4 _VREFLO
_G0

EQEP0
12 MCAN2_RX MCAN2_TX VDDS33 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA ADC1_AIN5 ADC1_AIN2 ADC1_AIN4 ADC1_AIN3
_STROBE

EQEP0 ADC
11 SPI0_CLK SPI0_D1 SPI0_CS0 VDD VDD VSS VSS VSS VSS VSS VSS VSS VDDA33 VDDA18 ADC1_AIN0 ADC1_AIN1 _VREFLO
_INDEX _G1

ADC
10 SPI1_CLK SPI1_D0 SPI0_D0 VDDAR2 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA ADC2_AIN0 ADC2_AIN1 ADC2_AIN2 _VREFHI
_G1

9 LIN1_RXD LIN1_TXD SPI1_CS0 SPI1_D1 VDD VDD VSS VSS VSS VSS VSS VSS VSS VDDA33 VDD ADC2_AIN3 ADC3_AIN5 ADC2_AIN4

8 LIN2_TXD LIN2_RXD I2C1_SDA VDDS33 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA VDDA18 ADC2_AIN5 ADC3_AIN1 ADC3_AIN4

UART0 UART0 ADC


7 UART0_RXD I2C1_SCL VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDA33 ADC3_AIN3 ADC3_AIN2 ADC3_AIN0 _VREFLO
_CTSn _RTSn _G2

VDDA18 ADC
6 UART0_TXD MMC0_CLK MMC0_WP VDDS18 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSSA DAC_VREF1 ADC4_AIN0 _VREFHI
_LDO _G2

5 MMC0_CD MMC0_D0 TDI TMS VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS VSSA DAC_OUT ADC4_AIN3 ADC4_AIN1

SAFETY VDDA18
4 MMC0_CMD MMC0_D1 TDO EPWM4_B EPWM7_A EPWM10_A VDDS33 EPWM12_B EPWM13_A VDDS18 QSPI0_D2 QSPI0_D1 VDDS33 RSVD_T4 ADC4_AIN5 ADC4_AIN2
_ERRORn _OSC_PLL

QSPI0 VDDS18
3 MMC0_D2 TCK WARMRSTn EPWM1_A EPWM3_B EPWM6_B EPWM8_A VDDAR3 EPWM10_B EPWM13_B UART1_RXD UART1_TXD VPP QSPI0_D3 RSVD_U3 ADC4_AIN4
_CSn1 _LDO

EXT
2 MMC0_D3 EPWM0_A EPWM2_A EPWM1_B EPWM3_A EPWM5_A EPWM5_B EPWM8_B EPWM9_B EPWM12_A MCAN1_RX CLKOUT0 QSPI0_CLK PORz VSS VSYS_MON RSVD_V2
_REFCLK0

QSPI0
1 VSS EPWM0_B EPWM2_B EPWM4_A EPWM6_A EPWM7_B EPWM9_A EPWM11_A EPWM11_B MCAN1_TX MCAN0_TX MCAN0_RX QSPI0_D0 XTAL_XO XTAL_XI RSVD_U1 VSSA
_CSn0

Not to scale

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 11


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

5.1.2 ZCZ_S Pin Diagram

A B C D E F G H J K L M N P R T U V

PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_MDIO0 ADC_R1 ADC_R1 ADC_R0 ADC_R0
18 VSS GPIO36 GPIO35 VSSA
_GPIO11 _GPIO9 _GPIO8 _GPIO3 _GPIO0 _GPIO10 _GPIO16 _GPIO2 _GPIO1 _MDC _AIN2 _AIN1 _AIN0 _AIN2

PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_MDIO0 ADC_R1 ADC_R0 ADC
17 MDIO0_MDC ADC_CAL3 GPIO29 ADC_CAL2 _VREFHI
_GPIO15 _GPIO12 _GPIO14 _GPIO10 _GPIO2 _GPIO9 _GPIO5 _GPIO13 _GPIO3 _GPIO0 _MDIO _AIN3 _AIN3 _G3

SDFM0 SDFM0 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 MDIO0 ADC_R1 ADC_R0 ADC
16 RSVD_J16 GPIO37 ADC_CAL0 _VREFLO
_CLK1 _CLK0 _GPIO16 _GPIO13 _GPIO6 _GPIO4 _GPIO1 _GPIO14 _GPIO4 _GPIO15 _GPIO11 _MDIO _AIN0 _AIN1 _G3

SDFM0 SDFM0 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0


15 VDDS18 VDDS33 VDDAR1 VDDS33 VDDS18 RSVD_P15 VDDS33 ADC_CAL1 ADC0_AIN1 ADC0_AIN0
_CLK3 _CLK2 _GPIO18 _GPIO19 _GPIO5 _GPIO8 _GPIO6 _GPIO12

ADC
14 EQEP0_B EQEP0_A SDFM0_D3 SDFM0_D0 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS ADC0_AIN5 ADC0_AIN2 ADC0_AIN3 _VREFHI
_G0

ADC
13 I2C0_SCL I2C0_SDA SDFM0_D2 SDFM0_D1 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS VSSA DAC_VREF0 ADC0_AIN4 _VREFLO
_G0

EQEP0
12 MCAN2_RX MCAN2_TX VDDS33 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA ADC1_AIN5 ADC1_AIN2 ADC1_AIN4 ADC1_AIN3
_STROBE

EQEP0 ADC
11 SPI0_CLK SPI0_D1 SPI0_CS0 VDD VDD VSS VSS VSS VSS VSS VSS VSS VDDA33 VDDA18 ADC1_AIN0 ADC1_AIN1 _VREFLO
_INDEX _G1

ADC
10 SPI1_CLK SPI1_D0 SPI0_D0 VDDAR2 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA ADC2_AIN0 ADC2_AIN1 ADC2_AIN2 _VREFHI
_G1

9 LIN1_RXD LIN1_TXD SPI1_CS0 SPI1_D1 VDD VDD VSS VSS VSS VSS VSS VSS VSS VDDA33 VDD ADC2_AIN3 ADC3_AIN5 ADC2_AIN4

8 LIN2_TXD LIN2_RXD I2C1_SDA VDDS33 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA VDDA18 ADC2_AIN5 ADC3_AIN1 ADC3_AIN4

UART0 UART0 ADC


7 UART0_RXD I2C1_SCL VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDA33 ADC3_AIN3 ADC3_AIN2 ADC3_AIN0 _VREFLO
_CTSn _RTSn _G2

VDDA18 ADC
6 UART0_TXD MMC0_CLK MMC0_WP VDDS18 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSSA DAC_VREF1 ADC4_AIN0 _VREFHI
_LDO _G2

5 MMC0_CD MMC0_D0 TDI TMS VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS VSSA DAC_OUT ADC4_AIN3 ADC4_AIN1

SAFETY VDDA18
4 MMC0_CMD MMC0_D1 TDO EPWM4_B EPWM7_A EPWM10_A VDDS33 EPWM12_B EPWM13_A VDDS18 QSPI0_D2 QSPI0_D1 VDDS33 RSVD_T4 ADC4_AIN5 ADC4_AIN2
_ERRORn _OSC_PLL

QSPI0 VDDS18
3 MMC0_D2 TCK WARMRSTn EPWM1_A EPWM3_B EPWM6_B EPWM8_A VDDAR3 EPWM10_B EPWM13_B UART1_RXD UART1_TXD VPP QSPI0_D3 RSVD_U3 ADC4_AIN4
_CSn1 _LDO

EXT
2 MMC0_D3 EPWM0_A EPWM2_A EPWM1_B EPWM3_A EPWM5_A EPWM5_B EPWM8_B EPWM9_B EPWM12_A MCAN1_RX CLKOUT0 QSPI0_CLK PORz VSS VSYS_MON RSVD_V2
_REFCLK0

QSPI0
1 VSS EPWM0_B EPWM2_B EPWM4_A EPWM6_A EPWM7_B EPWM9_A EPWM11_A EPWM11_B MCAN1_TX MCAN0_TX MCAN0_RX QSPI0_D0 XTAL_XO XTAL_XI RSVD_U1 VSSA
_CSn0

Not to scale

12 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

5.1.3 ZCZ_F Pin Diagram

A B C D E F G H J K L M N P R T U V

PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_MDIO0 ADC_R1 ADC_R1 ADC_R0 ADC_R0
18 VSS GPIO36 GPIO35 VSSA
_GPIO11 _GPIO9 _GPIO8 _GPIO3 _GPIO0 _GPIO10 _GPIO16 _GPIO2 _GPIO1 _MDC _AIN2 _AIN1 _AIN0 _AIN2

PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_MDIO0 ADC_R1 ADC_R0 ADC
17 MDIO0_MDC ADC_CAL3 GPIO29 ADC_CAL2 _VREFHI
_GPIO15 _GPIO12 _GPIO14 _GPIO10 _GPIO2 _GPIO9 _GPIO5 _GPIO13 _GPIO3 _GPIO0 _MDIO _AIN3 _AIN3 _G3

SDFM0 SDFM0 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0 PR0_PRU0 MDIO0 ADC_R1 ADC_R0 ADC
16 RSVD_J16 GPIO37 ADC_CAL0 _VREFLO
_CLK1 _CLK0 _GPIO16 _GPIO13 _GPIO6 _GPIO4 _GPIO1 _GPIO14 _GPIO4 _GPIO15 _GPIO11 _MDIO _AIN0 _AIN1 _G3

SDFM0 SDFM0 PR0_PRU1 PR0_PRU1 PR0_PRU1 PR0_PRU0 PR0_PRU0 PR0_PRU0


15 VDDS18 VDDS33 VDDAR1 VDDS33 VDDS18 RSVD_P15 VDDS33 ADC_CAL1 ADC0_AIN1 ADC0_AIN0
_CLK3 _CLK2 _GPIO18 _GPIO19 _GPIO5 _GPIO8 _GPIO6 _GPIO12

ADC
14 EQEP0_B EQEP0_A SDFM0_D3 SDFM0_D0 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS ADC0_AIN5 ADC0_AIN2 ADC0_AIN3 _VREFHI
_G0

ADC
13 I2C0_SCL I2C0_SDA SDFM0_D2 SDFM0_D1 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS VSSA DAC_VREF0 ADC0_AIN4 _VREFLO
_G0

EQEP0
12 MCAN2_RX MCAN2_TX VDDS33 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA ADC1_AIN5 ADC1_AIN2 ADC1_AIN4 ADC1_AIN3
_STROBE

EQEP0 ADC
11 SPI0_CLK SPI0_D1 SPI0_CS0 VDD VDD VSS VSS VSS VSS VSS VSS VSS VDDA33 VDDA18 ADC1_AIN0 ADC1_AIN1 _VREFLO
_INDEX _G1

ADC
10 SPI1_CLK SPI1_D0 SPI0_D0 VDDAR2 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA ADC2_AIN0 ADC2_AIN1 ADC2_AIN2 _VREFHI
_G1

9 LIN1_RXD LIN1_TXD SPI1_CS0 SPI1_D1 VDD VDD VSS VSS VSS VSS VSS VSS VSS VDDA33 VDD ADC2_AIN3 ADC3_AIN5 ADC2_AIN4

8 LIN2_TXD LIN2_RXD I2C1_SDA VDDS33 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSSA VDDA18 ADC2_AIN5 ADC3_AIN1 ADC3_AIN4

UART0 UART0 ADC


7 UART0_RXD I2C1_SCL VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDA33 ADC3_AIN3 ADC3_AIN2 ADC3_AIN0 _VREFLO
_CTSn _RTSn _G2

VDDA18 ADC
6 UART0_TXD MMC0_CLK MMC0_WP VDDS18 VSS VSS VDD VSS VSS VDD VSS VSS VDD VSSA DAC_VREF1 ADC4_AIN0 _VREFHI
_LDO _G2

5 MMC0_CD MMC0_D0 TDI TMS VSS VSS VDD VSS VSS VDD VSS VSS VDD VSS VSSA DAC_OUT ADC4_AIN3 ADC4_AIN1

SAFETY VDDA18
4 MMC0_CMD MMC0_D1 TDO EPWM4_B EPWM7_A EPWM10_A VDDS33 NC NC VDDS18 NC QSPI0_D1 VDDS33 RSVD_T4 ADC4_AIN5 ADC4_AIN2
_ERRORn _OSC_PLL

OSPI0_ZCZ QSPI0 VDDS18


3 MMC0_D2 TCK WARMRSTn EPWM1_A EPWM3_B EPWM6_B EPWM8_A VDDAR3 _F_RESET NC UART1_RXD UART1_TXD VPP NC RSVD_U3 ADC4_AIN4
_OUT0 _CSn1 _LDO

EXT
2 MMC0_D3 EPWM0_A EPWM2_A EPWM1_B EPWM3_A EPWM5_A EPWM5_B EPWM8_B EPWM9_B NC NC CLKOUT0 QSPI0_CLK PORz VSS VSYS_MON RSVD_V2
_REFCLK0

OSPI0_ZCZ
1 VSS EPWM0_B EPWM2_B EPWM4_A EPWM6_A EPWM7_B EPWM9_A NC NC MCAN1_TX NC QSPI0_D0 NC XTAL_XO XTAL_XI RSVD_U1 VSSA
_F_WP

Not to scale

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 13


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

5.2 Pin Attributes


The following list describes the contents of each column in the Pin Attributes table:
1. Ball Number: Ball numbers assigned to each terminal of the Ball Grid Array package.
2. Ball Name: Ball name assigned to each terminal of the Ball Grid Array package (this name is typically taken
from the primary MUXMODE 0 signal function).
3. Signal Name: Signal name of all dedicated and pin multiplexed signal functions associated with a ball.

Note
The Pin Attributes table, defines the SoC pin multiplexed signal function implemented at the pin
and does not define secondary multiplexing of signal functions implemented in device subsystems.
Secondary multiplexing of signal functions are not described in this table. For more information on
secondary multiplexed signal functions, see the respective peripheral chapter of the device TRM.

4. Mux Mode: The MUXMODE value associated with each pin multiplexed signal function:
• MUXMODE 0 is the primary pin multiplexed signal function. However, the primary pin multiplexed signal
function is not necessarily the default pin multiplexed signal function.
• MUXMODE values 1 through 15 are possible for pin multiplexed signal functions. However, not all
MUXMODE values have been implemented. The only valid MUXMODE values are those defined as pin
multiplexed signal functions within the Pin Attributes table. Only defined valid values of MUXMODE can
be used.
• Bootstrap defines SOC configuration pins, where the logic state applied to each pin is latched on
the rising edge of PORz. These input signal functions are fixed to their respective pins and are not
programmable via MUXMODE.
• An empty box or "-" means Not Applicable.

Note
• The value found in the MUX MODE AFTER RESET column defines the default pin multiplexed
signal function selected when PORz is deasserted.
• Configuring two pins to the same pin multiplexed signal function can yield unexpected results and is
not supported. This can be prevented with proper software configuration.
• Configuring a pad to an undefined multiplexing mode results in undefined behavior and must be
avoided.

5. Type: Signal type and direction:


• I = Input
• O = Output
• ID = Input, with open-drain output function
• OD = Output, with open-drain output function
• IO = Input, Output, or simultaneously Input and Output
• IOD = Input, Output, or simultaneously Input and Output, with open-drain output function
• IOZ = Input, Output, or simultaneously Input and Output, with three-state output function
• OZ = Output with three-state output function
• A = Analog
• CAP = LDO capacitor
• PWR = Power
• GND = Ground

6. Ball State During Reset (RX/TX/PULL): State of the terminal while PORz is asserted, where RX defines
the state of the input buffer, TX defines the state of the output buffer, and PULL defines the state of internal
pull resistors:
• RX (Input buffer)
– Off: The input buffer is disabled.

14 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

– On: The input buffer is enabled.


• TX (Output buffer)
– Off: The output buffer is disabled.
– Low: The output buffer is enabled and drives VOL.
• PULL (Internal pull resistors)
– Off: Internal pull resistors are turned off.
– Up: Internal pull-up resistor is turned on.
– Down: Internal pull-down resistor is turned on.
– NA: No internal pull resistor.
• An empty box, or "-" means Not Applicable.
7. Ball State After Reset (RX/TX/PULL): State of the terminal after PORz is deasserted, where RX defines the
state of the input buffer, TX defines the state of the output buffer, and PULL defines the state of internal pull
resistors:
• RX (Input buffer)
– Off: The input buffer is disabled.
– On: The input buffer is enabled.
• TX (Output buffer)
– Off: The output buffer is disabled.
– SS: The subsystem selected with MUXMODE determines the output buffer state.
• PULL (Internal pull resistors)
– Off: Internal pull resistors are turned off.
– Up: Internal pull-up resistor is turned on.
– Down: Internal pull-down resistor is turned on.
– NA: No internal pull resistor.
• An empty box, NA, or "-" means Not Applicable.
8. Mux Mode After Reset: The value found in this column defines the default pin multiplexed signal function
after PORz is deasserted.
• An empty box, NA, or "-" means Not Applicable.
9. I/O Voltage: This column describes I/O operating voltage options of the respective power supply, when
applicable.
• An empty box, NA, or "-" means Not Applicable.
For more information, see valid operating voltage range defined for each power supply in Recommended
Operating Conditions.
10. Power: The power supply of the associated I/O, when applicable.
• An empty box, NA, or "-" means Not Applicable.
11. Hys: Indicates if the input buffer associated with this I/O has hysteresis:
• Yes: Hysteresis Support
• No: No Hysteresis Support
• An empty box, NA, or "-" means Not Applicable.
For more information, see the hysteresis values in Electrical Characteristics.
12. Pull Type: Indicates the presence of an internal pull-up or pull-down resistor. Internal resistors can be
enabled or disabled via software.
• PU: Internal pull-up Only
• PD: Internal pull-down Only
• PU/PD: Internal pull-up and pull-down
• An empty box, NA, or "-" means No internal pull.

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 15


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Note
Configuring two pins to the same pin multiplexed signal function is not supported as this yields
unexpected results. Issues can be easily prevented with the proper software configuration.
When a pad is set into a multiplexing mode which is not defined by pin multiplexing, that pad’s
behavior is undefined. This must be avoided.

13. Buffer Type: This column defines the buffer type associated with a terminal. This information can be used to
determine the applicable Electrical Characteristics table.
• An empty box, NA, or "-" means Not Applicable.
For electrical characteristics, refer to the appropriate buffer type table in Electrical Characteristics.
14. Pad Configuration Register Name: This is the name of the device pad/pin configuration register.
15. Pad Configuration Register Address: This is the memory address of the device pad/pin configuration
register.
16. Pad Configuration Register Default Value: This is the default value of the register device pad/pin
configuration register after PORz is deasserted.

16 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
V15 V15 V15 ADC0_AIN0 ADC0_AIN0 I 3.3V VDDA_CIO AnalogCIO
U15 U15 U15 ADC0_AIN1 ADC0_AIN1 I 3.3V VDDA_CIO AnalogCIO
T14 T14 T14 ADC0_AIN2 ADC0_AIN2 I 3.3V VDDA_CIO AnalogCIO
U14 U14 U14 ADC0_AIN3 ADC0_AIN3 I 3.3V VDDA_CIO AnalogCIO
U13 U13 U13 ADC0_AIN4 ADC0_AIN4 I 3.3V VDDA_CIO AnalogCIO
R14 R14 R14 ADC0_AIN5 ADC0_AIN5 I 3.3V VDDA_CIO AnalogCIO
T11 T11 T11 ADC1_AIN0 ADC1_AIN0 I 3.3V VDDA_CIO AnalogCIO
U11 U11 U11 ADC1_AIN1 ADC1_AIN1 I 3.3V VDDA_CIO AnalogCIO
T12 T12 T12 ADC1_AIN2 ADC1_AIN2 I 3.3V VDDA_CIO AnalogCIO
V12 V12 V12 ADC1_AIN3 ADC1_AIN3 I 3.3V VDDA_CIO AnalogCIO
U12 U12 U12 ADC1_AIN4 ADC1_AIN4 I 3.3V VDDA_CIO AnalogCIO
R12 R12 R12 ADC1_AIN5 ADC1_AIN5 I 3.3V VDDA_CIO AnalogCIO
R10 R10 R10 ADC2_AIN0 ADC2_AIN0 I 3.3V VDDA_CIO AnalogCIO
T10 T10 T10 ADC2_AIN1 ADC2_AIN1 I 3.3V VDDA_CIO AnalogCIO
U10 U10 U10 ADC2_AIN2 ADC2_AIN2 I 3.3V VDDA_CIO AnalogCIO
T9 T9 T9 ADC2_AIN3 ADC2_AIN3 I 3.3V VDDA_CIO AnalogCIO
V9 V9 V9 ADC2_AIN4 ADC2_AIN4 I 3.3V VDDA_CIO AnalogCIO
T8 T8 T8 ADC2_AIN5 ADC2_AIN5 I 3.3V VDDA_CIO AnalogCIO
U7 U7 U7 ADC3_AIN0 ADC3_AIN0 I 3.3V VDDA_CIO AnalogCIO
U8 U8 U8 ADC3_AIN1 ADC3_AIN1 I 3.3V VDDA_CIO AnalogCIO
T7 T7 T7 ADC3_AIN2 ADC3_AIN2 I 3.3V VDDA_CIO AnalogCIO
R7 R7 R7 ADC3_AIN3 ADC3_AIN3 I 3.3V VDDA_CIO AnalogCIO
V8 V8 V8 ADC3_AIN4 ADC3_AIN4 I 3.3V VDDA_CIO AnalogCIO
U9 U9 U9 ADC3_AIN5 ADC3_AIN5 I 3.3V VDDA_CIO AnalogCIO
U6 U6 U6 ADC4_AIN0 ADC4_AIN0 I 3.3V VDDA_CIO AnalogCIO
V5 V5 V5 ADC4_AIN1 ADC4_AIN1 I 3.3V VDDA_CIO AnalogCIO
V4 V4 V4 ADC4_AIN2 ADC4_AIN2 I 3.3V VDDA_CIO AnalogCIO
U5 U5 U5 ADC4_AIN3 ADC4_AIN3 I 3.3V VDDA_CIO AnalogCIO
V3 V3 V3 ADC4_AIN4 ADC4_AIN4 I 3.3V VDDA_CIO AnalogCIO
U4 U4 U4 ADC4_AIN5 ADC4_AIN5 I 3.3V VDDA_CIO AnalogCIO
U16 U16 U16 ADC_CAL0 ADC_CAL0 I 3.3V VDDA_CIO AnalogCIO
T15 T15 T15 ADC_CAL1 ADC_CAL1 I 3.3V VDDA_CIO AnalogCIO
U17 U17 ADC_CAL2 ADC_CAL2 A 3.3V VDDA_CIO AnalogCIO
N17 N17 ADC_CAL3 ADC_CAL3 A 3.3V VDDA_CIO AnalogCIO
T18 T18 ADC_R0_AIN0 ADC_R0_AIN0 I 3.3V VDDA_CIO AnalogCIO
T16 T16 ADC_R0_AIN1 ADC_R0_AIN1 I 3.3V VDDA_CIO AnalogCIO
U18 U18 ADC_R0_AIN2 ADC_R0_AIN2 I 3.3V VDDA_CIO AnalogCIO

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 17


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
T17 T17 ADC_R0_AIN3 ADC_R0_AIN3 I 3.3V VDDA_CIO AnalogCIO
R16 R16 ADC_R1_AIN0 ADC_R1_AIN0 I 3.3V VDDA_CIO AnalogCIO
R18 R18 ADC_R1_AIN1 ADC_R1_AIN1 I 3.3V VDDA_CIO AnalogCIO
P18 P18 ADC_R1_AIN2 ADC_R1_AIN2 I 3.3V VDDA_CIO AnalogCIO
P17 P17 ADC_R1_AIN3 ADC_R1_AIN3 I 3.3V VDDA_CIO AnalogCIO
V14 V14 V14 ADC_VREFHI_G0 ADC_VREFHI_G0 A 1.8V VDDA_CIO AnalogCIO
V10 V10 V10 ADC_VREFHI_G1 ADC_VREFHI_G1 A 1.8V VDDA_CIO AnalogCIO
V6 V6 V6 ADC_VREFHI_G2 ADC_VREFHI_G2 A 1.8V VDDA_CIO AnalogCIO
V17 V17 ADC_VREFHI_G3 ADC_VREFHI_G3 A 1.8V VDDA_CIO AnalogCIO
V13 V13 V13 ADC_VREFLO_G0 ADC_VREFLO_G0 A 1.8V VDDA_CIO AnalogCIO
V11 V11 V11 ADC_VREFLO_G1 ADC_VREFLO_G1 A 1.8V VDDA_CIO AnalogCIO
V7 V7 V7 ADC_VREFLO_G2 ADC_VREFLO_G2 A 1.8V VDDA_CIO AnalogCIO
V16 V16 ADC_VREFLO_G3 ADC_VREFLO_G3 A 1.8V VDDA_CIO AnalogCIO
M2 M2 M2 CLKOUT0 CLKOUT0 0 O Off / Off / Off Off / SS / Off 0 3.3V VDDSHV0 Yes LVCMOS PU/PD
CLKOUT0_CFG_REG GPIO138 7 IO
0x5310 0228
0x0000 0570
T5 T5 T5 DAC_OUT DAC_OUT O 3.3V VDDA_CIO AnalogCIO
T13 T13 T13 DAC_VREF0 DAC_VREF0 A 1.8V VDDA_CIO AnalogCIO
T6 T6 T6 DAC_VREF1 DAC_VREF1 A 1.8V VDDA_CIO AnalogCIO
B2 B2 B2 EPWM0_A EPWM0_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM0_A_CFG_REG GPIO43 7 IO
0x5310 00AC
0x0000 05F7 EPWM0_A 10 O

B1 B1 B1 EPWM0_B EPWM0_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM0_B_CFG_REG GPIO44 7 IO
0x5310 00B0
0x0000 05F7 EPWM0_B 10 O

D3 D3 D3 EPWM1_A EPWM1_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM1_A_CFG_REG GPIO45 7 IO
0x5310 00B4
0x0000 05F7 EPWM1_A 10 O

D2 D2 D2 EPWM1_B EPWM1_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM1_B_CFG_REG GPIO46 7 IO
0x5310 00B8
0x0000 05F7 EPWM4_B 10 O

C2 C2 C2 EPWM2_A EPWM2_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM2_A_CFG_REG GPIO47 7 IO
0x5310 00BC
0x0000 05F7 EPWM2_A 10 O

18 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
C1 C1 C1 EPWM2_B EPWM2_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM2_B_CFG_REG GPIO48 7 IO
0x5310 00C0
0x0000 05F7 EPWM2_B 10 O

E2 E2 E2 EPWM3_A EPWM3_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM3_A_CFG_REG GPIO49 7 IO
0x5310 00C4
0x0000 05F7 EPWM3_A 10 O

E3 E3 E3 EPWM3_B EPWM3_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM3_B_CFG_REG GPIO50 7 IO
0x5310 00C8
0x0000 05F7 EPWM6_A 10 O

D1 D1 D1 EPWM4_A EPWM4_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM4_A_CFG_REG GPIO51 7 IO
0x5310 00CC
0x0000 05F7 EPWM4_A 10 O

E4 E4 E4 EPWM4_B EPWM4_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM4_B_CFG_REG FSITX1_CLK 6 O
0x5310 00D0
0x0000 05F7 GPIO52 7 IO
EPWM1_B 10 O
F2 F2 F2 EPWM5_A EPWM5_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM5_A_CFG_REG SPI5_CS0 3 IO
0x5310 00D4
0x0000 05F7 FSITX1_DATA0 6 O
GPIO53 7 IO
EPWM5_A 10 O
G2 G2 G2 EPWM5_B EPWM5_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM5_B_CFG_REG SPI5_CLK 3 IO
0x5310 00D8
0x0000 05F7 FSITX1_DATA1 6 O
GPIO54 7 IO
EPWM8_B 10 O
E1 E1 E1 EPWM6_A EPWM6_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM6_A_CFG_REG SPI5_D0 3 IO
0x5310 00DC
0x0000 05F7 FSIRX1_CLK 6 I
GPIO55 7 IO
EPWM3_B 10 O
F3 F3 F3 EPWM6_B EPWM6_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM6_B_CFG_REG SPI5_D1 3 IO
0x5310 00E0
0x0000 05F7 FSIRX1_DATA0 6 I
GPIO56 7 IO
EPWM6_B 10 O

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 19


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
F4 F4 F4 EPWM7_A EPWM7_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM7_A_CFG_REG SPI6_CS0 3 IO
0x5310 00E4
0x0000 05F7 FSIRX1_DATA1 6 I
GPIO57 7 IO
EPWM7_A 10 O
F1 F1 F1 EPWM7_B EPWM7_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM7_B_CFG_REG SPI6_CLK 3 IO
0x5310 00E8
0x0000 05F7 GPIO58 7 IO
EPWM5_B 10 O
G3 G3 G3 EPWM8_A EPWM8_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM8_A_CFG_REG UART4_TXD 1 O
0x5310 00EC
0x0000 05F7 I2C3_SDA 2 IO
SPI6_D0 3 IO
FSITX2_CLK 6 O
GPIO59 7 IO
EPWM8_A 10 O
H2 H2 H2 EPWM8_B EPWM8_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM8_B_CFG_REG UART4_RXD 1 I
0x5310 00F0
0x0000 05F7 I2C3_SCL 2 IO
SPI6_D1 3 IO
FSITX2_DATA0 6 O
GPIO60 7 IO
EPWM9_B 10 O
G1 G1 G1 EPWM9_A EPWM9_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM9_A_CFG_REG SPI7_CS0 3 IO
0x5310 00F4
0x0000 05F7 MCAN4_RX 4 I
FSITX2_DATA1 6 O
GPIO61 7 IO
EPWM9_A 10 O
J2 J2 J2 EPWM9_B EPWM9_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM9_B_CFG_REG UART1_RTSn 1 O
0x5310 00F8
0x0000 05F7 SPI7_CLK 3 IO
MCAN4_TX 4 O
FSIRX2_CLK 6 I
GPIO62 7 IO
EPWM11_B 10 O

20 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
G4 G4 G4 EPWM10_A EPWM10_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM10_A_CFG_REG UART1_CTSn 1 I
0x5310 00FC
0x0000 05F7 SPI7_D0 3 IO
MCAN5_RX 4 I
FSIRX2_DATA0 6 I
GPIO63 7 IO
EPWM7_B 10 O
J3 J3 EPWM10_B EPWM10_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM10_B_CFG_REG UART2_RTSn 1 O
0x5310 0100
0x0000 05F7 SPI7_D1 3 IO
MCAN5_TX 4 O
OSPI0_RESET_OUT0 5 O
FSIRX2_DATA1 6 I
GPIO64 7 IO
EPWM10_B 10 O
H1 H1 EPWM11_A EPWM11_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM11_A_CFG_REG UART2_CTSn 1 I
0x5310 0104
0x0000 05F7 OSPI0_ECC_FAIL 2 I
MCAN6_RX 4 I
OSPI0_RESET_OUT1 5 O
OSPI0_CSn0 6 O
GPIO65 7 IO
EPWM11_A 10 O
J1 J1 EPWM11_B EPWM11_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM11_B_CFG_REG UART3_RTSn 1 O
0x5310 0108
0x0000 05F7 OSPI0_RESET_OUT0 2 O
MCAN6_TX 4 O
OSPI0_D1 6 IO
GPIO66 7 IO
EPWM12_B 10 O
K2 K2 EPWM12_A EPWM12_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM12_A_CFG_REG UART3_CTSn 1 I
0x5310 010C
0x0000 05F7 SPI4_CS1 2 IO
MCAN7_RX 4 I
OSPI0_D5 6 IO
GPIO67 7 IO
EPWM12_A 10 O

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 21


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
J4 J4 EPWM12_B EPWM12_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM12_B_CFG_REG UART1_DCDn 1 I
0x5310 0110
0x0000 05F7 SPI7_CS0 2 IO
MCAN7_TX 4 O
OSPI0_D7 6 IO
GPIO68 7 IO
EPWM10_A 10 O
K4 K4 EPWM13_A EPWM13_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM13_A_CFG_REG UART1_RIn 1 I
0x5310 0114
0x0000 05F7 SPI7_CLK 2 IO
OSPI0_D3 6 IO
GPIO69 7 IO
EPWM13_A 10 O
K3 K3 EPWM13_B EPWM13_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM13_B_CFG_REG UART1_DTRn 1 O
0x5310 0118
0x0000 05F7 SPI7_D0 2 IO
OSPI0_ECC_FAIL 6 I
GPIO70 7 IO
EPWM13_B 10 O
V17 EPWM14_A EPWM14_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM14_A_CFG_REG UART1_DSRn 1 I
0x5310 011C
0x0000 05F7 SPI7_D1 2 IO
MCAN6_RX 3 I
GPIO71 7 IO
EPWM14_A 10 O
T16 EPWM14_B EPWM14_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM14_B_CFG_REG MII1_RX_ER 2 I
0x5310 0120
0x0000 05F7 MCAN6_TX 3 O
GPIO72 7 IO
EPWM14_B 10 O
P15 EPWM15_A EPWM15_A 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM15_A_CFG_REG UART5_TXD 1 O
0x5310 0124
0x0000 05F7 MII1_COL 2 I
MCAN7_RX 3 I
GPIO73 7 IO
ADC_EXTCH_XBAROUT4 9 O
EPWM15_A 10 O

22 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
R16 EPWM15_B EPWM15_B 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EPWM15_B_CFG_REG UART5_RXD 1 I
0x5310 0128
0x0000 05F7 MII1_CRS 2 I
MCAN7_TX 3 O
GPIO74 7 IO
ADC_EXTCH_XBAROUT5 9 O
EPWM15_B 10 O
B14 B14 B14 EQEP0_A UART4_RTSn 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EQEP0_A_CFG_REG SPI4_CLK 3 IO
0x5310 0208
0x0000 05F7 GPIO130 7 IO
EQEP0_A 8 I
SDFM1_CLK0 9 I
A14 A14 A14 EQEP0_B UART4_CTSn 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EQEP0_B_CFG_REG SPI4_CS0 3 IO
0x5310 020C
0x0000 05F7 GPIO131 7 IO
EQEP0_B 8 I
SDFM1_D0 9 I
D11 D11 D11 EQEP0_INDEX UART4_RXD 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EQEP0_INDEX_CFG_REG LIN4_RXD 1 IO
0x5310 0214
0x0000 05F7 SPI4_D1 3 IO
GPIO133 7 IO
EQEP0_INDEX 8 IO
SDFM1_D1 9 I
ADC_EXTCH_XBAROUT3 10 O
C12 C12 C12 EQEP0_STROBE UART4_TXD 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EQEP0_STROBE_CFG_REG LIN4_TXD 1 IO
0x5310 0210
0x0000 05F7 SPI4_D0 3 IO
GPIO132 7 IO
EQEP0_STROBE 8 IO
SDFM1_CLK1 9 I
ADC_EXTCH_XBAROUT2 10 O
P2 P2 P2 EXT_REFCLK0 EXT_REFCLK0 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
EXT_REFCLK0_CFG_REG XBAROUT15 5 O
0x5310 01E4
0x0000 05F7 GPIO121 7 IO
EQEP1_INDEX 9 IO

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 23


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
R17 R17 GPIO29 RGMII1_RXC 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_RXC_CFG_REG RMII1_REF_CLK 1 IO
0x5310 0074
0x0000 05F7 MII1_RXCLK 2 I
FSITX0_CLK 6 O
GPIO29 7 IO
EQEP2_A 8 I
EPWM14_A 10 O
N18 N18 GPIO35 RGMII1_TXC 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_TXC_CFG_REG MII1_TXCLK 2 I
0x5310 008C
0x0000 05F7 FSITX1_CLK 6 O
GPIO35 7 IO
EQEP0_INDEX 8 IO
EPWM14_B 10 O
M18 M18 GPIO36 RGMII1_TX_CTL 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_TX_CTL_CFG_REG RMII1_TX_EN 1 O
0x5310 0090
0x0000 05F7 MII1_TX_EN 2 O
FSITX1_DATA0 6 O
GPIO36 7 IO
EQEP0_STROBE 8 IO
EPWM15_B 10 O
P16 P16 GPIO37 RGMII1_TD0 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_TD0_CFG_REG RMII1_TXD0 1 O
0x5310 0094
0x0000 05F7 MII1_TXD0 2 O
FSITX1_DATA1 6 O
GPIO37 7 IO
EQEP1_A 8 I
EPWM15_A 9 O
EPWM15_B 10 O
A13 A13 A13 I2C0_SCL I2C0_SCL 0 IOD Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes I2C OD
I2C0_SCL_CFG_REG GPIO135 7 IOD
0x5310 021C
0x0000 05F7 EQEP2_B 8 ID
SDFM1_CLK3 9 ID
B13 B13 B13 I2C0_SDA I2C0_SDA 0 IOD Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes I2C OD
I2C0_SDA_CFG_REG GPIO134 7 IOD
0x5310 0218
0x0000 05F7 EQEP2_A 8 ID
SDFM1_CLK2 9 ID

24 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
D7 D7 D7 I2C1_SCL I2C1_SCL 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
I2C1_SCL_CFG_REG SPI3_CS0 2 IO
0x5310 005C
0x0000 05F7 XBAROUT7 5 O
GPIO23 7 IO
C8 C8 C8 I2C1_SDA I2C1_SDA 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
I2C1_SDA_CFG_REG SPI3_CLK 2 IO
0x5310 0060
0x0000 05F7 XBAROUT8 5 O
GPIO24 7 IO
A9 A9 A9 LIN1_RXD LIN1_RXD 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
LIN1_RXD_CFG_REG UART1_RXD 1 I
0x5310 004C
0x0000 05F7 SPI2_CS0 2 IO
OSPI0_ECC_FAIL 3 I
XBAROUT5 5 O
GPIO19 7 IO
OSPI0_RESET_OUT1 8 O
B9 B9 B9 LIN1_TXD LIN1_TXD 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
LIN1_TXD_CFG_REG UART1_TXD 1 O
0x5310 0050
0x0000 05F7 SPI2_CLK 2 IO
OSPI0_RESET_OUT0 3 O
XBAROUT6 5 O
GPIO20 7 IO
B8 B8 B8 LIN2_RXD LIN2_RXD 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
LIN2_RXD_CFG_REG UART2_RXD 1 I
0x5310 0054
0x0000 05F7 SPI2_D0 2 IO
GPIO21 7 IO
A8 A8 A8 LIN2_TXD LIN2_TXD 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
LIN2_TXD_CFG_REG UART2_TXD 1 O
0x5310 0058
0x0000 05F7 SPI2_D1 2 IO
GPIO22 7 IO
M1 M1 MCAN0_RX MCAN0_RX 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
MCAN0_RX_CFG_REG SPI4_CS0 1 IO
0x5310 001C
0x0000 05F7 OSPI0_D4 2 IO
OSPI0_DQS 6 I
GPIO7 7 IO

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 25


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
L1 L1 MCAN0_TX MCAN0_TX 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
MCAN0_TX_CFG_REG SPI4_CLK 1 IO
0x5310 0020
0x0000 05F7 OSPI0_D5 2 IO
OSPI0_D2 6 IO
GPIO8 7 IO
L2 L2 MCAN1_RX MCAN1_RX 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
MCAN1_RX_CFG_REG SPI4_D0 1 IO
0x5310 0024
0x0000 05F7 OSPI0_D6 2 IO
OSPI0_CLK 6 O
GPIO9 7 IO
K1 K1 K1 MCAN1_TX MCAN1_TX 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
MCAN1_TX_CFG_REG SPI4_D1 1 IO
0x5310 0028
0x0000 05F7 OSPI0_D7 2 IO
SPI7_D1 4 IO
UART1_DTRn 6 O
GPIO10 7 IO
EPWM13_B 10 O
A12 A12 A12 MCAN2_RX MCAN2_RX 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
MCAN2_RX_CFG_REG UART2_RTSn 1 O
0x5310 0224
0x0000 05F7 GPIO137 7 IO
EQEP2_INDEX 8 IO
SDFM1_D3 9 I
B12 B12 B12 MCAN2_TX MCAN2_TX 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
MCAN2_TX_CFG_REG UART1_RTSn 1 O
0x5310 0220
0x0000 05F7 GPIO136 7 IO
EQEP2_STROBE 8 IO
SDFM1_D2 9 I
M17 M17 M17 MDIO0_MDC MDIO0_MDC 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
MDIO0_MDC_CFG_REG GPIO42 7 IO
0x5310 00A8
0x0000 05F7
N16 N16 N16 MDIO0_MDIO MDIO0_MDIO 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
MDIO0_MDIO_CFG_REG GPIO41 7 IO
0x5310 00A4
0x0000 05F7

26 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
A5 A5 A5 MMC0_CD MMC0_CD 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
MMC0_CD_CFG_REG UART0_CTSn 1 I
0x5310 0150
0x0000 05F7 I2C2_SDA 2 IO
MCAN5_TX 3 O
EPWM20_B 5 O
GPIO84 7 IO
SDFM1_D3 8 I
EPWM20_B 10 O
B6 B6 B6 MMC0_CLK MMC0_CLK 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
MMC0_CLK_CFG_REG UART0_RXD 1 I
0x5310 0134
0x0000 05F7 LIN0_RXD 2 IO
MCAN0_RX 3 I
EPWM17_A 5 O
GPIO77 7 IO
SDFM1_CLK0 8 I
EPWM17_A 10 O
A4 A4 A4 MMC0_CMD MMC0_CMD 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
MMC0_CMD_CFG_REG UART0_TXD 1 O
0x5310 0138
0x0000 05F7 LIN0_TXD 2 IO
MCAN0_TX 3 O
EPWM17_B 5 O
GPIO78 7 IO
SDFM1_D0 8 I
EPWM17_B 10 O
C6 C6 C6 MMC0_WP MMC0_WP 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
MMC0_WP_CFG_REG UART0_RTSn 1 O
0x5310 014C
0x0000 05F7 I2C2_SCL 2 IO
MCAN5_RX 3 I
EPWM20_A 5 O
GPIO83 7 IO
SDFM1_CLK3 8 I
EPWM20_A 10 O

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 27


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
B5 B5 B5 MMC0_D0 MMC0_D0 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
MMC0_D0_CFG_REG UART2_RXD 1 I
0x5310 013C
0x0000 05F7 I2C1_SCL 2 IO
MCAN1_RX 3 I
EPWM18_A 5 O
GPIO79 7 IO
SDFM1_CLK1 8 I
EPWM18_A 10 O
B4 B4 B4 MMC0_D1 MMC0_D1 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
MMC0_D1_CFG_REG MCAN1_TX 3 O
0x5310 0140
0x0000 05F7 EPWM18_B 5 O
GPIO80 7 IO
SDFM1_D1 8 I
EPWM18_B 10 O
A3 A3 A3 MMC0_D2 MMC0_D2 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
MMC0_D2_CFG_REG UART2_TXD 1 O
0x5310 0144
0x0000 05F7 I2C1_SDA 2 IO
MCAN4_RX 3 I
EPWM19_A 5 O
GPIO81 7 IO
SDFM1_CLK2 8 I
EPWM19_A 10 O
A2 A2 A2 MMC0_D3 MMC0_D3 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
MMC0_D3_CFG_REG UART3_RTSn 1 O
0x5310 0148
0x0000 05F7 MCAN4_TX 3 O
EPWM19_B 5 O
GPIO82 7 IO
SDFM1_D2 8 I
EPWM19_B 10 O
H1, J1, NC NC NC NA
J4, K2,
K3, K4,
L2, M1,
M4, P1,
P3
LB LB LB OSPI0_CLKLB OSPI0_CLKLB 0 IO Off / Off / Off Off / Off / Off 0 3.3V VDDSHV0 Yes LVCMOS PU/PD
OSPI0_CLKLB_CFG_REG
0x5310 0244
0x0000 05F0

28 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
L1 OSPI0_ZCZ_F_WP OSPI0_ZCZ_F_WP 3.3V
J3 OSPI0_ZCZ_F_RESET_OUT0 OSPI0_ZCZ_F_RESET_OUT0 3.3V
R2 R2 R2 PORz PORz I 3.3V VDDSHV0 Yes RESET
L18 L18 L18 PR0_MDIO0_MDC PR0_MDIO0_MDC 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_MDIO0_MDC_CFG_REG EPWM21_B 5 O
0x5310 0158
0x0000 05F7 GPIO86 7 IO
EPWM21_B 10 O
L17 L17 L17 PR0_MDIO0_MDIO PR0_MDIO0_MDIO 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_MDIO0_MDIO_CFG_REG EPWM21_A 5 O
0x5310 0154
0x0000 05F7 GPIO85 7 IO
EPWM21_A 10 O
K17 K17 K17 PR0_PRU0_GPIO0 PR0_PRU0_GPIO0 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU0_GPO0_CFG_REG RMII2_RXD0 2 I
0x5310 0174
0x0000 05F7 RGMII2_RD0 3 I
MII2_RXD0 4 I
EPWM25_A 5 O
GPIO93 7 IO
EPWM25_A 10 O
K18 K18 K18 PR0_PRU0_GPIO1 PR0_PRU0_GPIO1 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU0_GPO1_CFG_REG RMII2_RXD1 2 I
0x5310 0178
0x0000 05F7 RGMII2_RD1 3 I
MII2_RXD1 4 I
EPWM25_B 5 O
GPIO94 7 IO
EPWM25_B 10 O
J18 J18 J18 PR0_PRU0_GPIO2 PR0_PRU0_GPIO2 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU0_GPO2_CFG_REG RGMII2_RD2 3 I
0x5310 017C
0x0000 05F7 MII2_RXD2 4 I
EPWM26_A 5 O
GPIO95 7 IO
EPWM26_A 10 O
J17 J17 J17 PR0_PRU0_GPIO3 PR0_PRU0_GPIO3 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU0_GPO3_CFG_REG RGMII2_RD3 3 I
0x5310 0180
0x0000 05F7 MII2_RXD3 4 I
EPWM26_B 5 O
GPIO96 7 IO
EPWM26_B 10 O

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 29


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
K16 K16 K16 PR0_PRU0_GPIO4 PR0_PRU0_GPIO4 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU0_GPO4_CFG_REG RGMII2_RX_CTL 3 I
0x5310 0170
0x0000 05F7 MII2_RXDV 4 I
EPWM24_B 5 O
GPIO92 7 IO
EPWM24_B 10 O
G17 G17 G17 PR0_PRU0_GPIO5 PR0_PRU0_GPIO5 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU0_GPO5_CFG_REG RMII2_RX_ER 2 I
0x5310 015C
0x0000 05F7 MII2_RX_ER 4 I
EPWM22_A 5 O
GPIO87 7 IO
EPWM22_A 10 O
K15 K15 K15 PR0_PRU0_GPIO6 PR0_PRU0_GPIO6 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU0_GPO6_CFG_REG RMII2_REF_CLK 2 IO
0x5310 016C
0x0000 05F7 RGMII2_RXC 3 I
MII2_RXCLK 4 I
EPWM24_A 5 O
GPIO91 7 IO
EPWM24_A 10 O
G15 G15 G15 PR0_PRU0_GPIO8 PR0_PRU0_GPIO8 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU0_GPO8_CFG_REG EPWM23_B 5 O
0x5310 0168
0x0000 05F7 GPIO90 7 IO
EPWM29_A 10 O
F17 F17 F17 PR0_PRU0_GPIO9 PR0_PRU0_GPIO9 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU0_GPO9_CFG_REG PR0_UART0_CTSn 3 I
0x5310 0160
0x0000 05F7 MII2_COL 4 I
EPWM22_B 5 O
GPIO88 7 IO
G18 G18 G18 PR0_PRU0_GPIO10 PR0_PRU0_GPIO10 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU0_GPO10_CFG_REG RMII2_CRS_DV 2 I
0x5310 0164
0x0000 05F7 PR0_UART0_RTSn 3 O
MII2_CRS 4 I
EPWM23_A 5 O
GPIO89 7 IO
EPWM22_B 10 O

30 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
M16 M16 M16 PR0_PRU0_GPIO11 PR0_PRU0_GPIO11 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU0_GPO11_CFG_REG RMII2_TXD0 2 O
0x5310 018C
0x0000 05F7 RGMII2_TD0 3 O
MII2_TXD0 4 O
EPWM28_A 5 O
GPIO99 7 IO
EPWM28_A 10 O
M15 M15 M15 PR0_PRU0_GPIO12 PR0_PRU0_GPIO12 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU0_GPO12_CFG_REG RMII2_TXD1 2 O
0x5310 0190
0x0000 05F7 RGMII2_TD1 3 O
MII2_TXD1 4 O
EPWM28_B 5 O
GPIO100 7 IO
EPWM28_B 10 O
H17 H17 H17 PR0_PRU0_GPIO13 PR0_PRU0_GPIO13 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU0_GPO13_CFG_REG RGMII2_TD2 3 O
0x5310 0194
0x0000 05F7 MII2_TXD2 4 O
EPWM29_A 5 O
GPIO101 7 IO
EPWM27_B 10 O
H16 H16 H16 PR0_PRU0_GPIO14 PR0_PRU0_GPIO14 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU0_GPO14_CFG_REG RGMII2_TD3 3 O
0x5310 0198
0x0000 05F7 MII2_TXD3 4 O
EPWM29_B 5 O
GPIO102 7 IO
EPWM29_B 10 O
L16 L16 L16 PR0_PRU0_GPIO15 PR0_PRU0_GPIO15 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU0_GPO15_CFG_REG RMII2_TX_EN 2 O
0x5310 0188
0x0000 05F7 RGMII2_TX_CTL 3 O
MII2_TX_EN 4 O
EPWM27_B 5 O
GPIO98 7 IO

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 31


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
H18 H18 H18 PR0_PRU0_GPIO16 PR0_PRU0_GPIO16 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU0_GPO16_CFG_REG RGMII2_TXC 3 O
0x5310 0184
0x0000 05F7 MII2_TXCLK 4 I
EPWM27_A 5 O
GPIO97 7 IO
EPWM27_A 10 O
F18 F18 F18 PR0_PRU1_GPIO0 PR0_PRU1_GPIO0 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO0_CFG_REG MCAN1_RX 1 I
0x5310 01B4
0x0000 05F7 FSITX2_DATA1 3 O
TRC_DATA6 4 O
GPIO109 7 IO
EPWM23_A 10 O
G16 G16 G16 PR0_PRU1_GPIO1 PR0_PRU1_GPIO1 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO1_CFG_REG MCAN1_TX 1 O
0x5310 01B8
0x0000 05F7 FSIRX2_CLK 3 I
TRC_DATA7 4 O
GPIO110 7 IO
E17 E17 E17 PR0_PRU1_GPIO2 PR0_PRU1_GPIO2 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO2_CFG_REG MCAN4_RX 1 I
0x5310 01BC
0x0000 05F7 FSIRX2_DATA0 3 I
TRC_DATA8 4 O
GPIO111 7 IO
E18 E18 E18 PR0_PRU1_GPIO3 PR0_PRU1_GPIO3 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO3_CFG_REG MCAN4_TX 1 O
0x5310 01C0
0x0000 05F7 FSIRX2_DATA1 3 I
TRC_DATA9 4 O
GPIO112 7 IO
EPWM23_B 10 O
F16 F16 F16 PR0_PRU1_GPIO4 PR0_PRU1_GPIO4 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO4_CFG_REG MCAN0_TX 1 O
0x5310 01B0
0x0000 05F7 FSITX2_DATA0 3 O
TRC_DATA5 4 O
GPIO108 7 IO

32 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
F15 F15 F15 PR0_PRU1_GPIO5 PR0_PRU1_GPIO5 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO5_CFG_REG SPI5_CS0 2 IO
0x5310 019C
0x0000 05F7 TRC_DATA0 4 O
EPWM30_A 5 O
GPIO103 7 IO
ADC_EXTCH_XBAROUT6 9 O
EPWM30_A 10 O
E16 E16 E16 PR0_PRU1_GPIO6 PR0_PRU1_GPIO6 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO6_CFG_REG MCAN0_RX 1 I
0x5310 01AC
0x0000 05F7 FSITX2_CLK 3 O
TRC_DATA4 4 O
GPIO107 7 IO
D18 D18 D18 PR0_PRU1_GPIO8 PR0_PRU1_GPIO8 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO8_CFG_REG SPI5_D1 2 IO
0x5310 01A8
0x0000 05F7 TRC_DATA3 4 O
EPWM31_B 5 O
GPIO106 7 IO
RES0_PWMOUT1 8 O
EPWM31_B 10 O
C18 C18 C18 PR0_PRU1_GPIO9 PR0_PRU1_GPIO9 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO9_CFG_REG SPI5_CLK 2 IO
0x5310 01A0
0x0000 05F7 PR0_UART0_RXD 3 I
TRC_DATA1 4 O
EPWM30_B 5 O
GPIO104 7 IO
ADC_EXTCH_XBAROUT7 9 O
D17 D17 D17 PR0_PRU1_GPIO10 PR0_PRU1_GPIO10 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO10_CFG_REG SPI5_D0 2 IO
0x5310 01A4
0x0000 05F7 PR0_UART0_TXD 3 O
TRC_DATA2 4 O
EPWM31_A 5 O
GPIO105 7 IO
RES0_PWMOUT0 8 O
EPWM31_A 10 O

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 33


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
B18 B18 B18 PR0_PRU1_GPIO11 PR0_PRU1_GPIO11 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO11_CFG_REG MCAN6_RX 1 I
0x5310 01CC
0x0000 05F7 SPI6_CS0 2 IO
FSITX3_DATA1 3 O
TRC_DATA12 4 O
EPWM16_A 5 O
GPIO115 7 IO
B17 B17 B17 PR0_PRU1_GPIO12 PR0_PRU1_GPIO12 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO12_CFG_REG MCAN6_TX 1 O
0x5310 01D0
0x0000 05F7 SPI6_CLK 2 IO
FSIRX3_CLK 3 I
TRC_DATA13 4 O
EPWM16_B 5 O
GPIO116 7 IO
D16 D16 D16 PR0_PRU1_GPIO13 PR0_PRU1_GPIO13 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO13_CFG_REG MCAN7_RX 1 I
0x5310 01D4
0x0000 05F7 SPI6_D0 2 IO
FSIRX3_DATA0 3 I
TRC_DATA14 4 O
XBAROUT11 5 O
GPIO117 7 IO
RES0_PWMOUT0 8 O
C17 C17 C17 PR0_PRU1_GPIO14 PR0_PRU1_GPIO14 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO14_CFG_REG MCAN7_TX 1 O
0x5310 01D8
0x0000 05F7 SPI6_D1 2 IO
FSIRX3_DATA1 3 I
TRC_DATA15 4 O
XBAROUT12 5 O
GPIO118 7 IO
RES0_PWMOUT1 8 O
A17 A17 A17 PR0_PRU1_GPIO15 PR0_PRU1_GPIO15 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO15_CFG_REG MCAN5_TX 1 O
0x5310 01C8
0x0000 05F7 FSITX3_DATA0 3 O
TRC_DATA11 4 O
GPIO114 7 IO

34 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
C16 C16 C16 PR0_PRU1_GPIO16 PR0_PRU1_GPIO16 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO16_CFG_REG MCAN5_RX 1 I
0x5310 01C4
0x0000 05F7 FSITX3_CLK 3 O
TRC_DATA10 4 O
GPIO113 7 IO
C15 C15 C15 PR0_PRU1_GPIO18 PR0_PRU1_GPIO18 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO18_CFG_REG UART3_TXD 2 O
0x5310 01E0
0x0000 05F7 PR0_IEP0_EDIO_DATA_IN_OUT31 3 IO
TRC_CTL 4 O
XBAROUT14 5 O
GPIO120 7 IO
EQEP1_B 9 I
D15 D15 D15 PR0_PRU1_GPIO19 PR0_PRU1_GPIO19 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
PR0_PRU1_GPO19_CFG_REG UART3_RXD 2 I
0x5310 01DC
0x0000 05F7 PR0_IEP0_EDC_SYNC_OUT0 3 O
TRC_CLK 4 O
XBAROUT13 5 O
GPIO119 7 IO
EQEP1_A 9 I
N2 N2 N2 QSPI0_CLK OSPI0_CLK 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
QSPI0_CLK_CFG_REG MCAN7_RX 2 I
0x5310 0008
0x0000 05F7 SPI7_CS0 4 IO
UART3_CTSn 6 I
GPIO2 7 IO
EPWM12_A 10 O
P1 P1 QSPI0_CSn0 OSPI0_CSn0 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
QSPI0_CSn0_CFG_REG OSPI0_D0 6 IO
0x5310 0000
0x0000 05F7 GPIO0 7 IO

R3 R3 R3 QSPI0_CSn1 OSPI0_CSn1 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
QSPI0_CSn1_CFG_REG MCAN5_TX 2 O
0x5310 0004
0x0000 05F7 SPI4_CS1 4 IO
XBAROUT0 5 O
UART2_RTSn 6 O
GPIO1 7 IO
FSIRX2_DATA1 8 I
EPWM10_B 10 O

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 35


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
N1 N1 N1 QSPI0_D0 OSPI0_D0 0 IO On / Off / Off On / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
QSPI0_D0_CFG_REG MCAN7_TX 2 O
0x5310 000C
0x0000 05D7 SPI7_CLK 4 IO
UART1_DCDn 6 I
GPIO3 7 IO
EPWM12_B 10 O
SOP0 Bootstrap I
N4 N4 N4 QSPI0_D1 OSPI0_D1 0 IO On / Off / Off On / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
QSPI0_D1_CFG_REG SPI7_D0 4 IO
0x5310 0010
0x0000 05D7 UART1_RIn 6 I
GPIO4 7 IO
EPWM13_A 10 O
SOP1 Bootstrap I
M4 M4 QSPI0_D2 OSPI0_D2 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
QSPI0_D2_CFG_REG OSPI0_D6 6 IO
0x5310 0014
0x0000 05F7 GPIO5 7 IO

P3 P3 QSPI0_D3 OSPI0_D3 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
QSPI0_D3_CFG_REG OSPI0_D4 6 IO
0x5310 0018
0x0000 05F7 GPIO6 7 IO

R17 RGMII1_RXC RGMII1_RXC 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_RXC_CFG_REG RMII1_REF_CLK 1 IO
0x5310 0074
0x0000 05F7 MII1_RXCLK 2 I
FSITX0_CLK 6 O
GPIO29 7 IO
EQEP2_A 8 I
EPWM14_A 10 O
R18 RGMII1_RX_CTL RGMII1_RX_CTL 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_RX_CTL_CFG_REG RMII1_RX_ER 1 I
0x5310 0078
0x0000 05F7 MII1_RXDV 2 I
FSITX0_DATA0 6 O
GPIO30 7 IO
EQEP2_B 8 I

36 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
N18 RGMII1_TXC RGMII1_TXC 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_TXC_CFG_REG MII1_TXCLK 2 I
0x5310 008C
0x0000 05F7 FSITX1_CLK 6 O
GPIO35 7 IO
EQEP0_INDEX 8 IO
EPWM14_B 10 O
M18 RGMII1_TX_CTL RGMII1_TX_CTL 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_TX_CTL_CFG_REG RMII1_TX_EN 1 O
0x5310 0090
0x0000 05F7 MII1_TX_EN 2 O
FSITX1_DATA0 6 O
GPIO36 7 IO
EQEP0_STROBE 8 IO
EPWM15_B 10 O
U17 RGMII1_RD0 RGMII1_RD0 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_RD0_CFG_REG RMII1_RXD0 1 I
0x5310 007C
0x0000 05F7 MII1_RXD0 2 I
FSITX0_DATA1 6 O
GPIO31 7 IO
EQEP2_STROBE 8 IO
T17 RGMII1_RD1 RGMII1_RD1 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_RD1_CFG_REG RMII1_RXD1 1 I
0x5310 0080
0x0000 05F7 MII1_RXD1 2 I
FSIRX0_CLK 6 I
GPIO32 7 IO
EQEP2_INDEX 8 IO
U18 RGMII1_RD2 RGMII1_RD2 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_RD2_CFG_REG MII1_RXD2 2 I
0x5310 0084
0x0000 05F7 FSIRX0_DATA0 6 I
GPIO33 7 IO
EQEP0_A 8 I
T18 RGMII1_RD3 RGMII1_RD3 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_RD3_CFG_REG MII1_RXD3 2 I
0x5310 0088
0x0000 05F7 FSIRX0_DATA1 6 I
GPIO34 7 IO
EQEP0_B 8 I

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 37


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
P16 RGMII1_TD0 RGMII1_TD0 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_TD0_CFG_REG RMII1_TXD0 1 O
0x5310 0094
0x0000 05F7 MII1_TXD0 2 O
FSITX1_DATA1 6 O
GPIO37 7 IO
EQEP1_A 8 I
EPWM15_A 9 O
EPWM15_B 10 O
P17 RGMII1_TD1 RGMII1_TD1 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_TD1_CFG_REG RMII1_TXD1 1 O
0x5310 0098
0x0000 05F7 MII1_TXD1 2 O
FSIRX1_CLK 6 I
GPIO38 7 IO
EQEP1_B 8 I
P18 RGMII1_TD2 RGMII1_TD2 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_TD2_CFG_REG RMII1_CRS_DV 1 I
0x5310 009C
0x0000 05F7 MII1_TXD2 2 O
FSIRX1_DATA0 6 I
GPIO39 7 IO
EQEP1_STROBE 8 IO
N17 RGMII1_TD3 RGMII1_TD3 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
RGMII1_TD3_CFG_REG MII1_TXD3 2 O
0x5310 00A0
0x0000 05F7 FSIRX1_DATA1 6 I
GPIO40 7 IO
EQEP1_INDEX 8 IO
J16 J16 J16 RSVD_J16 RSVD_J16 RSVD Reserved Reserved Reserved
P15 P15 RSVD_P15 RSVD_P15 RSVD Reserved Reserved Reserved
T4 T4 T4 RSVD_T4 RSVD_T4 RSVD Reserved Reserved Reserved
U1 U1 U1 RSVD_U1 RSVD_U1 RSVD Reserved Reserved Reserved
U3 U3 U3 RSVD_U3 RSVD_U3 RSVD Reserved Reserved Reserved
V2 V2 V2 RSVD_V2 RSVD_V2 RSVD Reserved Reserved Reserved
D4 D4 D4 SAFETY_ERRORn SAFETY_ERRORn 0 IO On / Off / Down On / NA / Down 0 3.3V VDDSHV0 Yes LVCMOS PU/PD
SAFETY_ERRORn_CFG_REG
0x5310 0230
0x0000 0410

38 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
B16 B16 B16 SDFM0_CLK0 CLKOUT1 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SDFM0_CLK0_CFG_REG GPIO122 7 IO
0x5310 01E8
0x0000 05F7 SDFM0_CLK0 8 I
EQEP1_STROBE 9 IO
A16 A16 A16 SDFM0_CLK1 PR0_PRU1_GPIO7 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SDFM0_CLK1_CFG_REG CPTS0_TS_SYNC 1 O
0x5310 01F0
0x0000 05F7 UART5_RTSn 2 O
PR0_IEP0_EDC_SYNC_OUT1 3 O
I2C3_SDA 5 IO
GPIO124 7 IO
SDFM0_CLK1 8 I
B15 B15 B15 SDFM0_CLK2 UART5_TXD 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SDFM0_CLK2_CFG_REG I2C3_SCL 5 IO
0x5310 01F8
0x0000 05F7 GPIO126 7 IO
SDFM0_CLK2 8 I
ADC_EXTCH_XBAROUT8 9 O
A15 A15 A15 SDFM0_CLK3 MCAN3_TX 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SDFM0_CLK3_CFG_REG UART5_RXD 1 I
0x5310 0200
0x0000 05F7 GPIO128 7 IO
SDFM0_CLK3 8 I
ADC_EXTCH_XBAROUT9 9 O
D14 D14 D14 SDFM0_D0 PR0_ECAP0_APWM_OUT 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SDFM0_D0_CFG_REG GPIO123 7 IO
0x5310 01EC
0x0000 05F7 SDFM0_D0 8 I

D13 D13 D13 SDFM0_D1 PR0_PRU1_GPIO17 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SDFM0_D1_CFG_REG UART5_CTSn 2 I
0x5310 01F4
0x0000 05F7 PR0_IEP0_EDIO_DATA_IN_OUT30 3 IO
GPIO125 7 IO
SDFM0_D1 8 I
C13 C13 C13 SDFM0_D2 UART5_RXD 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SDFM0_D2_CFG_REG GPIO127 7 IO
0x5310 01FC
0x0000 05F7 SDFM0_D2 8 I
ADC_EXTCH_XBAROUT0 9 O
C14 C14 C14 SDFM0_D3 MCAN3_RX 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SDFM0_D3_CFG_REG GPIO129 7 IO
0x5310 0204
0x0000 05F7 SDFM0_D3 8 I
ADC_EXTCH_XBAROUT1 9 O

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 39


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
A11 A11 A11 SPI0_CLK SPI0_CLK 0 IO On / Off / Off On / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SPI0_CLK_CFG_REG UART3_TXD 1 O
0x5310 0030
0x0000 05D7 LIN3_TXD 2 IO
FSITX0_CLK 6 O
GPIO12 7 IO
ADC_EXTCH_XBAROUT1 9 O
SOP2 Bootstrap I
A10 A10 A10 SPI1_CLK SPI1_CLK 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SPI1_CLK_CFG_REG UART4_RXD 1 I
0x5310 0040
0x0000 05F7 LIN4_RXD 2 IO
XBAROUT2 5 O
FSIRX0_CLK 6 I
GPIO16 7 IO
ADC_EXTCH_XBAROUT5 9 O
C11 C11 C11 SPI0_CS0 SPI0_CS0 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SPI0_CS0_CFG_REG UART3_RXD 1 I
0x5310 002C
0x0000 05F7 LIN3_RXD 2 IO
GPIO11 7 IO
ADC_EXTCH_XBAROUT0 9 O
C10 C10 C10 SPI0_D0 SPI0_D0 0 IO On / Off / Off On / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SPI0_D0_CFG_REG FSITX0_DATA0 6 O
0x5310 0034
0x0000 05D7 GPIO13 7 IO
ADC_EXTCH_XBAROUT2 9 O
SOP3 Bootstrap I
B11 B11 B11 SPI0_D1 SPI0_D1 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SPI0_D1_CFG_REG FSITX0_DATA1 6 O
0x5310 0038
0x0000 05F7 GPIO14 7 IO
ADC_EXTCH_XBAROUT3 9 O
C9 C9 C9 SPI1_CS0 SPI1_CS0 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SPI1_CS0_CFG_REG UART4_TXD 1 O
0x5310 003C
0x0000 05F7 LIN4_TXD 2 IO
XBAROUT1 5 O
GPIO15 7 IO
ADC_EXTCH_XBAROUT4 9 O

40 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
B10 B10 B10 SPI1_D0 SPI1_D0 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SPI1_D0_CFG_REG UART5_TXD 1 O
0x5310 0044
0x0000 05F7 XBAROUT3 5 O
FSIRX0_DATA0 6 I
GPIO17 7 IO
ADC_EXTCH_XBAROUT6 9 O
D9 D9 D9 SPI1_D1 SPI1_D1 0 IO Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
SPI1_D1_CFG_REG UART5_RXD 1 I
0x5310 0048
0x0000 05F7 XBAROUT4 5 O
FSIRX0_DATA1 6 I
GPIO18 7 IO
ADC_EXTCH_XBAROUT7 9 O
B3 B3 B3 TCK TCK 0 I On / NA / Up On / NA / Up 0 3.3V VDDSHV0 Yes HIGH HYST
TCK_CFG_REG
0x5310 0240
0x0000 0210
C5 C5 C5 TDI TDI 0 I On / Off / Up On / Off / Up 0 3.3V VDDSHV0 Yes LVCMOS PU/PD
TDI_CFG_REG
0x5310 0234
0x0000 06D0
C4 C4 C4 TDO TDO 0 O Off / Off / Up Off / NA / Up 0 3.3V VDDSHV0 Yes LVCMOS PU/PD
TDO_CFG_REG
0x5310 0238
0x0000 0630
D5 D5 D5 TMS TMS 0 IO On / Off / Up On / NA / Up 0 3.3V VDDSHV0 Yes LVCMOS PU/PD
TMS_CFG_REG
0x5310 023C
0x0000 0610
B7 B7 B7 UART0_CTSn UART0_CTSn 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
UART0_CTSn_CFG_REG I2C2_SDA 1 IO
0x5310 0068
0x0000 05F7 SPI3_D1 2 IO
MCAN3_RX 3 I
SPI0_CS1 4 IO
XBAROUT10 5 O
GPIO26 7 IO

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 41


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
C7 C7 C7 UART0_RTSn UART0_RTSn 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
UART0_RTSn_CFG_REG I2C2_SCL 1 IO
0x5310 0064
0x0000 05F7 SPI3_D0 2 IO
MCAN3_TX 3 O
XBAROUT9 5 O
GPIO25 7 IO
A7 A7 A7 UART0_RXD UART0_RXD 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
UART0_RXD_CFG_REG LIN0_RXD 1 IO
0x5310 006C
0x0000 05F7 GPIO27 7 IO

A6 A6 A6 UART0_TXD UART0_TXD 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
UART0_TXD_CFG_REG LIN0_TXD 1 IO
0x5310 0070
0x0000 05F7 GPIO28 7 IO

L3 L3 L3 UART1_RXD UART1_RXD 0 I Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
UART1_RXD_CFG_REG LIN1_RXD 1 IO
0x5310 012C
0x0000 05F7 OSPI0_LBCLKO 2 O
EPWM16_A 5 O
GPIO75 7 IO
EPWM16_A 10 O
EPWM10_A 11 O
M3 M3 M3 UART1_TXD UART1_TXD 0 O Off / Off / Off Off / Off / Off 7 3.3V VDDSHV0 Yes LVCMOS PU/PD
UART1_TXD_CFG_REG LIN1_TXD 1 IO
0x5310 0130
0x0000 05F7 OSPI0_DQS 2 I
EPWM16_B 5 O
GPIO76 7 IO
EPWM16_B 10 O
E11, E9, E11, E9, E11, E9, VDD VDD PWR 1.2V
F11, F9, F11, F9, F11, F9,
G13, G13, G13,
G14, G5, G14, G5, G14, G5,
G6, K13, G6, K13, G6, K13,
K14, K5, K14, K5, K14, K5,
K6, N13, K6, N13, K6, N13,
N14, N5, N14, N5, N14, N5,
N6, R9 N6, R9 N6, R9
R11, R8 R11, R8 R11, R8 VDDA18 VDDA18 PWR 1.8V
R6 R6 R6 VDDA18_LDO VDDA18_LDO PWR 1.8V
R4 R4 R4 VDDA18_OSC_PLL VDDA18_OSC_PLL PWR 1.8V
P11, P7, P11, P7, P11, P7, VDDA33 VDDA33 PWR 3.3V
P9 P9 P9
J15 J15 J15 VDDAR1 VDDAR1 PWR 1.2V

42 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
D10 D10 D10 VDDAR2 VDDAR2 PWR 1.2V
H3 H3 H3 VDDAR3 VDDAR3 PWR 1.2V
D6, E15, D6, E15, D6, E15, VDDS18 VDDS18 PWR 1.8V
L4, N15 L4, N15 L4, N15
T3 T3 T3 VDDS18_LDO VDDS18_LDO PWR 1.8V
D12, D8, D12, D8, D12, D8, VDDS33 VDDS33 PWR 3.3V
H15, H4, H15, H4, H15, H4,
L15, P4, L15, P4, L15, P4,
R15 R15 R15
N3 N3 N3 VPP VPP PWR VPP

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 43


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
A1, A18, A1, A18, A1, A18, VSS VSS GND VSS
E10, E10, E10,
E12, E12, E12,
E13, E13, E13,
E14, E5, E14, E5, E14, E5,
E6, E7, E6, E7, E6, E7,
E8, F10, E8, F10, E8, F10,
F12, F13, F12, F13, F12, F13,
F14, F5, F14, F5, F14, F5,
F6, F7, F6, F7, F6, F7,
F8, G10, F8, G10, F8, G10,
G11, G11, G11,
G12, G7, G12, G7, G12, G7,
G8, G9, G8, G9, G8, G9,
H10, H10, H10,
H11, H11, H11,
H12, H12, H12,
H13, H13, H13,
H14, H5, H14, H5, H14, H5,
H6, H7, H6, H7, H6, H7,
H8, H9, H8, H9, H8, H9,
J10, J11, J10, J11, J10, J11,
J12, J13, J12, J13, J12, J13,
J14, J5, J14, J5, J14, J5,
J6, J7, J6, J7, J6, J7,
J8, J9, J8, J9, J8, J9,
K10, K11, K10, K11, K10, K11,
K12, K7, K12, K7, K12, K7,
K8, K9, K8, K9, K8, K9,
L10, L11, L10, L11, L10, L11,
L12, L13, L12, L13, L12, L13,
L14, L5, L14, L5, L14, L5,
L6, L7, L6, L7, L6, L7,
L8, L9, L8, L9, L8, L9,
M10, M10, M10,
M11, M11, M11,
M12, M12, M12,
M13, M13, M13,
M14, M5, M14, M5, M14, M5,
M6, M7, M6, M7, M6, M7,
M8, M9, M8, M9, M8, M9,
N10, N10, N10,
N11, N11, N11,
N12, N7, N12, N7, N12, N7,
N8, N9, N8, N9, N8, N9,
P13, P13, P13,
P14, P5, P14, P5, P14, P5,
T2, V18 T2 T2
P10, P10, P10, VSSA VSSA AGND VSSA
P12, P6, P12, P6, P12, P6,
P8, R13, P8, R13, P8, R13,
R5, V1, R5, V1, R5, V1,
V16 V18 V18
U2 U2 U2 VSYS_MON VSYS_MON A 0.9V VDDA_CIO AnalogCIO

44 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-1. Pin Attributes (ZCZ_C, ZCZ_S, ZCZ_F Packages) (continued)


BALL NAME [2]/ BALL BALL
ZCZ_C ZCZ_S ZCZ_F MUX
IOMUX MUX STATE STATE IO PULL
BALL BALL BALL TYPE MODE HYS BUFFER
REGISTER [14]/ SIGNAL NAME [3] MODE DURING AFTER VOLTAGE POWER [10] TYPE
NUMBE NUMBE NUMBE [5] AFTER [11] TYPE [12]
ADDRESS [15]/ [4] RESET RESET [9] [13]
R [1] R [1] R [1] RESET [8]
DEFAULT VALUE [16] RX/TX/PULL [6] RX/TX/PULL [7]
C3 C3 C3 WARMRSTn WARMRSTn 0 IO On / Off / Off On / NA / Off 0 3.3V VDDSHV0 FS OD
WARMRSTn_CFG_REG
0x5310 022C
0x0000 0510
T1 T1 T1 XTAL_XI XTAL_XI I 1.8V VDDA18_OSC_ Yes HFOSC
PLL
R1 R1 R1 XTAL_XO XTAL_XO O 1.8V VDDA18_OSC_ HFOSC
PLL

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 45


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

5.3 Signal Descriptions

Many signals are available on multiple pins, according to the software configuration of the pin multiplexing
options.
The following list describes the column headers:

1. SIGNAL NAME: The name of the signal passing through the pin.

Note
Signal names and descriptions provided in each Signal Descriptions table, represent the pin
multiplexed signal function which is implemented at the pin and selected via IOMUX pad configuration
registers. Some device subsystems provide secondary multiplexing of signal functions, which are not
described in these tables. For more information on secondary multiplexed signal functions, see the
respective peripheral chapter of the device TRM.

2. PIN TYPE: Signal direction and type:


• I = Input
• O = Output
• IO = Input, Output, or simultaneously Input and Output
• ID = Input with open-drain output function
• OD = Output, with open-drain output function
• IOD = Input, Output, or simultaneously Input and Output, with open-drain output function
• IOZ = Input, Output, or simultaneously Input and Output, with three-state output function
• OZ = Output with three-state output function
• A = Analog
• CAP = LDO capacitor
• PWR = Power
• GND = Ground
3. DESCRIPTION: Description of the signal
4. BALL: Associated ball number

For more information on the I/O cell configurations, see the Pad Configuration Registers section within the
Device Configuration chapter of the device TRM.

46 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

5.3.1 ADC
Table 5-2. ADC0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
ADC Analog Input 0 (+IN0)
ADC0_AIN0 I V15 V15 V15
CMPSSA0: inH (+IN)
ADC Analog Input 1 (-IN0)
ADC0_AIN1 I U15 U15 U15
CMPSSA0: inL (-IN)
ADC Analog Input 2 (+IN1)
ADC0_AIN2 I T14 T14 T14
CMPSSA1: inH (+IN)
ADC Analog Input 3 (-IN1)
ADC0_AIN3 I U14 U14 U14
CMPSSA1: inL (-IN)
ADC Analog Input 4 (+IN2)
ADC0_AIN4 I U13 U13 U13
CMPSSB0: inH/inL (+IN/-IN)
ADC Analog Input 5 (-IN2)
ADC0_AIN5 I R14 R14 R14
CMPSSB1: inH/inL (+IN/-IN)

Table 5-3. ADC1 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
ADC Analog Input 0 (+IN0)
ADC1_AIN0 I T11 T11 T11
CMPSSA2: inH (+IN)
ADC Analog Input 1 (-IN0)
ADC1_AIN1 I U11 U11 U11
CMPSSA2: inL (-IN)
ADC Analog Input 2 (+IN1)
ADC1_AIN2 I T12 T12 T12
CMPSSA3: inH (+IN)
ADC Analog Input 3 (-IN1)
ADC1_AIN3 I V12 V12 V12
CMPSSA3: inL (-IN)
ADC Analog Input 4 (+IN2)
ADC1_AIN4 I U12 U12 U12
CMPSSB2: inH/inL (+IN/-IN)
ADC Analog Input 5 (-IN2)
ADC1_AIN5 I R12 R12 R12
CMPSSB3: inH/inL (+IN/-IN)

Table 5-4. ADC2 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
ADC Analog Input 0 (+IN0)
ADC2_AIN0 I R10 R10 R10
CMPSSA4: inH (+IN)
ADC Analog Input 1 (-IN0)
ADC2_AIN1 I T10 T10 T10
CMPSSA4: inL (-IN)
ADC Analog Input 2 (+IN1)
ADC2_AIN2 I U10 U10 U10
CMPSSA5: inH (+IN)
ADC Analog Input 3 (-IN1)
ADC2_AIN3 I T9 T9 T9
CMPSSA5: inL (-IN)
ADC Analog Input 4 (+IN2)
ADC2_AIN4 I V9 V9 V9
CMPSSB4: inH/inL (+IN/-IN)
ADC Analog Input 5 (-IN2)
ADC2_AIN5 I T8 T8 T8
CMPSSB5: inH/inL (+IN/-IN)

Table 5-5. ADC3 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
ADC Analog Input 0 (+IN0)
ADC3_AIN0 I U7 U7 U7
CMPSSA6: inH (+IN)
ADC Analog Input 1 (-IN0)
ADC3_AIN1 I U8 U8 U8
CMPSSA6: inL (-IN)
ADC Analog Input 2 (+IN1)
ADC3_AIN2 I T7 T7 T7
CMPSSA7: inH (+IN)
ADC Analog Input 3 (-IN1)
ADC3_AIN3 I R7 R7 R7
CMPSSA7: inL (-IN)
ADC Analog Input 4 (+IN2)
ADC3_AIN4 I V8 V8 V8
CMPSSB6: inH/inL (+IN/-IN)

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 47


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-5. ADC3 Signal Descriptions (continued)


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
ADC Analog Input 5 (-IN2)
ADC3_AIN5 I U9 U9 U9
CMPSSB7: inH/inL (+IN/-IN)

Table 5-6. ADC4 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
ADC Analog Input 0 (+IN0)
ADC4_AIN0 I U6 U6 U6
CMPSSA8: inH (+IN)
ADC Analog Input 1 (-IN0)
ADC4_AIN1 I V5 V5 V5
CMPSSA8: inL (-IN)
ADC Analog Input 2 (+IN1)
ADC4_AIN2 I V4 V4 V4
CMPSSA9: inH (+IN)
ADC Analog Input 3 (-IN1)
ADC4_AIN3 I U5 U5 U5
CMPSSA9: inL (-IN)
ADC Analog Input 4 (+IN2)
ADC4_AIN4 I V3 V3 V3
CMPSSB8: inH/inL (+IN/-IN)
ADC Analog Input 5 (-IN2)
ADC4_AIN5 I U4 U4 U4
CMPSSB9: inH/inL (+IN/-IN)

5.3.1.1 ADC-CMPSS Signal Connections


In each ADC, two sets of differential pins shall be shared with pins of two CMPSSA and remaining one pair of
differential pins shall be connected to two independent pins of CMPSSB. These pins are demonstrated in Figure
5-1 and Table 5-7 where the CHSEL values determine how the inputs are fed into ADC.

CMPSS-A CMPSS-A CMPSS-B CMPSS-B


+

+
+

+
+

+



12-bit 12-bit 12-bit 12-bit


DAC DAC DAC DAC

DAC-H DAC-L DAC-H DAC-L


12-bit 12-bit 12-bit 12-bit Code Code Code Code
DAC DAC DAC DAC

DAC-H DAC-L DAC-H DAC-L


Code Code Code Code

ATB
INP-0
INM-0
INP-1
INM-1 12-bit
4 MSPS
INP-2
INM-2
CAL-0
CAL-1

Figure 5-1. CMPSS and ADC Connections

Table 5-7. Connectivity between ADC Inputs to CMPSS Signals


Signal/Pin Name ADC Input CMPSS Input
ADC0 Channels
ADC0_AIN0 ADC0:inp0 (+IN0) CMPSSA0:inH (+IN)
ADC0_AIN1 ADC0:inm0 (-IN0) CMPSSA0:inL (-IN)
ADC0_AIN2 ADC0:inp1 (+IN1) CMPSSA1:inH (+IN)
ADC0_AIN3 ADC0:inm1 (-IN1) CMPSSA1:inL (-IN)

48 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-7. Connectivity between ADC Inputs to CMPSS Signals (continued)


Signal/Pin Name ADC Input CMPSS Input
ADC0_AIN4 ADC0:inp2 (+IN2) CMPSSB0:inH/inL (+IN/-IN)
ADC0_AIN5 ADC0:inm2 (-IN2) CMPSSB1:inH/inL (+IN/-IN)
ADC_CAL1 ADC0:inm3 (-IN3) X
ADC_CAL0 ADC0:inp3 (+IN3) X
ADC1 Channels
ADC1_AIN0 ADC1:inp0 (+IN0) CMPSSA2:inH (+IN)
ADC1_AIN1 ADC1:inm0 (-IN0) CMPSSA2:inL (-IN)
ADC1_AIN2 ADC1:inp1 (+IN1) CMPSSA3:inH (+IN)
ADC1_AIN3 ADC1:inm1 (-IN1) CMPSSA3:inL (-IN)
ADC1_AIN4 ADC1:inp2 (+IN2) CMPSSB2:inH/inL (+IN/-IN)
ADC1_AIN5 ADC1:inm2 (-IN2) CMPSSB3:inH/inL (+IN/-IN)
ADC_CAL1 ADC1:inm3 (-IN3) X
ADC_CAL0 ADC1:inp3 (+IN3) X
ADC2 Channels
ADC2_AIN0 ADC2:inp0 (+IN0) CMPSSA4:inH (+IN)
ADC2_AIN1 ADC2:inm0 (-IN0) CMPSSA4:inL (-IN)
ADC2_AIN2 ADC2:inp1 (+IN1) CMPSSA5:inH (+IN)
ADC2_AIN3 ADC2:inm1 (-IN1) CMPSSA5:inL (-IN)
ADC2_AIN4 ADC2:inp2 (+IN2) CMPSSB4:inH/inL (+IN/-IN)
ADC2_AIN5 ADC2:inm2 (-IN2) CMPSSB5:inH/inL (+IN/-IN)
ADC_CAL1 ADC2:inm3 (-IN3) X
ADC_CAL0 ADC2:inp3 (+IN3) X
ADC3 Channels
ADC3_AIN0 ADC3:inp0 (+IN0) CMPSSA6:inH (+IN)
ADC3_AIN1 ADC3:inm0 (-IN0) CMPSSA6:inL (-IN)
ADC3_AIN2 ADC3:inp1 (+IN1) CMPSSA7:inH (+IN)
ADC3_AIN3 ADC3:inm1 (-IN1) CMPSSA7:inL (-IN)
ADC3_AIN4 ADC3:inp2 (+IN2) CMPSSB6:inH/inL (+IN/-IN)
ADC3_AIN5 ADC3:inm2 (-IN2) CMPSSB7:inH/inL (+IN/-IN)
ADC_CAL1 ADC3:inm3 (-IN3) X
ADC_CAL0 ADC3:inp3 (+IN3) X
ADC4 Channels
ADC4_AIN0 ADC4:inp0 (+IN0) CMPSSA8:inH (+IN)
ADC4_AIN1 ADC4:inm0 (-IN0) CMPSSA8:inL (-IN)
ADC4_AIN2 ADC4:inp1 (+IN1) CMPSSA9:inH (+IN)
ADC4_AIN3 ADC4:inm1 (-IN1) CMPSSA9:inL (-IN)
ADC4_AIN4 ADC4:inp2 (+IN2) CMPSSB8:inH/inL (+IN/-IN)
ADC4_AIN5 ADC4:inm2 (-IN2) CMPSSB9:inH/inL (+IN/-IN)
ADC_CAL0 ADC4:inp3 (+IN3) X
ADC_CAL1 ADC4:inm3 (-IN3) X

Note
In the ADC Input column in ADC-CMPSS Signal Connectivity Table above, "inp" stands for positive
inputs and "inm" stands for negative inputs.

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 49


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

5.3.2 ADC Resolver


Table 5-8. ADC_R0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
ADC_R0_AIN0 I ADC Resolver Analog Input 0 T18 T18
ADC_R0_AIN1 I ADC Resolver Analog Input 1 T16 T16
ADC_R0_AIN2 I ADC Resolver Analog Input 2 U18 U18
ADC_R0_AIN3 I ADC Resolver Analog Input 3 T17 T17

Table 5-9. ADC_R1 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
ADC_R1_AIN0 I ADC Resolver Analog Input 0 R16 R16
ADC_R1_AIN1 I ADC Resolver Analog Input 1 R18 R18
ADC_R1_AIN2 I ADC Resolver Analog Input 2 P18 P18
ADC_R1_AIN3 I ADC Resolver Analog Input 3 P17 P17

Table 5-10. Resolver PWM Output Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
RES0_PWMOUT0 O Resolver PWM Output Signal 0 D16, D17 D16, D17 D16, D17
RES0_PWMOUT1 O Resolver PWM Output Signal 1 C17, D18 C17, D18 C17, D18

50 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

5.3.3 ADC_CAL
Table 5-11. ADC_CAL Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
ADC_CAL0 (1) I ADC Calibration Pin 0 U16 U16 U16
ADC_CAL1 (1) I ADC Calibration Pin 1 T15 T15 T15
ADC_CAL2 (2) A ADC Calibration Pin 2 U17 U17
ADC_CAL3 (3) A ADC Calibration Pin 3 N17 N17

(1) This pin is shared between ADC[0:4] and ADC_R[0:1].


(2) This pin is shared between ADC_R[0].
(3) This pin is shared between ADC_R[1].

5.3.4 ADC VREF


Table 5-12. ADC_VREF Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
ADC_VREFHI_G0 A ADC Reference (Positive) V14 V14 V14
ADC_VREFHI_G1 (2) A ADC Reference (Positive) V10 V10 V10
ADC_VREFHI_G2 A ADC Reference (Positive) V6 V6 V6
ADC_VREFHI_G3 (5) A ADC Reference (Positive) V17 V17
ADC_VREFLO_G0 (1) A ADC Reference (Negative) V13 V13 V13
ADC_VREFLO_G1 (3) A ADC Reference (Negative) V11 V11 V11
ADC_VREFLO_G2 (4) A ADC Reference (Negative) V7 V7 V7
ADC_VREFLO_G3 (5) A ADC Reference (Negative) V16 V16

(1) This pin should be connected (shorted) to analog ground (VSSA).


(2) This pin can be connected (shorted) to ADC_VREFHI_G0.
(3) This pin can be connected (shorted) to ADC_VREFLO_G0.
(4) This pin can be connected (shorted) to analog ground (VSSA).
(5) This pin only exists on the ZCZ_S package to support ADC_R[0:1]

5.3.5 CPSW
Table 5-13. CPSW0 RGMII1 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
RGMII1_RXC I RGMII Receive Clock R17 R17 R17
RGMII1_RX_CTL I RGMII Receive Control R18
RGMII1_TXC O RGMII Transmit Clock N18 N18 N18
RGMII1_TX_CTL O RGMII Transmit Control M18 M18 M18
RGMII1_RD0 I RGMII Receive Data 0 U17
RGMII1_RD1 I RGMII Receive Data 1 T17
RGMII1_RD2 I RGMII Receive Data 2 U18
RGMII1_RD3 I RGMII Receive Data 3 T18
RGMII1_TD0 O RGMII Transmit Data 0 P16 P16 P16
RGMII1_TD1 O RGMII Transmit Data 1 P17
RGMII1_TD2 O RGMII Transmit Data 2 P18
RGMII1_TD3 O RGMII Transmit Data 3 N17

Table 5-14. CPSW0 RGMII2 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
RGMII2_RXC I RGMII Receive Clock K15 K15 K15
RGMII2_RX_CTL I RGMII Receive Control K16 K16 K16
RGMII2_TXC O RGMII Transmit Clock H18 H18 H18
RGMII2_TX_CTL O RGMII Transmit Control L16 L16 L16
RGMII2_RD0 I RGMII Receive Data 0 K17 K17 K17

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 51


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-14. CPSW0 RGMII2 Signal Descriptions (continued)


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
RGMII2_RD1 I RGMII Receive Data 1 K18 K18 K18
RGMII2_RD2 I RGMII Receive Data 2 J18 J18 J18
RGMII2_RD3 I RGMII Receive Data 3 J17 J17 J17
RGMII2_TD0 O RGMII Transmit Data 0 M16 M16 M16
RGMII2_TD1 O RGMII Transmit Data 1 M15 M15 M15
RGMII2_TD2 O RGMII Transmit Data 2 H17 H17 H17
RGMII2_TD3 O RGMII Transmit Data 3 H16 H16 H16

Table 5-15. CPSW0 RMII1 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
RMII1_CRS_DV I RMII Carrier Sense / Data Valid P18
RMII1_REF_CLK IO RMII Reference Clock R17 R17 R17
RMII1_RX_ER I RMII Receive Data Error R18
RMII1_TX_EN O RMII Transmit Enable M18 M18 M18
RMII1_RXD0 I RMII Receive Data 0 U17
RMII1_RXD1 I RMII Receive Data 1 T17
RMII1_TXD0 O RMII Transmit Data 0 P16 P16 P16
RMII1_TXD1 O RMII Transmit Data 1 P17

Table 5-16. CPSW0 RMII2 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
RMII2_CRS_DV I RMII Carrier Sense / Data Valid G18 G18 G18
RMII2_REF_CLK IO RMII Reference Clock K15 K15 K15
RMII2_RX_ER I RMII Receive Data Error G17 G17 G17
RMII2_TX_EN O RMII Transmit Enable L16 L16 L16
RMII2_RXD0 I RMII Receive Data 0 K17 K17 K17
RMII2_RXD1 I RMII Receive Data 1 K18 K18 K18
RMII2_TXD0 O RMII Transmit Data 0 M16 M16 M16
RMII2_TXD1 O RMII Transmit Data 1 M15 M15 M15

Table 5-17. CPSW0 MII1 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
MII1_COL I MII Collision Detected P15
MII1_CRS I MII Carrier Sense R16
MII1_RXCLK I MII Receive Clock R17 R17 R17
MII1_RXDV I MII Receive Data Valid R18
MII1_RX_ER I MII Receive Data Error T16
MII1_TXCLK I MII Transmit Clock N18 N18 N18
MII1_TX_EN O MII Transmit Enable M18 M18 M18
MII1_RXD0 I MII Receive Data 0 U17
MII1_RXD1 I MII Receive Data 1 T17
MII1_RXD2 I MII Receive Data 2 U18
MII1_RXD3 I MII Receive Data 3 T18
MII1_TXD0 O MII Transmit Data 0 P16 P16 P16
MII1_TXD1 O MII Transmit Data 1 P17
MII1_TXD2 O MII Transmit Data 2 P18
MII1_TXD3 O MII Transmit Data 3 N17

52 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-18. CPSW0 MII2 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
MII2_COL I MII Collision Detected F17 F17 F17
MII2_CRS I MII Carrier Sense G18 G18 G18
MII2_RXCLK I MII Receive Clock K15 K15 K15
MII2_RXDV I MII Receive Data Valid K16 K16 K16
MII2_RX_ER I MII Receive Error G17 G17 G17
MII2_TXCLK I MII Transmit Clock H18 H18 H18
MII2_TX_EN O MII Transmit Enable L16 L16 L16
MII2_RXD0 I MII Receive Data 0 K17 K17 K17
MII2_RXD1 I MII Receive Data 1 K18 K18 K18
MII2_RXD2 I MII Receive Data 2 J18 J18 J18
MII2_RXD3 I MII Receive Data 3 J17 J17 J17
MII2_TXD0 O MII Transmit Data 0 M16 M16 M16
MII2_TXD1 O MII Transmit Data 1 M15 M15 M15
MII2_TXD2 O MII Transmit Data 2 H17 H17 H17
MII2_TXD3 O MII Transmit Data 3 H16 H16 H16

Table 5-19. MDIO0 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
MDIO0_MDC O MDIO Clock M17 M17 M17
MDIO0_MDIO IO MDIO Data N16 N16 N16

5.3.6 CPTS
Table 5-20. CPTS0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
CPTS0_TS_SYNC O CPTS Time Stamp Counter Bit Output A16 A16 A16

5.3.7 DAC
Table 5-21. DAC Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
DAC_OUT O DAC Output T5 T5 T5
DAC_VREF0 (1) (2) A DAC Voltage Reference 0 T13 T13 T13
DAC_VREF1 (1) (2) A DAC Voltage Reference 1 T6 T6 T6

(1) See the Layout Guidelines sections for details on connecting these pins.
(2) This pin can be connected (shorted) to VDDA18_LDO.

5.3.8 EPWM
Table 5-22. EPWM0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM0_A O EPWM Output A B2 B2 B2
EPWM0_B O EPWM Output B B1 B1 B1

Table 5-23. EPWM1 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM1_A O EPWM Output A D3 D3 D3
EPWM1_B O EPWM Output B D2, E4 D2, E4 D2, E4

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 53


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-24. EPWM2 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM2_A O EPWM Output A C2 C2 C2
EPWM2_B O EPWM Output B C1 C1 C1

Table 5-25. EPWM3 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM3_A O EPWM Output A E2 E2 E2
EPWM3_B O EPWM Output B E1, E3 E1, E3 E1, E3

Table 5-26. EPWM4 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM4_A O EPWM Output A D1 D1 D1
EPWM4_B O EPWM Output B D2, E4 D2, E4 D2, E4

Table 5-27. EPWM5 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM5_A O EPWM Output A F2 F2 F2
EPWM5_B O EPWM Output B F1, G2 F1, G2 F1, G2

Table 5-28. EPWM6 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM6_A O EPWM Output A E1, E3 E1, E3 E1, E3
EPWM6_B O EPWM Output B F3 F3 F3

Table 5-29. EPWM7 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM7_A O EPWM Output A F4 F4 F4
EPWM7_B O EPWM Output B F1, G4 F1, G4 F1, G4

Table 5-30. EPWM8 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM8_A O EPWM Output A G3 G3 G3
EPWM8_B O EPWM Output B G2, H2 G2, H2 G2, H2

Table 5-31. EPWM9 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM9_A O EPWM Output A G1 G1 G1
EPWM9_B O EPWM Output B H2, J2 H2, J2 H2, J2

Table 5-32. EPWM10 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM10_A O EPWM Output A G4, J4, L3 G4, J4, L3 G4, L3
EPWM10_B O EPWM Output B J3, R3 J3, R3 R3

Table 5-33. EPWM11 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM11_A O EPWM Output A H1 H1
EPWM11_B O EPWM Output B J1, J2 J1, J2 J2

54 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-34. EPWM12 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM12_A O EPWM Output A K2, N2 K2, N2 N2
EPWM12_B O EPWM Output B J1, J4, N1 J1, J4, N1 N1

Table 5-35. EPWM13 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM13_A O EPWM Output A K4, N4 K4, N4 N4
EPWM13_B O EPWM Output B K1, K3 K1, K3 K1

Table 5-36. EPWM14 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM14_A O EPWM Output A R17, V17 R17 R17
EPWM14_B O EPWM Output B N18, T16 N18 N18

Table 5-37. EPWM15 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM15_A O EPWM Output A P15, P16 P16 P16
EPWM15_B O EPWM Output B M18, P16, R16 M18, P16 M18, P16

Table 5-38. EPWM16 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM16_A O EPWM Output A B18, L3 B18, L3 B18, L3
EPWM16_B O EPWM Output B B17, M3 B17, M3 B17, M3

Table 5-39. EPWM17 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM17_A O EPWM Output A B6 B6 B6
EPWM17_B O EPWM Output B A4 A4 A4

Table 5-40. EPWM18 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM18_A O EPWM Output A B5 B5 B5
EPWM18_B O EPWM Output B B4 B4 B4

Table 5-41. EPWM19 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM19_A O EPWM Output A A3 A3 A3
EPWM19_B O EPWM Output B A2 A2 A2

Table 5-42. EPWM20 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM20_A O EPWM Output A C6 C6 C6
EPWM20_B O EPWM Output B A5 A5 A5

Table 5-43. EPWM21 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM21_A O EPWM Output A L17 L17 L17
EPWM21_B O EPWM Output B L18 L18 L18

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 55


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-44. EPWM22 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM22_A O EPWM Output A G17 G17 G17
EPWM22_B O EPWM Output B F17, G18 F17, G18 F17, G18

Table 5-45. EPWM23 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM23_A O EPWM Output A F18, G18 F18, G18 F18, G18
EPWM23_B O EPWM Output B E18, G15 E18, G15 E18, G15

Table 5-46. EPWM24 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM24_A O EPWM Output A K15 K15 K15
EPWM24_B O EPWM Output B K16 K16 K16

Table 5-47. EPWM25 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM25_A O EPWM Output A K17 K17 K17
EPWM25_B O EPWM Output B K18 K18 K18

Table 5-48. EPWM26 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM26_A O EPWM Output A J18 J18 J18
EPWM26_B O EPWM Output B J17 J17 J17

Table 5-49. EPWM27 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM27_A O EPWM Output A H18 H18 H18
EPWM27_B O EPWM Output B H17, L16 H17, L16 H17, L16

Table 5-50. EPWM28 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM28_A O EPWM Output A M16 M16 M16
EPWM28_B O EPWM Output B M15 M15 M15

Table 5-51. EPWM29 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM29_A O EPWM Output A G15, H17 G15, H17 G15, H17
EPWM29_B O EPWM Output B H16 H16 H16

Table 5-52. EPWM30 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM30_A O EPWM Output A F15 F15 F15
EPWM30_B O EPWM Output B C18 C18 C18

Table 5-53. EPWM31 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EPWM31_A O EPWM Output A D17 D17 D17
EPWM31_B O EPWM Output B D18 D18 D18

56 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

5.3.9 EQEP
Table 5-54. EQEP0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EQEP0_A I EQEP Quadrature Input A B14, U18 B14 B14
EQEP0_B I EQEP Quadrature Input B A14, T18 A14 A14
EQEP0_INDEX IO EQEP Index D11, N18 D11, N18 D11, N18
EQEP0_STROBE IO EQEP Strobe C12, M18 C12, M18 C12, M18

Table 5-55. EQEP1 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EQEP1_A I EQEP Quadrature Input A D15, P16 D15, P16 D15, P16
EQEP1_B I EQEP Quadrature Input B C15, P17 C15 C15
EQEP1_INDEX IO EQEP Index N17, P2 P2 P2
EQEP1_STROBE IO EQEP Strobe B16, P18 B16 B16

Table 5-56. EQEP2 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EQEP2_A (1) ID EQEP Quadrature Input A B13, R17 B13, R17 B13, R17
EQEP2_B (2) ID EQEP Quadrature Input B A13, R18 A13 A13
EQEP2_INDEX IO EQEP Index A12, T17 A12 A12
EQEP2_STROBE IO EQEP Strobe B12, U17 B12 B12

(1) EQEP2_A is implemented with the I2C OD FS (Open Drain Fail Safe) voltage buffer.
(2) EQEP2_B is implemented with the I2C OD FS (Open Drain Fail Safe) voltage buffer.

5.3.10 FSI
Table 5-57. FSIRX0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
FSIRX0_CLK I FSI Clock A10, T17 A10 A10
FSIRX0_DATA0 I FSI Data 0 B10, U18 B10 B10
FSIRX0_DATA1 I FSI Data 1 D9, T18 D9 D9

Table 5-58. FSIRX1 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
FSIRX1_CLK I FSI Clock E1, P17 E1 E1
FSIRX1_DATA0 I FSI Data 0 F3, P18 F3 F3
FSIRX1_DATA1 I FSI Data 1 F4, N17 F4 F4

Table 5-59. FSIRX2 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
FSIRX2_CLK I FSI Clock G16, J2 G16, J2 G16, J2
FSIRX2_DATA0 I FSI Data 0 E17, G4 E17, G4 E17, G4
FSIRX2_DATA1 I FSI Data 1 E18, J3, R3 E18, J3, R3 E18, R3

Table 5-60. FSIRX3 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
FSIRX3_CLK I FSI Clock B17 B17 B17
FSIRX3_DATA0 I FSI Data 0 D16 D16 D16
FSIRX3_DATA1 I FSI Data 1 C17 C17 C17

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 57


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-61. FSITX0 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
FSITX0_CLK O FSI Clock A11, R17 A11, R17 A11, R17
FSITX0_DATA0 O FSI Data 0 C10, R18 C10 C10
FSITX0_DATA1 O FSI Data 1 B11, U17 B11 B11

Table 5-62. FSITX1 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
FSITX1_CLK O FSI Clock E4, N18 E4, N18 E4, N18
FSITX1_DATA0 O FSI Data 0 F2, M18 F2, M18 F2, M18
FSITX1_DATA1 O FSI Data 1 G2, P16 G2, P16 G2, P16

Table 5-63. FSITX2 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
FSITX2_CLK O FSI Clock E16, G3 E16, G3 E16, G3
FSITX2_DATA0 O FSI Data 0 F16, H2 F16, H2 F16, H2
FSITX2_DATA1 O FSI Data 1 F18, G1 F18, G1 F18, G1

Table 5-64. FSITX3 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
FSITX3_CLK O FSI Clock C16 C16 C16
FSITX3_DATA0 O FSI Data 0 A17 A17 A17
FSITX3_DATA1 O FSI Data 1 B18 B18 B18

5.3.11 GPIO
Table 5-65. GPIO Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
GPIO0 IO General Purpose Input/Output P1 P1
GPIO1 IO General Purpose Input/Output R3 R3 R3
GPIO2 IO General Purpose Input/Output N2 N2 N2
GPIO3 IO General Purpose Input/Output N1 N1 N1
GPIO4 IO General Purpose Input/Output N4 N4 N4
GPIO5 IO General Purpose Input/Output M4 M4
GPIO6 IO General Purpose Input/Output P3 P3
GPIO7 IO General Purpose Input/Output M1 M1
GPIO8 IO General Purpose Input/Output L1 L1
GPIO9 IO General Purpose Input/Output L2 L2
GPIO10 IO General Purpose Input/Output K1 K1 K1
GPIO11 IO General Purpose Input/Output C11 C11 C11
GPIO12 IO General Purpose Input/Output A11 A11 A11
GPIO13 IO General Purpose Input/Output C10 C10 C10
GPIO14 IO General Purpose Input/Output B11 B11 B11
GPIO15 IO General Purpose Input/Output C9 C9 C9
GPIO16 IO General Purpose Input/Output A10 A10 A10
GPIO17 IO General Purpose Input/Output B10 B10 B10
GPIO18 IO General Purpose Input/Output D9 D9 D9
GPIO19 IO General Purpose Input/Output A9 A9 A9
GPIO100 IO General Purpose Input/Output M15 M15 M15
GPIO101 IO General Purpose Input/Output H17 H17 H17
GPIO102 IO General Purpose Input/Output H16 H16 H16
GPIO103 IO General Purpose Input/Output F15 F15 F15

58 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-65. GPIO Signal Descriptions (continued)


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
GPIO104 IO General Purpose Input/Output C18 C18 C18
GPIO105 IO General Purpose Input/Output D17 D17 D17
GPIO106 IO General Purpose Input/Output D18 D18 D18
GPIO107 IO General Purpose Input/Output E16 E16 E16
GPIO108 IO General Purpose Input/Output F16 F16 F16
GPIO109 IO General Purpose Input/Output F18 F18 F18
GPIO110 IO General Purpose Input/Output G16 G16 G16
GPIO111 IO General Purpose Input/Output E17 E17 E17
GPIO112 IO General Purpose Input/Output E18 E18 E18
GPIO113 IO General Purpose Input/Output C16 C16 C16
GPIO114 IO General Purpose Input/Output A17 A17 A17
GPIO115 IO General Purpose Input/Output B18 B18 B18
GPIO116 IO General Purpose Input/Output B17 B17 B17
GPIO117 IO General Purpose Input/Output D16 D16 D16
GPIO118 IO General Purpose Input/Output C17 C17 C17
GPIO119 IO General Purpose Input/Output D15 D15 D15
GPIO120 IO General Purpose Input/Output C15 C15 C15
GPIO121 IO General Purpose Input/Output P2 P2 P2
GPIO122 IO General Purpose Input/Output B16 B16 B16
GPIO123 IO General Purpose Input/Output D14 D14 D14
GPIO124 IO General Purpose Input/Output A16 A16 A16
GPIO125 IO General Purpose Input/Output D13 D13 D13
GPIO126 IO General Purpose Input/Output B15 B15 B15
GPIO127 IO General Purpose Input/Output C13 C13 C13
GPIO128 IO General Purpose Input/Output A15 A15 A15
GPIO129 IO General Purpose Input/Output C14 C14 C14
GPIO130 IO General Purpose Input/Output B14 B14 B14
GPIO131 IO General Purpose Input/Output A14 A14 A14
GPIO132 IO General Purpose Input/Output C12 C12 C12
GPIO133 IO General Purpose Input/Output D11 D11 D11
GPIO134 (1) IOD General Purpose Input/Output B13 B13 B13
GPIO135 (2) IOD General Purpose Input/Output A13 A13 A13
GPIO136 IO General Purpose Input/Output B12 B12 B12
GPIO137 IO General Purpose Input/Output A12 A12 A12
GPIO138 IO General Purpose Input/Output M2 M2 M2
GPIO20 IO General Purpose Input/Output B9 B9 B9
GPIO21 IO General Purpose Input/Output B8 B8 B8
GPIO22 IO General Purpose Input/Output A8 A8 A8
GPIO23 IO General Purpose Input/Output D7 D7 D7
GPIO24 IO General Purpose Input/Output C8 C8 C8
GPIO25 IO General Purpose Input/Output C7 C7 C7
GPIO26 IO General Purpose Input/Output B7 B7 B7
GPIO27 IO General Purpose Input/Output A7 A7 A7
GPIO28 IO General Purpose Input/Output A6 A6 A6
GPIO29 IO General Purpose Input/Output R17 R17 R17
GPIO30 (3) IO General Purpose Input/Output R18
GPIO31 (3) IO General Purpose Input/Output U17
GPIO32 (3) IO General Purpose Input/Output T17
GPIO33 (3) IO General Purpose Input/Output U18
GPIO34 (3) IO General Purpose Input/Output T18

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 59


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-65. GPIO Signal Descriptions (continued)


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
GPIO35 IO General Purpose Input/Output N18 N18 N18
GPIO36 IO General Purpose Input/Output M18 M18 M18
GPIO37 IO General Purpose Input/Output P16 P16 P16
GPIO38 (3) IO General Purpose Input/Output P17
GPIO39 (3) IO General Purpose Input/Output P18
GPIO40 (3) IO General Purpose Input/Output N17
GPIO41 IO General Purpose Input/Output N16 N16 N16
GPIO42 IO General Purpose Input/Output M17 M17 M17
GPIO43 IO General Purpose Input/Output B2 B2 B2
GPIO44 IO General Purpose Input/Output B1 B1 B1
GPIO45 IO General Purpose Input/Output D3 D3 D3
GPIO46 IO General Purpose Input/Output D2 D2 D2
GPIO47 IO General Purpose Input/Output C2 C2 C2
GPIO48 IO General Purpose Input/Output C1 C1 C1
GPIO49 IO General Purpose Input/Output E2 E2 E2
GPIO50 IO General Purpose Input/Output E3 E3 E3
GPIO51 IO General Purpose Input/Output D1 D1 D1
GPIO52 IO General Purpose Input/Output E4 E4 E4
GPIO53 IO General Purpose Input/Output F2 F2 F2
GPIO54 IO General Purpose Input/Output G2 G2 G2
GPIO55 IO General Purpose Input/Output E1 E1 E1
GPIO56 IO General Purpose Input/Output F3 F3 F3
GPIO57 IO General Purpose Input/Output F4 F4 F4
GPIO58 IO General Purpose Input/Output F1 F1 F1
GPIO59 IO General Purpose Input/Output G3 G3 G3
GPIO60 IO General Purpose Input/Output H2 H2 H2
GPIO61 IO General Purpose Input/Output G1 G1 G1
GPIO62 IO General Purpose Input/Output J2 J2 J2
GPIO63 IO General Purpose Input/Output G4 G4 G4
GPIO64 IO General Purpose Input/Output J3 J3
GPIO65 IO General Purpose Input/Output H1 H1
GPIO66 IO General Purpose Input/Output J1 J1
GPIO67 IO General Purpose Input/Output K2 K2
GPIO68 IO General Purpose Input/Output J4 J4
GPIO69 IO General Purpose Input/Output K4 K4
GPIO70 IO General Purpose Input/Output K3 K3
GPIO71 (3) IO General Purpose Input/Output V17
GPIO72 (3) IO General Purpose Input/Output T16
GPIO73 (3) IO General Purpose Input/Output P15
GPIO74 (3) IO General Purpose Input/Output R16
GPIO75 IO General Purpose Input/Output L3 L3 L3
GPIO76 IO General Purpose Input/Output M3 M3 M3
GPIO77 IO General Purpose Input/Output B6 B6 B6
GPIO78 IO General Purpose Input/Output A4 A4 A4
GPIO79 IO General Purpose Input/Output B5 B5 B5
GPIO80 IO General Purpose Input/Output B4 B4 B4
GPIO81 IO General Purpose Input/Output A3 A3 A3
GPIO82 IO General Purpose Input/Output A2 A2 A2
GPIO83 IO General Purpose Input/Output C6 C6 C6
GPIO84 IO General Purpose Input/Output A5 A5 A5

60 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-65. GPIO Signal Descriptions (continued)


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
GPIO85 IO General Purpose Input/Output L17 L17 L17
GPIO86 IO General Purpose Input/Output L18 L18 L18
GPIO87 IO General Purpose Input/Output G17 G17 G17
GPIO88 IO General Purpose Input/Output F17 F17 F17
GPIO89 IO General Purpose Input/Output G18 G18 G18
GPIO90 IO General Purpose Input/Output G15 G15 G15
GPIO91 IO General Purpose Input/Output K15 K15 K15
GPIO92 IO General Purpose Input/Output K16 K16 K16
GPIO93 IO General Purpose Input/Output K17 K17 K17
GPIO94 IO General Purpose Input/Output K18 K18 K18
GPIO95 IO General Purpose Input/Output J18 J18 J18
GPIO96 IO General Purpose Input/Output J17 J17 J17
GPIO97 IO General Purpose Input/Output H18 H18 H18
GPIO98 IO General Purpose Input/Output L16 L16 L16
GPIO99 IO General Purpose Input/Output M16 M16 M16

(1) GPIO134 is implemented with the I2C OD FS (Open Drain Fail Safe) voltage buffer.
(2) GPIO135 is implemented with the I2C OD FS (Open Drain Fail Safe) voltage buffer.
(3) This pin is is only supported in the ZCZ_C package option

5.3.12 I2C
Table 5-66. I2C0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
I2C0_SCL (2) IOD I2C Clock A13 A13 A13
I2C0_SDA (1) IOD I2C Data B13 B13 B13

(1) I2C0_SDA is implemented with the I2C OD FS (Open Drain Fail Safe) voltage buffer.
(2) I2C0_SCL is implemented with the I2C OD FS (Open Drain Fail Safe) voltage buffer.

Table 5-67. I2C1 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
I2C1_SCL (1) IO I2C Clock B5, D7 B5, D7 B5, D7
I2C1_SDA (2) IO I2C Data A3, C8 A3, C8 A3, C8

(1) I2C1_SCL is implemented with the typical LVCMOS voltage buffer and should be properly configured to operate as an Input/Output
Open Drain signal type.
(2) I2C1_SDA is implemented with the typical LVCMOS voltage buffer and should be properly configured to operate as an Input/Output
Open Drain signal type.

Table 5-68. I2C2 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
I2C2_SCL (1) IO I2C Clock C6, C7 C6, C7 C6, C7
I2C2_SDA (2) IO I2C Data A5, B7 A5, B7 A5, B7

(1) I2C2_SCL is implemented with the typical LVCMOS voltage buffer and should be properly configured to operate as an Input/Output
Open Drain signal type.
(2) I2C2_SDA is implemented with the typical LVCMOS voltage buffer and should be properly configured to operate as an Input/Output
Open Drain signal type.

Table 5-69. I2C3 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
I2C3_SCL (2) IO I2C Clock B15, H2 B15, H2 B15, H2
I2C3_SDA (1) IO I2C Data A16, G3 A16, G3 A16, G3

(1) I2C3_SDA is implemented with the typical LVCMOS voltage buffer and should be properly configured to operate as an Input/Output
Open Drain signal type.

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 61


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

(2) I2C3_SCL is implemented with the typical LVCMOS voltage buffer and should be properly configured to operate as an Input/Output
Open Drain signal type.

Note
I2C signals that are implemented on an LVCMOS voltage buffer pin can be configured to operate
as open-drain outputs by configuring the I2C module to source a constant low output and toggle the
output enable. The output buffer drives low when enabled and is high impedance when disabled.
The (I2C OD FS) are the only IO voltage buffers which are fail-safe. These are implemented for I2C0
pins only. Other IOs do not allow any potential greater than (VDD + 0.3V) to be applied. This means
you can not source any potential to these pins when power is off. All attached devices that can source
a potential to these IOs must be powered from the same power supply that is sourcing the respective
IO power rail.

5.3.13 LIN
Table 5-70. LIN0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
LIN0_RXD IO LIN Receive Data A7, B6 A7, B6 A7, B6
LIN0_TXD IO LIN Transmit Data A4, A6 A4, A6 A4, A6

Table 5-71. LIN1 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
LIN1_RXD IO LIN Receive Data A9, L3 A9, L3 A9, L3
LIN1_TXD IO LIN Transmit Data B9, M3 B9, M3 B9, M3

Table 5-72. LIN2 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
LIN2_RXD IO LIN Receive Data B8 B8 B8
LIN2_TXD IO LIN Transmit Data A8 A8 A8

Table 5-73. LIN3 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
LIN3_RXD IO LIN Receive Data C11 C11 C11
LIN3_TXD IO LIN Transmit Data A11 A11 A11

Table 5-74. LIN4 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
LIN4_RXD IO LIN Receive Data A10, D11 A10, D11 A10, D11
LIN4_TXD IO LIN Transmit Data C12, C9 C12, C9 C12, C9

5.3.14 MCAN
Table 5-75. MCAN0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
MCAN0_RX I MCAN Receive Data B6, E16, M1 B6, E16, M1 B6, E16
MCAN0_TX O MCAN Transmit Data A4, F16, L1 A4, F16, L1 A4, F16

Table 5-76. MCAN1 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
MCAN1_RX I MCAN Receive Data B5, F18, L2 B5, F18, L2 B5, F18
MCAN1_TX O MCAN Transmit Data B4, G16, K1 B4, G16, K1 B4, G16, K1

62 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-77. MCAN2 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
MCAN2_RX I MCAN Receive Data A12 A12 A12
MCAN2_TX O MCAN Transmit Data B12 B12 B12

Table 5-78. MCAN3 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
MCAN3_RX I MCAN Receive Data B7, C14 B7, C14 B7, C14
MCAN3_TX O MCAN Transmit Data A15, C7 A15, C7 A15, C7

Table 5-79. MCAN4 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
MCAN4_RX I MCAN Receive Data A3, E17, G1 A3, E17, G1 A3, E17, G1
MCAN4_TX O MCAN Transmit Data A2, E18, J2 A2, E18, J2 A2, E18, J2

Table 5-80. MCAN5 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
MCAN5_RX I MCAN Receive Data C16, C6, G4 C16, C6, G4 C16, C6, G4
MCAN5_TX O MCAN Transmit Data A17, A5, J3, R3 A17, A5, J3, R3 A17, A5, R3

Table 5-81. MCAN6 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
MCAN6_RX I MCAN Receive Data B18, H1, V17 B18, H1 B18
MCAN6_TX O MCAN Transmit Data B17, J1, T16 B17, J1 B17

Table 5-82. MCAN7 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
D16, K2, N2,
MCAN7_RX I MCAN Receive Data D16, K2, N2 D16, N2
P15
C17, J4, N1,
MCAN7_TX O MCAN Transmit Data C17, J4, N1 C17, N1
R16

5.3.15 SPI (MCSPI)


Table 5-83. SPI0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
SPI0_CLK (1) IO SPI Clock (SOP2) A11 A11 A11
SPI0_CS0 IO SPI Chip Select 0 C11 C11 C11
SPI0_CS1 IO SPI Chip Select 1 B7 B7 B7
SPI0_D0 (2) IO SPI Data 0 (SOP3) C10 C10 C10
SPI0_D1 IO SPI Data 1 B11 B11 B11

(1) The SPI0_CLK pin is also used as SOP2 bootmode configuration pin.
(2) The SPI0_D0 pin is also used as SOP3 bootmode configuration pin.

Table 5-84. SPI1 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
SPI1_CLK IO SPI Clock A10 A10 A10
SPI1_CS0 IO SPI Chip Select 0 C9 C9 C9
SPI1_D0 IO SPI Data 0 B10 B10 B10
SPI1_D1 IO SPI Data 1 D9 D9 D9

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 63


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-85. SPI2 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
SPI2_CLK IO SPI Clock B9 B9 B9
SPI2_CS0 IO SPI Chip Select 0 A9 A9 A9
SPI2_D0 IO SPI Data 0 B8 B8 B8
SPI2_D1 IO SPI Data 1 A8 A8 A8

Table 5-86. SPI3 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
SPI3_CLK IO SPI Clock C8 C8 C8
SPI3_CS0 IO SPI Chip Select 0 D7 D7 D7
SPI3_D0 IO SPI Data 0 C7 C7 C7
SPI3_D1 IO SPI Data 1 B7 B7 B7

Table 5-87. SPI4 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
SPI4_CLK IO SPI Clock B14, L1 B14, L1 B14
SPI4_CS0 IO SPI Chip Select 0 A14, M1 A14, M1 A14
SPI4_CS1 IO SPI Chip Select 1 K2, R3 K2, R3 R3
SPI4_D0 IO SPI Data 0 C12, L2 C12, L2 C12
SPI4_D1 IO SPI Data 1 D11, K1 D11, K1 D11, K1

Table 5-88. SPI5 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
SPI5_CLK IO SPI Clock C18, G2 C18, G2 C18, G2
SPI5_CS0 IO SPI Chip Select 0 F15, F2 F15, F2 F15, F2
SPI5_D0 IO SPI Data 0 D17, E1 D17, E1 D17, E1
SPI5_D1 IO SPI Data 1 D18, F3 D18, F3 D18, F3

Table 5-89. SPI6 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
SPI6_CLK IO SPI Clock B17, F1 B17, F1 B17, F1
SPI6_CS0 IO SPI Chip Select 0 B18, F4 B18, F4 B18, F4
SPI6_D0 IO SPI Data 0 D16, G3 D16, G3 D16, G3
SPI6_D1 IO SPI Data 1 C17, H2 C17, H2 C17, H2

Table 5-90. SPI7 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
SPI7_CLK IO SPI Clock J2, K4, N1 J2, K4, N1 J2, N1
SPI7_CS0 IO SPI Chip Select 0 G1, J4, N2 G1, J4, N2 G1, N2
SPI7_D0 IO SPI Data 0 G4, K3, N4 G4, K3, N4 G4, N4
SPI7_D1 IO SPI Data 1 J3, K1, V17 J3, K1 K1

5.3.16 MMC
Table 5-91. MMC0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
MMC0_CD I MMC/SD Card Detect A5 A5 A5
MMC0_CLK IO MMC/SD Clock B6 B6 B6
MMC0_CMD IO MMC/SD Command A4 A4 A4
MMC0_WP I MMC/SD Write Protect C6 C6 C6
MMC0_D0 IO MMC/SD Data B5 B5 B5

64 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-91. MMC0 Signal Descriptions (continued)


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
MMC0_D1 IO MMC/SD Data B4 B4 B4
MMC0_D2 IO MMC/SD Data A3 A3 A3
MMC0_D3 IO MMC/SD Data A2 A2 A2

5.3.17 OSPI (Shared)


Table 5-92. OSPI0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
OSPI0_CLK O OSPI Clock L2, N2 L2, N2 N2
OSPI0_CLKLB (4) IO OSPI Clock Loopback LB LB LB
OSPI0_DQS I OSPI Data Strobe (DQS) or Loopback Clock input M1, M3 M1, M3 M3
OSPI0_ECC_FAIL I OSPI ECC Failure Status Pin A9, H1, K3 A9, H1, K3 A9
OSPI0_LBCLKO (3) O OSPI Loopback Clock output L3 L3 L3
OSPI0_ZCZ_F_WP (5) OSPI0 ZCZ_F Package Write Protect Signal L1
OSPI0_CSn0 O OSPI Chip Select 0 H1, P1 H1, P1
OSPI0_CSn1 O OSPI Chip Select 1 R3 R3 R3
OSPI0_D0 (1) IO OSPI Data bit 0 (SOP0) N1, P1 N1, P1 N1
OSPI0_D1 (2) IO OSPI Data bit 1 (SOP1) J1, N4 J1, N4 N4
OSPI0_D2 IO OSPI Data bit 2 L1, M4 L1, M4
OSPI0_D3 IO OSPI Data bit 3 K4, P3 K4, P3
OSPI0_D4 IO OSPI Data bit 4 M1, P3 M1, P3
OSPI0_D5 IO OSPI Data bit 5 K2, L1 K2, L1
OSPI0_D6 IO OSPI Data bit 6 L2, M4 L2, M4
OSPI0_D7 IO OSPI Data bit 7 J4, K1 J4, K1 K1
OSPI0_RESET_OUT0 O OSPI Reset Out 0 B9, J1, J3 B9, J1, J3 B9
OSPI0_RESET_OUT1 O OSPI Reset Out 1 A9, H1 A9, H1 A9
OSPI0_ZCZ_F_RESET_OUT0
(6) OSPI0 ZCZ_F Package Reset Signal J3

(1) The OSPI0_D0 pin is also used as SOP0 boot mode configuration pin.
(2) The OSPI0_D1 pin is also used as SOP1 boot mode configuration pin.
(3) OSPI0_LBCLKO is a clock loopback output signal used for peripheral timing.
(4) OSPI0_CLKLB is a clock loopback signal used internally for retiming purposes.
(5) OSPI0_ZCZ_F_WP is the Write Protect signal for the OSPI flash die in ZCZ_F Package. Refer to OSPI Connections for Flash-in-
Package (ZCZ_F) Section for more details.
(6) OSPI0_ZCZ_F_RESET_OUT0 is the Reset signal for the OSPI flash die in ZCZ_F Package. Refer to OSPI Connections for Flash-in-
Package (ZCZ_F) Section for more details.

5.3.18 Power Supply


Table 5-93. Power Supply Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
E11, E9, F11, E11, E9, F11, E11, E9, F11,
F9, G13, G14, F9, G13, G14, F9, G13, G14,
G5, G6, K13, G5, G6, K13, G5, G6, K13,
VDD PWR 1.2V Core supply
K14, K5, K6, K14, K5, K6, K14, K5, K6,
N13, N14, N5, N13, N14, N5, N13, N14, N5,
N6, R9 N6, R9 N6, R9
VDDA18 PWR 1.8V Analog supply R11, R8 R11, R8 R11, R8
VDDA18_LDO (1) (2) PWR 1.8V Analog LDO Output R6 R6 R6
VDDA18_OSC_PLL PWR 1.8V OSC PLL supply R4 R4 R4
VDDA33 PWR 3.3V Analog supply P11, P7, P9 P11, P7, P9 P11, P7, P9
VDDAR1 PWR 1.2V SRAM Array supply J15 J15 J15
VDDAR2 PWR 1.2V SRAM Array supply D10 D10 D10
VDDAR3 PWR 1.2V SRAM Array supply H3 H3 H3

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 65


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-93. Power Supply Signal Descriptions (continued)


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
D6, E15, L4, D6, E15, L4, D6, E15, L4,
VDDS18 PWR 1.8V IO supply
N15 N15 N15
VDDS18_LDO (1) (3) PWR 1.8V Digital LDO Output T3 T3 T3
D12, D8, H15, D12, D8, H15, D12, D8, H15,
VDDS33 PWR 3.3V IO supply H4, L15, P4, H4, L15, P4, H4, L15, P4,
R15 R15 R15
VPP PWR eFuse ROM programming supply N3 N3 N3
A1, A18, E10,
A1, A18, E10, A1, A18, E10,
E12, E13, E14,
E12, E13, E14, E12, E13, E14,
E5, E6, E7, E8,
E5, E6, E7, E8, E5, E6, E7, E8,
F10, F12, F13,
F10, F12, F13, F10, F12, F13,
F14, F5, F6, F7,
F14, F5, F6, F7, F14, F5, F6, F7,
F8, G10, G11,
F8, G10, G11, F8, G10, G11,
G12, G7, G8,
G12, G7, G8, G12, G7, G8,
G9, H10, H11,
G9, H10, H11, G9, H10, H11,
H12, H13, H14,
H12, H13, H14, H12, H13, H14,
H5, H6, H7, H8,
H5, H6, H7, H8, H5, H6, H7, H8,
H9, J10, J11,
H9, J10, J11, H9, J10, J11,
J12, J13, J14,
J12, J13, J14, J12, J13, J14,
J5, J6, J7, J8,
VSS GND Ground J5, J6, J7, J8, J5, J6, J7, J8,
J9, K10, K11,
J9, K10, K11, J9, K10, K11,
K12, K7, K8,
K12, K7, K8, K12, K7, K8,
K9, L10, L11,
K9, L10, L11, K9, L10, L11,
L12, L13, L14,
L12, L13, L14, L12, L13, L14,
L5, L6, L7, L8,
L5, L6, L7, L8, L5, L6, L7, L8,
L9, M10, M11,
L9, M10, M11, L9, M10, M11,
M12, M13, M14,
M12, M13, M14, M12, M13, M14,
M5, M6, M7,
M5, M6, M7, M5, M6, M7,
M8, M9, N10,
M8, M9, N10, M8, M9, N10,
N11, N12, N7,
N11, N12, N7, N11, N12, N7,
N8, N9, P13,
N8, N9, P13, N8, N9, P13,
P14, P5, T2,
P14, P5, T2 P14, P5, T2
V18
P10, P12, P6, P10, P12, P6, P10, P12, P6,
VSSA AGND Analog Ground P8, R13, R5, P8, R13, R5, P8, R13, R5,
V1, V16 V1, V18 V1, V18

(1) See the Layout Guidelines sections for details on connecting this pin.
(2) PCB should directly route VDDA18_LDO to all of the VDDA18 pins and the VDDA_OSC_PLL pin.
(3) PCB should directly route VDDS18_LDO to all of the VDDS18 pins.

5.3.19 PRU-ICSS
Table 5-94. PRU-ICSS ECAP Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
PRU-ICSS Enhanced Capture (ECAP) Input or ECAP
PR0_ECAP0_APWM_OUT O D14 D14 D14
Auxiliary PWM (APWM) Output

Table 5-95. PRU-ICSS GPIO Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
PR0_PRU0_GPIO0 IO PRU0 General Purpose Input/Output K17 K17 K17
PR0_PRU0_GPIO1 IO PRU0 General Purpose Input/Output K18 K18 K18
PR0_PRU0_GPIO2 IO PRU0 General Purpose Input/Output J18 J18 J18
PR0_PRU0_GPIO3 IO PRU0 General Purpose Input/Output J17 J17 J17
PR0_PRU0_GPIO4 IO PRU0 General Purpose Input/Output K16 K16 K16
PR0_PRU0_GPIO5 IO PRU0 General Purpose Input/Output G17 G17 G17
PR0_PRU0_GPIO6 IO PRU0 General Purpose Input/Output K15 K15 K15
PR0_PRU0_GPIO8 IO PRU0 General Purpose Input/Output G15 G15 G15
PR0_PRU0_GPIO9 IO PRU0 General Purpose Input/Output F17 F17 F17
PR0_PRU0_GPIO10 IO PRU0 General Purpose Input/Output G18 G18 G18
PR0_PRU0_GPIO11 IO PRU0 General Purpose Input/Output M16 M16 M16
PR0_PRU0_GPIO12 IO PRU0 General Purpose Input/Output M15 M15 M15

66 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-95. PRU-ICSS GPIO Signal Descriptions (continued)


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
PR0_PRU0_GPIO13 IO PRU0 General Purpose Input/Output H17 H17 H17
PR0_PRU0_GPIO14 IO PRU0 General Purpose Input/Output H16 H16 H16
PR0_PRU0_GPIO15 IO PRU0 General Purpose Input/Output L16 L16 L16
PR0_PRU0_GPIO16 IO PRU0 General Purpose Input/Output H18 H18 H18
PR0_PRU1_GPIO0 IO PRU1 General Purpose Input/Output F18 F18 F18
PR0_PRU1_GPIO1 IO PRU1 General Purpose Input/Output G16 G16 G16
PR0_PRU1_GPIO2 IO PRU1 General Purpose Input/Output E17 E17 E17
PR0_PRU1_GPIO3 IO PRU1 General Purpose Input/Output E18 E18 E18
PR0_PRU1_GPIO4 IO PRU1 General Purpose Input/Output F16 F16 F16
PR0_PRU1_GPIO5 IO PRU1 General Purpose Input/Output F15 F15 F15
PR0_PRU1_GPIO6 IO PRU1 General Purpose Input/Output E16 E16 E16
PR0_PRU1_GPIO7 IO PRU1 General Purpose Input/Output A16 A16 A16
PR0_PRU1_GPIO8 IO PRU1 General Purpose Input/Output D18 D18 D18
PR0_PRU1_GPIO9 IO PRU1 General Purpose Input/Output C18 C18 C18
PR0_PRU1_GPIO10 IO PRU1 General Purpose Input/Output D17 D17 D17
PR0_PRU1_GPIO11 IO PRU1 General Purpose Input/Output B18 B18 B18
PR0_PRU1_GPIO12 IO PRU1 General Purpose Input/Output B17 B17 B17
PR0_PRU1_GPIO13 IO PRU1 General Purpose Input/Output D16 D16 D16
PR0_PRU1_GPIO14 IO PRU1 General Purpose Input/Output C17 C17 C17
PR0_PRU1_GPIO15 IO PRU1 General Purpose Input/Output A17 A17 A17
PR0_PRU1_GPIO16 IO PRU1 General Purpose Input/Output C16 C16 C16
PR0_PRU1_GPIO17 IO PRU1 General Purpose Input/Output D13 D13 D13
PR0_PRU1_GPIO18 IO PRU1 General Purpose Input/Output C15 C15 C15
PR0_PRU1_GPIO19 IO PRU1 General Purpose Input/Output D15 D15 D15

Table 5-96. PRU-ICSS IEP Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
PRU-ICSS Industrial Ethernet Distributed Clock Sync
PR0_IEP0_EDC_SYNC_OUT0 O D15 D15 D15
Output
PRU-ICSS Industrial Ethernet Distributed Clock Sync
PR0_IEP0_EDC_SYNC_OUT1 O A16 A16 A16
Output
PR0_IEP0_EDIO_DATA_IN_O PRU-ICSS Industrial Ethernet Digital I/O Data Input/
IO D13 D13 D13
UT30 Output
PR0_IEP0_EDIO_DATA_IN_O PRU-ICSS Industrial Ethernet Digital I/O Data Input/
IO C15 C15 C15
UT31 Output

Table 5-97. PRU-ICSS MDIO Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
PR0_MDIO0_MDC O PRU-ICSS MDIO Clock L18 L18 L18
PR0_MDIO0_MDIO IO PRU-ICSS MDIO Data L17 L17 L17

Table 5-98. PRU-ICSS UART Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
PR0_UART0_CTSn I PRU-ICSS UART Clear to Send (Active Low) F17 F17 F17
PR0_UART0_RTSn O PRU-ICSS UART Request to Send (Active Low) G18 G18 G18
PR0_UART0_RXD I PRU-ICSS UART Receive Data C18 C18 C18
PR0_UART0_TXD O PRU-ICSS UART Transmit Data D17 D17 D17

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 67


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

5.3.20 SDFM
Table 5-99. SDFM0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
SDFM0_CLK0 I SDFM Channel 0 Clock B16 B16 B16
SDFM0_CLK1 I SDFM Channel 1 Clock A16 A16 A16
SDFM0_CLK2 I SDFM Channel 2 Clock B15 B15 B15
SDFM0_CLK3 I SDFM Channel 3 Clock A15 A15 A15
SDFM0_D0 I SDFM Channel 0 Data D14 D14 D14
SDFM0_D1 I SDFM Channel 1 Data D13 D13 D13
SDFM0_D2 I SDFM Channel 2 Data C13 C13 C13
SDFM0_D3 I SDFM Channel 3 Data C14 C14 C14

Table 5-100. SDFM1 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
SDFM1_CLK0 I SDFM Channel 0 Clock B14, B6 B14, B6 B14, B6
SDFM1_CLK1 I SDFM Channel 1 Clock B5, C12 B5, C12 B5, C12
SDFM1_CLK2 (1) ID SDFM Channel 2 Clock A3, B13 A3, B13 A3, B13
SDFM1_CLK3 (2) I SDFM Channel 3 Clock A13, C6 A13, C6 A13, C6
SDFM1_D0 I SDFM Channel 0 Data A14, A4 A14, A4 A14, A4
SDFM1_D1 I SDFM Channel 1 Data B4, D11 B4, D11 B4, D11
SDFM1_D2 I SDFM Channel 2 Data A2, B12 A2, B12 A2, B12
SDFM1_D3 I SDFM Channel 3 Data A12, A5 A12, A5 A12, A5

(1) SDFM1_CLK2 is implemented with the I2C OD FS (Open Drain Fail Safe) voltage buffer.
(2) SDFM1_CLK3 is implemented with the I2C OD FS (Open Drain Fail Safe) voltage buffer.

5.3.21 System and Miscellaneous


5.3.21.1 Boot Mode Configuration
Table 5-101. Boot Mode Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
SOP0 I Boot Mode configuration bit 0 (OSPI0_D0) N1 N1 N1
SOP1 I Boot Mode configuration bit 1 (OSPI0_D1) N4 N4 N4
SOP2 I Boot Mode configuration bit 2 (SPI0_CLK) A11 A11 A11
SOP3 I Boot Mode configuration bit 3 (SPI0_D0) C10 C10 C10

5.3.21.2 Clocking
Table 5-102. XTAL Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
XTAL_XI (1) I External Crystal (XTAL) Input T1 T1 T1
XTAL_XO (1) O External Crystal (XTAL) Output R1 R1 R1

(1) The XTAL interface requires a 25 MHz clock source.

Table 5-103. Output Clock Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
CLKOUT0 O Output Clock 0 M2 M2 M2
CLKOUT1 O Output Clock 1 B16 B16 B16

Table 5-104. External Reference Clock Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
EXT_REFCLK0 I External Reference Clock Input P2 P2 P2

68 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

5.3.21.3 Emulation and Debug


Table 5-105. Trace Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
TRC_CLK O Trace Clock D15 D15 D15
TRC_CTL O Trace Control C15 C15 C15
TRC_DATA0 O Trace Data 0 F15 F15 F15
TRC_DATA1 O Trace Data 1 C18 C18 C18
TRC_DATA2 O Trace Data 2 D17 D17 D17
TRC_DATA3 O Trace Data 3 D18 D18 D18
TRC_DATA4 O Trace Data 4 E16 E16 E16
TRC_DATA5 O Trace Data 5 F16 F16 F16
TRC_DATA6 O Trace Data 6 F18 F18 F18
TRC_DATA7 O Trace Data 7 G16 G16 G16
TRC_DATA8 O Trace Data 8 E17 E17 E17
TRC_DATA9 O Trace Data 9 E18 E18 E18
TRC_DATA10 O Trace Data 10 C16 C16 C16
TRC_DATA11 O Trace Data 11 A17 A17 A17
TRC_DATA12 O Trace Data 12 B18 B18 B18
TRC_DATA13 O Trace Data 13 B17 B17 B17
TRC_DATA14 O Trace Data 14 D16 D16 D16
TRC_DATA15 O Trace Data 15 C17 C17 C17

Table 5-106. JTAG Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
TCK I JTAG Test Clock Input B3 B3 B3
TDI I JTAG Test Data Input C5 C5 C5
TDO O JTAG Test Data Output C4 C4 C4
TMS IO JTAG Test Mode Select Input D5 D5 D5

5.3.21.4 SYSTEM
Table 5-107. System Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
PORz I Device Power-On (PORz) cold reset R2 R2 R2
SAFETY_ERRORn IO ESM Safety Error Signal D4 D4 D4
Warm Reset Request (Input) / Warm Reset Status
WARMRSTn IO C3 C3 C3
(Output)

5.3.21.5 VMON
Table 5-108. VMON Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
VSYS_MON (1) A External Voltage Monitor with 0.9 V (+/-3%) setpoint. U2 U2 U2

(1) See the Electrical Specifications - Safety Comparators section for additional details on this pin.

5.3.21.6 Reserved and No Connect


Table 5-109. Reserved Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
Reserved (RSVD_J16). This pin must be connected to
RSVD_J16 RSVD J16 J16 J16
1.2 V supply (VDD).
Reserved (RSVD_P15). This pin must be left
RSVD_P15 RSVD P15 P15
unconnected.

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 69


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Table 5-109. Reserved Signal Descriptions (continued)


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
Reserved (RSVD_T4). This pin must be connected to
RSVD_T4 RSVD T4 T4 T4
ground (VSS).
Reserved (RSVD_U1). This pin must be connected to
RSVD_U1 RSVD U1 U1 U1
ground (VSS).
Reserved (RSVD_U3). This pin must be left
RSVD_U3 RSVD U3 U3 U3
unconnected.
Reserved (RSVD_V2). This pin must be left
RSVD_V2 RSVD V2 V2 V2
unconnected.

Table 5-110. No Connection Description


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
H1, J1, J4, K2,
NC (1) NC No Connection K3, K4, L2, M1,
M4, P1, P3

(1) NC pins are No Connect pins, as these pins are connected internally to OSPI flash die in ZCZ_F Package. Refer to OSPI Connections
for Flash-in-Package (ZCZ_F) Section for more details.

5.3.22 UART
Table 5-111. UART0 Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
UART0_CTSn I UART Clear to Send (active low) A5, B7 A5, B7 A5, B7
UART0_RTSn O UART Request to Send (active low) C6, C7 C6, C7 C6, C7
UART0_RXD I UART Receive Data A7, B6 A7, B6 A7, B6
UART0_TXD O UART Transmit Data A4, A6 A4, A6 A4, A6

Table 5-112. UART1 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
UART1_CTSn I UART Clear to Send (active low) G4 G4 G4
UART1_DCDn I UART Data Carrier Detect (Active Low) J4, N1 J4, N1 N1
UART1_DSRn I UART Data Set Ready (Active Low) V17
UART1_DTRn O UART Data Terminal Ready (Active Low) K1, K3 K1, K3 K1
UART1_RIn I UART Ring Indicator K4, N4 K4, N4 N4
UART1_RTSn O UART Request to Send (active low) B12, J2 B12, J2 B12, J2
UART1_RXD I UART Receive Data A9, L3 A9, L3 A9, L3
UART1_TXD O UART Transmit Data B9, M3 B9, M3 B9, M3

Table 5-113. UART2 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
UART2_CTSn I UART Clear to Send (active low) H1 H1
UART2_RTSn O UART Request to Send (active low) A12, J3, R3 A12, J3, R3 A12, R3
UART2_RXD I UART Receive Data B5, B8 B5, B8 B5, B8
UART2_TXD O UART Transmit Data A3, A8 A3, A8 A3, A8

Table 5-114. UART3 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
UART3_CTSn I UART Clear to Send (active low) K2, N2 K2, N2 N2
UART3_RTSn O UART Request to Send (active low) A2, J1 A2, J1 A2
UART3_RXD I UART Receive Data C11, D15 C11, D15 C11, D15
UART3_TXD O UART Transmit Data A11, C15 A11, C15 A11, C15

70 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 5-115. UART4 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
UART4_CTSn I UART Clear to Send (active low) A14 A14 A14
UART4_RTSn O UART Request to Send (active low) B14 B14 B14
UART4_RXD I UART Receive Data A10, D11, H2 A10, D11, H2 A10, D11, H2
UART4_TXD O UART Transmit Data C12, C9, G3 C12, C9, G3 C12, C9, G3

Table 5-116. UART5 Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
UART5_CTSn I UART Clear to Send (active low) D13 D13 D13
UART5_RTSn O UART Request to Send (active low) A16 A16 A16
A15, C13, D9,
UART5_RXD I UART Receive Data A15, C13, D9 A15, C13, D9
R16
UART5_TXD O UART Transmit Data B10, B15, P15 B10, B15 B10, B15

5.3.23 XBAR
Table 5-117. Output XBAR Signal Descriptions
SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
XBAROUT0 O OUTPUTXBAR Signal 0 R3 R3 R3
XBAROUT1 O OUTPUTXBAR Signal 1 C9 C9 C9
XBAROUT2 O OUTPUTXBAR Signal 2 A10 A10 A10
XBAROUT3 O OUTPUTXBAR Signal 3 B10 B10 B10
XBAROUT4 O OUTPUTXBAR Signal 4 D9 D9 D9
XBAROUT5 O OUTPUTXBAR Signal 5 A9 A9 A9
XBAROUT6 O OUTPUTXBAR Signal 6 B9 B9 B9
XBAROUT7 O OUTPUTXBAR Signal 7 D7 D7 D7
XBAROUT8 O OUTPUTXBAR Signal 8 C8 C8 C8
XBAROUT9 O OUTPUTXBAR Signal 9 C7 C7 C7
XBAROUT10 O OUTPUTXBAR Signal 10 B7 B7 B7
XBAROUT11 O OUTPUTXBAR Signal 11 D16 D16 D16
XBAROUT12 O OUTPUTXBAR Signal 12 C17 C17 C17
XBAROUT13 O OUTPUTXBAR Signal 13 D15 D15 D15
XBAROUT14 O OUTPUTXBAR Signal 14 C15 C15 C15
XBAROUT15 O OUTPUTXBAR Signal 15 P2 P2 P2

Table 5-118. External ADC Channel Select XBAR Signal Descriptions


SIGNAL NAME [1] PIN TYPE [2] DESCRIPTION [3] ZCZ C PIN [4] ZCZ S PIN [4] ZCZ F PIN [4]
ADC_EXTCH_XBAROUT0 O External ADC Channel Select XBAR Signal 0 C11, C13 C11, C13 C11, C13
ADC_EXTCH_XBAROUT1 O External ADC Channel Select XBAR Signal 1 A11, C14 A11, C14 A11, C14
ADC_EXTCH_XBAROUT2 O External ADC Channel Select XBAR Signal 2 C10, C12 C10, C12 C10, C12
ADC_EXTCH_XBAROUT3 O External ADC Channel Select XBAR Signal 3 B11, D11 B11, D11 B11, D11
ADC_EXTCH_XBAROUT4 O External ADC Channel Select XBAR Signal 4 C9, P15 C9 C9
ADC_EXTCH_XBAROUT5 O External ADC Channel Select XBAR Signal 5 A10, R16 A10 A10
ADC_EXTCH_XBAROUT6 O External ADC Channel Select XBAR Signal 6 B10, F15 B10, F15 B10, F15
ADC_EXTCH_XBAROUT7 O External ADC Channel Select XBAR Signal 7 C18, D9 C18, D9 C18, D9
ADC_EXTCH_XBAROUT8 O External ADC Channel Select XBAR Signal 8 B15 B15 B15
ADC_EXTCH_XBAROUT9 O External ADC Channel Select XBAR Signal 9 A15 A15 A15

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 71


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

5.4 Pin Connectivity Requirements


Ball Number Ball Name Pin Connectivity Requirements
This pin must be connected to ground (VSS) through a separate external
pull resistor to make sure the pin is held to a valid logic low level if a PCB
D4 SAFETY_ERRORn signal trace is connected and not actively driven by an attached device. The
internal pull–down can be used to hold a valid logic low level if no PCB signal
trace is connected to the ball.
J16 RSVD_J16 This pin must be connected to 1.2V supply (VDD).
T4 RSVD_T4
Each of these pins must be connected (shorted) directly to ground (VSS)
U1 RSVD_U1
U3 RSVD_U3
Each of these pins must be left unconnected.
V2 RSVD_V2
P15(1) RSVD_P15(1) ZCZ_S and ZCZ_F Package only. This pin must be left unconnected
Each of these pins must be connected to the corresponding power supply
B3 TCK through separate external pull resistors to make sure these balls are held to
C5 TDI a valid logic high level if a PCB signal trace is connected and not actively
D5 TMS driven by an attached device. The internal pull–up can be used to hold a
valid logic high level if no PCB signal trace is connected to the ball.
Each of these pins must be connected to the corresponding power supply
A13 I2C0_SCL
through separate external pull resistors to make sure these balls are held to
B13 I2C0_SDA
a valid logic high level.
N1 QSPI0_D0 (SOP0) Each of these pins must be connected to the corresponding power supply
N4 QSPI0_D1 (SOP1) or ground (VSS) through separate external pull resistors to make sure these
A11 SPI0_CLK (SOP2) balls are held to a valid logic high or low level as appropriate to select the
C10 SPI0_D0 (SOP3) desired device boot mode.
If all ADCx_AINy inputs for all ADC instances (ADC[0:4]_AIN[0:5]) are not
U16 ADC_CAL0
used, the ADC_CAL[0:1] analog pins must be connected (shorted) directly to
T15 ADC_CAL1
ground (VSS).
If VSYS_MON is not used, this pin can be connected (shorted) directly to
U2 VSYS_MON
ground (VSS).
Any unused ADCx_AINy input pin for any ADC instance (ADC[0:4]_AIN[0:5])
ADC ZCZ PIN ADC[0:4]_AIN[0:5]
must be connected (shorted) directly to ground (VSS).
Any unused ADC_Rx_AINy input pin for any ADC_R instance
ADC_R ZCZ PIN ADC_R[0:1]_AIN[0:3] (ADC_R[0:1]_AIN[0:3]) must be connected (shorted) directly to ground
(VSS).
If an associated IOMUX pad configuration register exists for a given pin,
Any LVCMOS Voltage Buffer
LVCMOS ZCZ PIN the pin can remain unconnected. After PORz, the LVCMOS voltage buffer is
Pin
configured to a default state compatible with an unconnected ball.
P1(2) GPIO0(2)
M4(2) GPIO5(2)
P3(2) GPIO6(2)
M1(2) GPIO7(2)
L2(2) GPIO9(2)
ZCZ_F Package only. Each of these pins must be left unconnected with no
H1(2) GPIO65(2)
PCB trace.
J1(2) GPIO66(2)
K2(2) GPIO67(2)
J4(2) GPIO68(2)
K4(2) GPIO69(2)
K3(2) GPIO70(2)
ZCZ_F Package only. This pin must be connected to VDDS33 through
L1(2) GPIO8(2) a separate external 4.7kΩ pull resistor placed as close to the device as
possible.
ZCZ_F Package only. OSPI_RESET_OUT0 connection to PORz. To reset
J3(2) GPIO64(2) the on-die OSPI flash module OSPI_RESET_OUT0 must be connected to an
open-drain equivalent of PORz.

(1) ZCZ_S and ZCZ_F Package only


(2) ZCZ_F Package only

72 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6 Specifications
6.1 Absolute Maximum Ratings
over operating junction temperature range (unless otherwise noted)(1) (2)
PARAMETER MIN MAX UNIT
VDD 1.2V SOC core supply –0.5 1.5 V
VDDAR1 1.2V SRAM Array Supply 1 –0.5 1.5 V
VDDAR2 1.2V SRAM Array Supply 2 –0.5 1.5 V
VDDAR3 1.2V SRAM Array Supply 3 –0.5 1.5 V
1.8V IO Bias Supply from Bias LDO routed
VDDS18 –0.5 2.1 V
through Board
VDDS33 3.3V IO Supply –0.5 4.0 V
1.8V Analog Supply for PLL. Routed from
VDDA18_OSC_PLL –0.5 2.1 V
the 1.8V Analog LDO out through Board
VDDA33 Analog 3.3V Supply –0.5 4.0 V
1.8V Analog Supply. Routed from the 1.8V
VDDA18 –0.5 2.1 V
Analog LDO out through Board
3.3V LVCMOS IO Buffer –0.3 VDDS33(3) + 0.3 V
IO Pin Steady State Voltage 3.3V I2C Open-Drain IO Buffers –0.3 VDDS33(3) + 0.3 V
XTAL Pad –0.5 2.1 V
VDDS33(3) + 0.2 ×VDDS33(3) for up
All Other IO Terminals –0.3 V
Transient to 20% of signal period
Overshoot and XTAL Pad
Undershoot 20% of VDDA18_OSC_PLL for up to 20% 0.2 × VDDA18_OSC_PLL V
of signal period
Latch-up I-test Performance (Current-Pulse
±100 mA
Latch Up Performance Injection on each IO pin)
Class II (150°C) Latch-up Overvoltage Performance (Voltage
1.5 × VDDS33 V
Injection on each IO pin)
Output current Digital output (per pin), IOUT –20 20 mA
Storage temperature(4) Tstg –55 155 °C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.
(2) All voltage values are with respect to VSS, unless otherwise noted.
(3) VDDS33 is the voltage on the corresponding power-supply pin(s) for the IC.
(4) Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device
life. For additional information, see the Semiconductor and IC Package Thermal Metrics Application Report.

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 73


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.2 Electrostatic Discharge (ESD) Extended Automotive Ratings


over recommended operating conditions (unless otherwise noted)
VALUE UNIT
Human body model (HBM), per AEC-Q100-002(1) ±2000
Electrostatic
All pins ±500
V(ESD) Discharge Charged device model (CDM), per AEC- V
(ESD) Q100-011 Corner balls
±750
(A1, A18, V1, V18)

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification

6.3 Electrostatic Discharge (ESD) Industrial Ratings


over recommended operating conditions (unless otherwise noted)
VALUE UNIT
Electrostatic Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000
V(ESD) Discharge V
(ESD) Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2) ±500

(1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

6.4 Power-On Hours (POH) Summary


over recommended operating conditions (unless otherwise noted)(1) (2) (3)
PARAMETER INDUSTRIAL EXTENDED AUTOMOTIVE
Operating Junction Temperature (Tj) –40℃ to 125℃ –40℃ to 150℃
100K @ 97℃ (100% @ 97℃)
POH @ Temp Profile 70K @ 105℃ (100% @ 105℃) 20K @ Automotive Temp Profile(4)
15K @ 125℃ (100% @ 125℃)

(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard
terms and conditions for TI semiconductor products.
(2) Unless specified in the table above, all voltage domains and operating conditions are supported in the device at the noted
temperatures.
(3) POH is a function of voltage, temperature, and time. Usage at higher voltages and temperatures results in a reduction in POH.
(4) See Automotive Temperature Profile section

6.4.1 Automotive Temperature Profiles

6.4.1.1 Automotive Temperature Profile


TJ (℃) HOURS DAYS YEARS PERCENT OF TIME
–40 1200 ≅50 ≅0.14 6%
75 4000 ≅167 ≅0.46 20%
95 13000 ≅541 ≅1.48 65%
130 1600 ≅67 ≅0.18 8%
150 200 ≅8.5 ≅0.023 1%
Total 20000 ≅833 ≅2.28 100%

6.4.1.2 Automotive Temperature Profile ZCZ-F


TJ (℃) HOURS DAYS YEARS PERCENT OF TIME
–40 1200 ≅50 ≅0.14 6%
75 4000 ≅167 ≅0.46 20%
95 13000 ≅541 ≅1.48 65%
125 1800 ≅75.5 ≅0.203 9%

74 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

TJ (℃) HOURS DAYS YEARS PERCENT OF TIME


Total 20000 ≅833.5 ≅2.283 100%

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 75


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.5 Recommended Operating Conditions


over operating junction temperature range (unless otherwise noted)
PARAMETER DESCRIPTION MIN NOM MAX UNIT
VDD 1.2V SOC Core Supply 1.140 1.200 1.260 V
VDDAR1, VDDAR2,
SRAM Array Supplies 1.140 1.200 1.260 V
VDDAR3
VDDS18 1.8V IO Bias Supply from Bias LDO routed through board 1.710 1.800 1.890 V
VDDS33 3.3V IO Supply 3.135 3.300 3.465 V
1.8V Analog supply for PLL. Routed from the Analog LDO
VDDA18_OSC_PLL 1.710 1.800 1.890 V
out through board
VDDA33 Analog 3.3V Supply 3.135 3.300 3.465 V
1.8V Analog supply. Routed from 1.8V Analog LDO out
VDDA18 1.710 1.800 1.890 V
through Board
Extended
TA Free-air temperature –40 125 °C
Automotive
Extended
–40 125 °C
Industrial
Extended
Automotive
–40 150 °C
Special Features -
TJ Operating junction temperature range
C, S
Extended
Automotive
–40 125 °C
Special Features -
F

6.6 Operating Performance Points


This section describes the operating conditions of the device. This section also contains the description of each Operating
Performance Point (OPP) for processor clocks, device core clocks, and available memory.
RAM R5FSS HSM ICSS INFRA(1)
DEVICE GRADE
(MB) (MHz) (MHz) (MHz) (MHz)
AM263Px N 2 400 200 200 200
AM263Px O 3 400 200 200 200
AM263Px P 3 200 200 200 200

(1) Infrastructure includes all other modules and IP integrated in the device (such as CBASS/Interconnect and other SoC level peripherals)
unless otherwise noted in the table.

6.6.1 ZCZ_F Package Flash Retention Specifications


The below table shows the rated number of Program and Erase cycles of the Flash die inside the ZCZ_F
Package, with respective conditions
AM263P ZCZ_F package Flash Data Retention Specifications after Program and Erase cycles
Temperature Number of Program Erase Cycles Data Retention Duration
55°C 100000 10 years
95°C 10000 10 years

76 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.7 Power Consumption Summary


Section 6.7.1, Power Consumption - Maximum shows the maximum current consumed by each rail and should
be used for power supply selection. Section 6.7.2, Power Consumption - Typical shows the typical power
consumption by Module. Section 6.7.3, Power Consumption - Traction Inverter shows the nominal power
consumption of the SoC at different Junction Temperatures for a Traction Inverter application.
For application specific power usage estimates, refer to AM263Px Power Estimation Tool.
6.7.1 Power Consumption - Maximum
over recommended operating conditions (unless otherwise noted)
SUPPLY NAME PARAMETER MIN MAX UNIT
VDD + VDDARn Maximum Current Rating for Core Domain 2.8 A
VDDS33 Maximum Current Rating for IO supply 200 mA
VDDA33 Maximum Current Rating for 3.3V Analog supply 200 mA

6.7.2 Power Consumption - Typical


Typical usecase power consumption summary, TJ = 85℃
PARAMETER TYP MAX UNIT
Cores and Memory 401 mW
Infrastructure 598 mW
Power Consumption
Peripherals 212 mW
Total 1211 mW

6.7.3 Power Consumption - Traction Inverter


Traction Inverter Application Power Consumption Across Temperature
PARAMETER TYP MAX UNIT
TJ = 85℃ 1211 mW
TJ = 105℃ 1368 mW
Power Consumption
TJ = 125℃ 1601 mW
TJ = 150℃ 2090 mW

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 77


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.8 Electrical Characteristics


Note
The interfaces or signals described in Section 6.8.1 Digital and Analog IO Electrical Characteristics
through Section 6.8.6 Power Management Unit (PMU) correspond to the interfaces or signals
available in multiplexing mode 0 (Primary Function).
All interfaces or signals multiplexed on the balls described in these tables have the same DC electrical
characteristics, unless multiplexing involves a PHY and GPIO combination, in which case different DC
electrical characteristics are specified for the different multiplexing modes (Functions).

6.8.1 Digital and Analog IO Electrical Characteristics


over recommended operating conditions (unless otherwise noted)
PARAMETER MIN TYP MAX UNIT
PORz IO
VIH High-Level Input Voltage 1.35 V
VIL Low-Level Input Voltage 0.5 V
VHYS Hysteresis Voltage at an Input 0.070 V
IL Input Leakage Current –2 2 µA
Warm Reset IO
VIH High-Level Input Voltage 2.15 V
VIL Low-Level Input Voltage 0.55 V
VHYS Hysteresis Voltage at an Input 0.347 V
VOL Low Level Output Voltage, Driver Enabled: IOL = 6mA 0.45 V
IL Input Leakage Current, Receiver Disabled, Pull Disabled –57 µA
TCK IO
VIH High-Level Input Voltage 2.15 V
VIL Low-Level Input Voltage 0.55 V
VHYS Hysteresis Voltage at an Input 0.4 V
Input Leakage Current, Receiver Disabled, Pull Disabled –3.9 8.9 17.2 µA
Input Leakage Current, Receiver Disabled, Pullup Enabled 106.9 128.2 µA
IL
Input Leakage Current, Receiver Disabled, Pulldown
100.3 130.3 µA
Enabled
I2C OD IOs
VIH High-Level Input Voltage 2 V
VIL Low-Level Input Voltage 0.55 V
VHYS Hysteresis Voltage at an Input 0.165 V
IL Input Leakage Current, Receiver Disabled, Pull Disabled –18 18 µA
VOL Low Level Output Voltage, Driver Enabled: IOL = 3mA 0.45 V
All Other LVCMOS
VIH High-Level Input Voltage 2 V
VIL Low-Level Input Voltage 0.55 V
VHYS Hysteresis Voltage at an Input 0.265 V
VOL Low Level Output Voltage, Driver Enabled: IOL = 6mA 0.45 V
VOH High Level Output Voltage, Driver Enabled: IOH = 6mA VDDS33(1) – 0.45 V

78 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

over recommended operating conditions (unless otherwise noted)


PARAMETER MIN TYP MAX UNIT
Input Leakage Current, Receiver Disabled, Pull Disabled –18 18 µA
Input Leakage Current, Receiver Disabled, Pullup Enabled –243 –100 –19 µA
IL
Input Leakage Current, Receiver Disabled, Pulldown
51 100 210 µA
Enabled

(1) VDDS33 is the voltage on the corresponding power-supply pin on the IC.

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 79


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.8.2 Analog to Digital Converter Characteristics


This section describes the Analog to Digital Converter electrical characteristics required to ensure proper device
operation.
6.8.2.1 Analog-to-Digital Converter (ADC)
over operating junction temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VREFHI 1.71 1.8 1.89 V
Input Conversion Range (Vin+,
Must be < VDDA33 0 32/18 × VREFHI V
Vin-)
Power-up time 500 µs
Gain error –5 ±3 5 LSBs
Offset error –4 ±2 4 LSBs
Channel-to-channel gain error ±4 LSBs
Channel-to-channel offset error ±2 LSBs
ADC-to-ADC gain error Same reference group ±4 LSBs
ADC-to-ADC offset error Same reference group ±2 LSBs
DNL Controlled environment to minimize input noise –1 ±0.5 1 LSBs
INL Controlled environment to minimize input noise –2 ±1.0 2 LSBs
SNR Controlled environment to minimize input noise 68 dB
ENOB (Synchronous Operation) 11 bits
ENOB (Asynchronous Operation) 9.7 bits
ADC-to-ADC isolation Synchronous operation –10 10 LSBs
VREFHI input current 400 µA
Conversion time 250 ns
Parasitic Input Capacitance (Cp )(1) 7 pF
Sample/Hold Resistance (Ron)(1) 1.2 kΩ
Sample/Hold Capacitance (Ch)(1) 8 pF
Input Leakage –1.2 0.1 1.2 µA
Power supply (VDDA33) 3.13 3.3 3.46 V
Power supply (VDDA18) 1.71 1.8 1.89 V
Power Consumption (VDDA33) 200 µA
Power Consumption (VDDA18) 700 µA
With 50% duty cycle. Minimum pulse width must be
Maximum ADCCLK frequency 50 66.667 MHz
maintained at 7.5ns
Sample time 75 ns

(1) See ADC Input Model

80 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.8.2.2 Resolver Analog-to-Digital Converter (ADC_R)


over operating junction temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VREFHI 1.71 1.8 1.89 V
Input Conversion Range (Vin+,
Must be < VDDA33 0 33/18 × VREFHI V
Vin-)
Power-up time 500 µs
Gain error –5 ±3 5 LSBs
Offset error –4 ±2 4 LSBs
Channel-to-channel gain error ±4 LSBs
Channel-to-channel offset error ±2 LSBs
ADC-to-ADC gain error Same reference group ±4 LSBs
ADC-to-ADC offset error Same reference group ±2 LSBs
DNL Controlled environment to minimize input noise –1 ±0.5 1 LSBs
INL Controlled environment to minimize input noise –2 ±1.0 2 LSBs
SNR Controlled environment to minimize input noise 68 dB
ENOB (Synchronous Operation) 11 bits
ENOB (Asynchronous Operation) 9.7 bits
ADC-to-ADC isolation Synchronous operation –10 10 LSBs
VREFHI input current 500 µA
Conversion time 333 ns
Parasitic Input Capacitance (Cp )(1) 7 pF
Sample/Hold Resistance (Ron)(1) 1.2 kΩ
Sample/Hold Capacitance (Ch)(1) 8 pF
Input Leakage –1.2 0.1 1.2 µA
Power supply (VDDA33) 3.13 3.3 3.46 V
Power supply (VDDA18) 1.71 1.8 1.89 V
Power Consumption (VDDA33) 200 µA
Power Consumption (VDDA18) 500 µA

(1) See ADC Input Model

6.8.2.3 ADC Input Model

ADC

ADCINx SW Ron

Cp Ch

VREFLO

Figure 6-1. ADC Input Model

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 81


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.8.3 Comparator Subsystem A (CMPSSA)


SUBGROUP PARAMETER MIN TYP MAX UNIT
Power-up time 10 µs
Comparator input range 0.1 VDDA33(1) – 50mV V
Input referred offset error –20 20 mV
Hysteresis (H1) NA LSB
Comparator
Hysteresis (H2) 15 LSB
Hysteresis (H3) 35 LSB
Hysteresis (H4) 55 LSB
Propagation delay 21 50 ns
DAC_VREF reference voltage 1.71 1.8 1.89 V
Minimum of
DAC output range 0.1 33/18 × DAC_VREF or V
VDDA33(1) – 50mV
Static offset error –45 45 mV
Static gain error –2 2 % of FSR
Static DNL >–1 4 LSB
DAC Static INL –16 16 LSB
Settling time 1 µs
Resolution 12 bits
DAC output disturbance (comparator trip
–100 100 LSB
kickback)
DAC output disturbance (comparator trip
200 ns
kickback)
DAC_VREF loading 37 kΩ
Input Leakage –1.2 0.1 1.2 µA
Power supply (VDDA33) 3.13 3.3 3.46 V
Power supply (VDDA18) 1.71 1.8 1.89 V
Common
Power consumption (VDDA33) 900 µA
Power consumption (VDDA18) 120 µA
Failsafe Input current injection 10 mA

(1) VDDA33 is the voltage on the corresponding power-supply pin(s) on the IC.

82 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.8.4 Comparator Subsystem B (CMPSSB)


SUBGROUP PARAMETER MIN TYP MAX UNIT
Power-up time 10 µs
Comparator input range 0.1 VDDA33(1) – 50mV V
Input referred offset error –20 20 mV
Hysteresis (H1) NA LSB
Comparator
Hysteresis (H2) 15 LSB
Hysteresis (H3) 35 LSB
Hysteresis (H4) 55 LSB
Propagation delay 21 50 ns
DAC_VREF reference voltage 1.71 1.8 1.89 V
Minimum of
DAC output range 0.1 33/18 × DAC_VREF or V
VDDA33(1) - 50mV
Static offset error –45 45 mV
Static gain error –2 2 % of FSR
Static DNL >–1 4 LSB
DAC Static INL –16 16 LSB
Settling time 1 µs
Resolution 12 bits
DAC output disturbance (comparator trip
–100 100 LSB
kickback)
DAC output disturbance (comparator trip
200 ns
kickback)
DAC_VREF loading 37 kΩ
Input Leakage –1.2 0.1 1.2 µA
Power supply (VDDA33) 3.13 3.3 3.46 V
Power supply (VDDA18) 1.71 1.8 1.89 V
Common
Power consumption (VDDA33) 900 µA
Power consumption (VDDA18) 120 µA
Failsafe input current injection 10 mA

(1) VDDA33 is the voltage on the corresponding power-supply pin(s) on the IC.

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 83


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.8.5 Digital-to-Analog Converter (DAC)


over operating junction temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Power-up time 1 µs
DAC_VREF 1.71 1.8 1.89 V
Voltage output range 0.3 VDDA33(1) – 0.3 V
Trimmed offset error Offset is checked at Midpoint (code 2048) –10 10 mV
Gain error DAC_VREF = 1.8V –2.5 2.5 % of FSR
DNL Endpoint corrected –1 1 LSB
INL Endpoint corrected –20 20 LSB
Settling to 2 LSBs (~1.6mV) after 0.3V-to-3V
Settling time 2 µs
transition
Resolution 12 bits
Capacitive load Output drive capability 100 pF
Resistive load Output drive capability 5 kΩ
DAC_VREF loading DAC_VREF 64 kΩ
Output noise (100Hz-100KHz) Integrated noise from 100Hz to 100kHz 1 mVrms
2MHz DACVALA update rate, 200kHz output
SNR @ 1KHz 60 dB
filter
Power supply (VDDA33) 3.13 3.3 3.46 V
Power supply (VDDA18) 1.71 1.8 1.89 V
Power Consumption (VDDA33) 850 µA
Power Consumption (VDDA18) 35 µA

(1) VDDA33 is the voltage on the corresponding power-supply pin(s) on the IC.

6.8.6 Power Management Unit (PMU)


over operating junction temperature range (unless otherwise noted)
GROUP PARAMETER MIN TYP MAX UNIT
PMU Power supply (VDDA33) 3.1 3.3 3.46 V
Bandgap VREF trimmed 0.886 0.9 0.914 V
DC accuracy 1.764 1.8 1.836 V
Transient load regulation 1.71 1.8 1.89 V
DC Load regulation 5 mV
1.8V LDO Load current 0 60 mA
Power up time 800 uS
Inrush current 150 mA
External decoupling capacitance –20% 4.7 20% uF
Load Regulation ±1 mV
DC accuracy 1.764 1.8 1.836 V
ADC Reference Power up time 800 uS
Inrush current 80 mA
External decoupling capacitance –20% 4.7 20% uF

84 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.8.7 Safety Comparators


PARAMETER MIN TYP MAX UNIT
C0 C0: 1.8V Monitor Threshold 1.40 1.5 1.6 V
Lower Threshold 0.75 0.8 0.85 V
C1 BGAP Monitor
Upper Threshold 0.935 1 1.065 V
Lower Threshold 1.47 1.52 1.57 V
C2 Monitors 1.8V Supply vs BGAP
Upper Threshold 2.13 2.195 2.26 V
Lower Threshold 0.98 1.011 1.041 V
C3 Monitors 1.2V vs BGAP
Upper Threshold 1.407 1.451 1.494 V
Lower Threshold 1.56 1.61 1.66 V
C4 Vref Monitor (ROK0)
Upper Threshold 2.09 2.16 2.22 V
Lower Threshold 1.47 1.52 1.57 V
C5 Monitors IO Bias Supply vs BGAP
Upper Threshold 2.13 2.195 2.26 V
Lower Threshold 1.56 1.61 1.66 V
C6 Vref Monitor (ROK0B)
Upper Threshold 2.09 2.16 2.22 V
C7 System Supply Monitor (VSYS_MON) Lower Threshold 0.873 0.9 0.927 V
C8 UnderVoltage Threshold 2.59 2.77 2.95 V
Lower Threshold 1.56 1.61 1.66 V
C9 Vref Monitor (ROK1)
Upper Threshold 2.09 2.16 2.22 V
Lower Threshold 1.56 1.61 1.66 V
C10 Vref Monitor (ROK2)
Upper Threshold 2.09 2.16 2.22 V

6.8.8 Safety System


SUBGROUP PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Frequency trimmed 8 10 12 MHz
10MHz RC Osc
Output duty cycle 40 60 %
VDDA 1.71 1.89 V
ADC resolution 7 bit
ADC LSB 2 ℃
TempSensor
TempSensor accuracy ±8 ℃
ADC clock 16 32 60 kHz
ADC conversion time 5 ms

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 85


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.9 VPP Specifications for One-Time Programmable (OTP) eFuses


This section specifies the operating conditions required for programming the OTP eFuses.
6.9.1 VPP Specifications
over recommended operating conditions (unless otherwise noted)
PARAMETER DESCRIPTION TEST CONDITIONS MIN NOM MAX UNIT
Supply voltage range for the core
VDD Normal Operation 1.140 1.200 1.260 V
domain during OTP operation
Supply voltage range for the eFuse
Normal Operation No Connection V
ROM domain

VPP Supply voltage range for the


eFuse ROM domain during OTP
OTP Programming 1.65 1.7 1.75 V
programming

I(VPP) VPP Current I(VPP) 100 mA


TA Ambient Temperature Ambient Temperature 0 30 50 ℃

6.9.2 Hardware Requirements


The following hardware requirements must be met when programming keys in the OTP eFuses:
• The VPP power supply must be disabled when not programming OTP registers.
• The VPP power supply must be ramped up after the proper device power-on sequence (for more details, see
Section 6.11.2.1, Power-On and Reset Sequencing).
6.9.3 Programming Sequence
Programming sequence for OTP eFuses:
• Power on the board per the power-on sequencing. No voltage should be applied on the VPP terminal during
power up and normal operation.
• Load the OTP write software required to program the eFuse (contact your local TI representative for the OTP
software package).
• Apply the voltage on the VPP terminal according to the specification in Section 6.9.1, VPP Specifications.
• Run the software that programs the OTP registers.
• After validating the content of the OTP registers, remove the voltage from the VPP terminal.
6.9.4 Impact to Your Hardware Warranty
You accept that e-Fusing the TI Devices with security keys permanently alters them. You acknowledge that the
e-Fuse can fail, for example, due to incorrect or aborted program sequence or if you omit a sequence step.
Further the TI Device may fail to secure boot if the error code correction check fails for the Production Keys
or if the image is not signed and optionally encrypted with the current active Production Keys. These types of
situations will render the TI Device inoperable and TI will be unable to confirm whether the TI Devices conformed
to their specifications prior to the attempted e-Fuse.
CONSEQUENTLY, TI WILL HAVE NO LIABILITY (WARRANTY OR OTHERWISE) FOR ANY TI DEVICES THAT
HAVE BEEN e-FUSED WITH SECURITY KEYS.

86 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.10 Thermal Resistance Characteristics


This section provides the thermal resistance characteristics used on this device.
For reliability and operability concerns, the maximum junction temperature of the device has to be at or below
the TJ value identified in Section 6.5, Recommended Operating Conditions.

6.10.1 Package Thermal Characteristics


It is recommended to perform thermal simulations at the system level with the worst-case device power consumption.
AIR FLOW (m/s)
PARAMETER DESCRIPTION ℃/W(1) (2) (3)

RΘJC Junction-to-case 5.4 N/A


RΘJB Junction-to-board 5.3 N/A
RΘJA Junction-to-free air 18.7 0
12.4 1
RΘJA Junction-to-moving air 11.2 2
10.6 3
0.12 0
0.35 1
ΨJT Junction-to-package top
0.47 2
0.56 3
5.1 0
4.6 1
ΨJB Junction-to-board
4.6 2
4.5 3

(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a
JEDEC defined 1S0P system) and change based on environment as well as application. For more information, see these EIA/JEDEC
standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions - Forced Convection (Moving Air)
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Packages
(2) ℃/W = degrees Celsius per watt
(3) m/s = meters per second

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 87


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11 Timing and Switching Characteristics


Note
The default SLEWRATE settings in each pad configuration register must be used to ensure timings,
unless specific instructions are given otherwise.

6.11.1 Timing Parameters and Information


The timing parameter symbols used in Timing and Switching Characteristics sections are created in accordance
with JEDEC Standard 100. To shorten the symbols, some pin names and other related terminologies have been
abbreviated in Table 6-1:
Table 6-1. Timing Parameters Subscripts
SYMBOL PARAMETER
c Cycle time (period)
d Delay time
dis Disable time
en Enable time
h Hold time
su Setup time
START Start bit
t Transition time
v Valid time
w Pulse duration (width)
X Unknown, changing, or don't care level
F Fall time
H High
L Low
R Rise time
V Valid
IV Invalid
AE Active Edge
FE First Edge
LE Last Edge
Z High impedance

88 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.11.2 Power Supply Sequencing


This section describes power supply sequencing required to ensure proper device operation.
6.11.2.1 Power-On and Reset Sequencing
AM263Px attempts to simplify the power reset requirements from previous Sitara MCU devices. There is no
sequencing requirement with respect to the primary core digital VDD 1.2V and I/O power 3.3V rails. There are
two on-die LDO that are supplied through the VDDS33 and VDDA33 power nets respectively. These on-die LDO
generate the required VDDS1V8 and VDDA1V8 1.8V digital and analog power. The AM263Px does require the
minimum ramp time be respected for 3.3V power-on. Additional PORz and SOP boot mode latch timing must be
respected by the EVM design as well. Figure 6-2 describes the device power-on sequencing.
Table 6-2. AM263Px Power-On Sequencing
PARAMETER MIN MAX UNIT
Time for 1.2V and 3.3V DC-DC converters to startup after being enabled. This is an
tStartup – – ms
arbitrary amount of time - no constraint imposed by the device.
Time for Power Good signals to be generated from DC-DC converters after rails are
tPGood – – ms
stable. This is an arbitrary amount of time - no constraint imposed by the device.
Ramp time of the VDDS3V3 and VDDA3V3 supplies. This is a requirement imposed by
tRamp_3V3 0.1 – ms
the device.
Time from PORz de-assertion until the SOP[3:0] pins are sampled. This is a device
internal pentameter. Sampling happens when the internally generated supplies are
tSOP_Sampled 0 – ms
stable. For information only. Refer to TSU_SOP and TH_SOP parameters for application
usage.
tSU_SOP Setup time for SOP relative to PORz assertion. 10 – μs
tH_SOP Hold time for SOP relative to WARMRSTn deassertion. 0 – μs
tWARMRSTn Time from PORz de-assertion until the device de-asserts the WARMRESETn signal. 2.0 – ms

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 89


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

tStartup
tPGood

VDD, VDDARn (1.2 V)

1.2V Power Good


Output (PG_1V2)

VDDS33, VDDA33 (3.3 V) tPORz

3.3V Power Good tRamp_3V3


Output (PG_3V3)
PG_1V2 AND PG_3V3

PORz

tWARMRSTn
Pin is Tristate.
WARMRSTn Signal Level determined by external pull or driver.

tSOP_Sampled

SOP[3:0]

tSU_SOP tH_SOP

Figure 6-2. Power-On Sequencing

6.11.2.1.1 Power Reset Sequence Description


The following set of steps shall occur on the EVM and AM263Px to boot the device from power-on reset.
1. PORz is held low by the external power supply monitor
2. VDD core digital 1.2V and VDDS3V3/VDDA3V3 3.3V supplies ramp to their nominal voltages
a. This requires a logical AND be applied to the power good signal generated from each supply
3. SOP[3:0] pins held in their boot latch state
4. After PCB supplied power nets are stable, the external supply monitor will de-assert PORz
5. Device will startup 1.8V on-die LDO
6. After internal supply monitors show externally and internally generated supplies are stable, the SOP[3:0] pin
states are latched
7. R5F cores are unhalted and SOP selected boot ROM execution begins

90 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.11.2.2 Power-Down Sequencing


Figure 6-3 describes the device power-down sequencing. The order of AM263Px 1.2V and 3.3V does not matter.

VDD, VDDARn (1.2 V)

1.2V Power Good


Output (PG_1V2)

VDDS33, VDDA33 (3.3 V)

3.3V Power Good


Output (PG_3V3)

PORz

Figure 6-3. Power-Down Sequencing

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 91


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.3 System Timing


For more details about features and additional description information on the subsystem multiplexing signals,
see the corresponding subsections within Signal Descriptions and Detailed Description sections.
6.11.3.1 System Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 0.5 2 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 3 30 pF

6.11.3.2 Reset Timing


Tables and figures provided in this section define timing requirements and switching characteristics for reset
related signals.
6.11.3.2.1 PORz Timing Requirements
NO. PARAMETER DESCRIPTION MIN MAX UNIT
Hold time, PORz active (low) at
th(SUPPLIES_VALID-
RST1 Power-up after supplies valid (using 0 ns
PORz)
external crystal)
Pulse Width minimum, PORz low
after Power-up (without removal of
RST3 tw(PORzL) 1000 ns
Power or system reference clock
XTAL_XI/XO)

RST1

RST3

PORz

ALL SUPPLIES
VALID

Figure 6-4. PORz Timing Requirements

6.11.3.2.2 WARMRSTn Switching Characteristics


NO. PARAMETER DESCRIPTION MIN MAX UNIT
td(PORzL:- Delay time, PORz active (low) to WARMRSTn
RST4 0 0 ns
WARMRSTnZ) high impedance
td(PORzH- Delay time, PORz inactive (high) to
RST5 0 0 ns
WARMRSTnL) WARMRSTn active (low)
td(PORzH- Delay time, PORz inactive (high) to
RST6 2000000 6000000 ns
WARMRSTnH) WARMRSTn inactive (high)

92 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

RST4 RST5

PORz

RST6

WARMRSTn

Figure 6-5. WARMRSTn Switching Characteristics

6.11.3.2.3 WARMRSTn Timing Requirements


NO. PARAMETER DESCRIPTION MIN MAX UNIT
Pulse Width minimum, WARMRSTn
RST10 tw(WARMRSTnL) (1) 500 16384000 ns
active (low)

(1) This timing parameter is controlled by the TOP_RCM.WARM_RSTTIME1/2/3 registers. See the Reset section of the Technical
Reference Manual for more details.

RST10

WARMRSTn

Figure 6-6. WARMRSTn Timing Requirements and Switching Characteristics

6.11.3.3 Safety Signal Timing


Tables and figures provided in this section define switching characteristics for SAFETY_ERRORn.
6.11.3.3.1 SAFETY_ERRORn Switching Characteristics
NO. PARAMETER DESCRIPTION MIN MAX UNIT
Cycle time minimum, SAFETY_ERRORn (P(1) × H(3)) + (P(1) ×
SFTY1 tc(SAFETY_ERRORn) ns
(PWM mode enabled) L)(4)
Pulse width minimum, SAFETY_ERRORn
SFTY2 tw(SAFETY_ERRORn) P(1) × R(2) ns
active (PWM mode disabled)(5)
td(ERROR_CONDITIO Delay time, ERROR_CONDITION to
SFTY3 50 × P(1) ns
N-SAFETY_ERRORnL) SAFETY_ERRORn active(5)

(1) P = ESM functional clock


(2) R = Error Pin Counter Pre-Load Register count value
(3) H = Error Pin PWM High Pre-Load Register count value
(4) L = Error Pin PWM Low Pre-Load Register count value
(5) When PWM mode is enabled, SAFETY_ERRORn stops toggling after SFTY3 and will maintain its value (either high or low) until the
error is cleared. When PWM mode is disabled, SAFETY_ERRORn is active low

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 93


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Internal Error Condition


(Active High)

SFTY1

SAFETY_ERRORn
(PWM Mode Enabled)

SFTY2
SFTY3
SAFETY_ERRORn
(PWM Mode Disabled)

Figure 6-7. MCU_SAFETY_ERRORn Timing Requirements and Switching Characteristics

6.11.4 Clock Specifications


6.11.4.1 Input Clocks / Oscillators
6.11.4.1.1 Crystal Oscillator (XTAL) Parameters
PARAMETER MIN TYP MAX UNIT
Crystal Parallel Resonance Frequency
Fxtal –50ppm 25 50ppm MHz
(Fundamental mode oscillation only)
Duty Cycle Duty cycle output of XTAL 45 50 55 %
CC1 Capacitance of CL1 + CPCBXI 12 24 pF
CC2 Capacitance of CL2 + CPCBXO 12 24 pF
Cshunt Crystal Circuit Shunt Capacitance 5 pF
ESRxtal Crystal Effective Series Resistance 46 Ω

6.11.4.1.2 External Clock Characteristics


over recommended operating conditions (unless otherwise noted)
PARAMETER MIN TYP MAX UNIT
CPkg Shunt Capacitance of package 0.01 pF
Pxtal Power dissipation 0.5 × ESR × (2 × π × Fxtal × CL × 1.8)2 W
ts Startup time 1.5 ms

94 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.11.5 Peripherals
6.11.5.1 2-port Gigabit Ethernet MAC (CPSW)

Note
The CPSW supports two external Ethernet ports and one internal port.

For more details about features and additional description information on the device CPSW (2-port Gigabit
Ethernet MAC), see the corresponding subsections within Signal Descriptions and Detailed Description sections.
6.11.5.1.1 CPSW MDIO Timing

6.11.5.1.1.1 CPSW MDIO Timing Conditions


PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 0.9 3.6 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 10 470 pF

6.11.5.1.1.2 CPSW MDIO Timing Requirements


NO. PARAMETER DESCRIPTION MIN MAX UNIT
Setup time, MDIO_DATA valid before
MDIO1 tsu(MDIO-MDC) 90 ns
MDIO_CLK high
Hold time, MDIO_DATA valid after MDIO_CLK
MDIO2 th(MDC-MDIO) 0 ns
high

6.11.5.1.1.3 CPSW MDIO Switching Characteristics


NO. PARAMETER DESCRIPTION MIN MAX UNIT
MDIO3 tc(MDC) Cycle time, MDIO_CLK 400 ns
MDIO4 tw(MDCH) Pulse duration, MDIO_CLK high 160 ns
MDIO5 tw(MDCL) Pulse duration, MDIO_CLK low 160 ns
Delay time, MDIO_CLK low to MDIO_DATA
MDIO7 td(MDC_MDIO) –150 150 ns
valid

MDIO3
MDIO4
MDIO5
MDIO[x]_MDC

MDIO1

MDIO2

MDIO[x]_MDIO
(input)

MDIO7

MDIO[x]_MDIO
(output)
CPSW2G_MDIO_TIMING_01

Figure 6-8. CPSW MDIO Timing Requirements and Switching Characteristics

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 95


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.5.1.2 CPSW RGMII Timing

6.11.5.1.2.1 CPSW RGMII Timing Conditions


PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 2.64 5 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 2 20 pF
PCB Connectivity Requirements
RGMII[x]_RXC
RGMII[x]_RD[3:0] 50 ps
td (Trace Mismatch Propagation Delay mismatch across all RGMII[x]_RX_CTL
Delay) traces RGMII[x]_TXC
RGMII[x]_TD[3:0] 50 ps
RGMII[x]_TX_CTL

6.11.5.1.2.2 CPSW RGMII[x]_RCLK Timing Requirements - RGMII Mode


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
10Mbps 360 440 ns
RGMII1 tc(RXC) Cycle time, RXC 100Mbps 36 44 ns
1000Mbps 7.2 8.8 ns
10Mbps 160 240 ns
RGMII2 tw(RXCH) Pulse duration, RXC high 100Mbps 16 24 ns
1000Mbps 3.6 4.4 ns
10Mbps 160 240 ns
RGMII3 tw(RXCL) Pulse duration, RXC low 100Mbps 16 24 ns
1000Mbps 3.6 4.4 ns

6.11.5.1.2.3 CPSW RGMII[x]_RD[3:0], and RGMII[x]_RCTL Timing Requirements


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
10Mbps 1 ns
Setup time, RD[3:0] valid before RXC
tsu(RD-RXC) 100Mbps 1 ns
high/low
1000Mbps 1 ns
RGMII4
10Mbps 1 ns
Setup time, RX_CTL valid before RXC
tsu(RX_CTL-RXC) 100Mbps 1 ns
high/low
1000Mbps 1 ns
10Mbps 1 ns
th(RXC-RD) Hold time, RD[3:0] valid after RXC high/low 100Mbps 1 ns
1000Mbps 1 ns
RGMII5
10Mbps 1 ns
Hold time, RX_CTL valid after RXC
th(RXC-RX_CTL) 100Mbps 1 ns
high/low
1000Mbps 1 ns

96 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

RGMII1

RGMII2
RGMII3
(A)
RGMII[x]_RXC

RGMII4

RGMII5
(B)
RGMII[x]_RD[3:0] 1st Half-byte 2nd Half-byte

(B)
RGMII[x]_RX_CTL RXDV RXERR

A. RGMII[x]_RXC must be externally delayed relative to the data and control pins.
B. Data and control information is received using both edges of the clocks. RGMII[x]_RD[3:0] carries data bits 3-0 on the rising edge of
RGMII[x]_RXC and data bits 7-4 on the falling edge of RGMII[x]_RXC. Similarly, RGMII[x]_RX_CTL carries RXDV on rising edge of
RGMII[x]_RXC and RXERR on falling edge of RGMII[x]_RXC.

Figure 6-9. CPSW RGMII[x]_RXC, RGMII[x]_RD[3:0], RGMII[x]_RX_CTL Timing Requirements - RGMII


Mode

6.11.5.1.2.4 CPSW RGMII[x]_TCLK Switching Characteristics - RGMII Mode


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
10Mbps 360 440 ns
RGMII6 tc(TXC) Cycle time, TXC 100Mbps 36 44 ns
1000Mbps 7.2 8.8 ns
10Mbps 160 240 ns
RGMII7 tw(TXCH) Pulse duration, TXC high 100Mbps 16 24 ns
1000Mbps 3.6 4.4 ns
10Mbps 160 240 ns
RGMII8 tw(TXCL) Pulse duration, TXC low 100Mbps 16 24 ns
1000Mbps 3.6 4.4 ns

6.11.5.1.2.5 CPSW RGMII[x]_TD[3:0], and RGMII[x]_TCTL Switching Characteristics - RGMII Mode


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
10Mbps 1.2 ns
Output setup time, RGMII[x]_TD[3:0] valid
tosu(TD-TXC) 100Mbps 1.2 ns
to RGMII[x]_TXC high/low
1000Mbps 1.2 ns
RGMII9
10Mbps 1.2 ns
Output setup time, RGMII[x]_TX_CTL valid
tosu(TX_CTL-TXC) 100Mbps 1.2 ns
to RGMII[x]_TXC high/low
1000Mbps 1.2 ns
10Mbps 1.2 ns
Output hold time, RGMII[x]_TD[3:0] valid
toh(TXC-TD) 100Mbps 1.2 ns
after RGMII[x]_TXC high/low
1000Mbps 1.2 ns
RGMII10
10Mbps 1.2 ns
Output hold time, RGMII[x]_TX_CTL valid
toh(TXC-TX_CTL) 100Mbps 1.2 ns
after RGMII[x]_TXC high/low
1000Mbps 1.2 ns

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 97


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

RGMII6

RGMII7
RGMII8
(A)
RGMII[x]_TXC

RGMII9
(B)
RGMII[x]_TD[3:0] 1st Half-byte 2nd Half-byte

RGMII10
(B)
RGMII[x]_TX_CTL TXEN TXERR

A. TXC is delayed internally before being driven to the RGMII[x]_TXC pin. This internal delay is by default enabled after POR.
B. Data and control information is received using both edges of the clocks. RGMII[x]_TD[3:0] carries data bits 3-0 on the rising edge of
RGMII[x]_TXC and data bits 7-4 on the falling edge of RGMII[x]_TXC. Similarly, RGMII[x]_TX_CTL carries TXEN on rising edge of
RGMII[x]_TXC and TXERR on falling edge of RGMII[x]_TXC.

Figure 6-10. CPSW RGMII[x]_TXC, RGMII[x]_TD[3:0], and RGMII[x]_TX_CTL Switching Characteristics -


RGMII Mode

98 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.11.5.1.3 CPSW RMII Timing

6.11.5.1.3.1 CPSW RMII Timing Conditions


PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate VDD = 3.3V 0.4 1.2 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 3 25 pF

6.11.5.1.3.2 CPSW RMII[x]_REFCLK Timing Requirements - RMII Mode


NO. PARAMETER DESCRIPTION MIN MAX UNIT
RMII1 tc(REF_CLK) Cycle time, REF_CLK 19.999 20 ns
RMII2 tw(REF_CLKH) Pulse duration, REF_CLK High 7 13 ns
RMII3 tw(REF_CLKL) Pulse duration, REF_CLK Low 7 13 ns

RMII1

RMII2

RMII[x]_REF_CLK

RMII3

Figure 6-11. CPSW RMII[x]_REF_CLK Timing Requirements – RMII Mode

6.11.5.1.3.3 CPSW RMII[x]_RXD[1:0], RMII[x]_CRS_DV, and RMII[x]_RXER Timing Requirements - RMII Mode
NO. PARAMETER DESCRIPTION MIN MAX UNIT
tsu(RXD-REF_CLK) Setup time, RXD[1:0] valid before REF_CLK 4 ns
RMII4 tsu(CRS_DV-REF_CLK) Setup time, CRS_DV valid before REF_CLK 4 ns
tsu(RX_ER-REF_CLK) Setup time, RX_ER valid before REF_CLK 4 ns
th(REF_CLK-RXD) Hold time, RXD[1:0] valid after REF_CLK 2 ns
RMII5 th(REF_CLK-CRS_DV) Hold time, CRS_DV valid after REF_CLK 2 ns
th(REF_CLK-RX_ER) Hold time, RX_ER valid after REF_CLK 2 ns

RMII4

RMII5

RMII[x]_REF_CLK

RMII[x]_RXD[1:0], RMII[x]_CRS_DV,
RMII[x]_RX_ER

Figure 6-12. CPSW RMII[x]_RXD[1:0], RMII[x]_CRS_DV, RMII[x]_RX_ER Timing Requirements – RMII


Mode

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 99


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.5.1.3.4 CPSW RMII[x]_TXD[1:0], and RMII[x]_TXEN Switching Characteristics - RMII Mode


NO. PARAMETER DESCRIPTION MIN MAX UNIT
Delay time, REF_CLK High to TXD[1:0]
td(REF_CLK-TXD) 2 10 ns
RMII6 valid
td(REF_CLK-TXEN) Delay time, REF_CLK to TXEN valid 2 10 ns

RMII6

RMII[x]_REF_CLK

RMII[x]_TXD[1:0], RMII[x]_TX_EN

Figure 6-13. CPSW RMII[x]_TXD[1:0], and RMII[x]_TX_EN Switching Characteristics – RMII Mode

100 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.11.5.2 Enhanced Capture (eCAP)

Note
The device has multiple eCAP modules. The generic CAP_ prefix is used to represent the signal
names for all eCAP instances.

For more information, see Enhanced Capture (eCAP) Module section in the device TRM.
6.11.5.2.1 ECAP Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 1 4 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 2 7 pF

6.11.5.2.2 ECAP Timing Requirements


NO. PARAMETER DESCRIPTION MIN MAX UNIT
Asynchronous (2 + X(2)) × P(1)
CAP1 tw(CAP) Capture input pulse width Synchronous (3 + X(2)) × P(1) ns
With input qualifier (2 + X(2)) × P(1) + U(3)

(1) P = sysclk period in ns.


(2) X = value of ECCTL0_TYPE3[QUALPRD] setting.
(3) U = the input qualifier sampling window. See GPIO Electrical Data and Timing section for details on Input Qualifier Mode

CAP1

CAP

EPERIPHERALS_TIMNG_01

Figure 6-14. ECAP Timings Requirements

6.11.5.2.3 ECAP Switching Characteristics


(1)

NO. PARAMETER DESCRIPTION MIN MAX UNIT


CAP2 tw(APWM) Pulse duration, APWMx output high/low 10 ns

(1) Some ECAP signals are pinmuxed with I2C0 SDA and SCL pins. These pins use an alternate open drain voltage buffer and may not
meet the specified parameters. Values are pending additional post-silicon validation.

CAP2

APWM

EPERIPHERALS_TIMNG_02

Figure 6-15. ECAP Switching Characteristics

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 101


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.5.3 Enhanced Pulse Width Modulation (ePWM)

Note
The device has multiple ePWM modules. The generic EHRPWM_ prefix is used to represent the
signal names for all ePWM instances.

For more information, see Enhanced Pulse Width Modulation (ePWM) Module section in the device TRM.
6.11.5.3.1 EPWM Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 1 4 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 2 7 pF

6.11.5.3.2 EPWM Timing Requirements


NO. PARAMETER DESCRIPTION MIN MAX UNIT
PWM6 tw(SYNCIN) Pulse duration, EHRPWM_SYNCI 2P(1) ns
PWM7 tw(TZ) Pulse duration, EHRPWM_TZn_IN low 1P(1) ns

(1) P = sysclk period in ns.

PWM6

EHRPWM_SYNCI

PWM7

EHRPWM_TZn_IN

EPERIPHERALS_TIMNG_07

Figure 6-16. EPWM Timing Requirements

6.11.5.3.3 EPWM Switching Characteristics


NO. PARAMETER DESCRIPTION MIN MAX UNIT
PWM1 tw(PWM) Pulse duration, EHRPWM_A/B high/low 20 ns
PWM2 tw(SYNCOUT) Pulse duration, EHRPWM_SYNCO 8P(1) ns
Delay time, EHRPWM_TZn_IN active to
PWM3 td(TZ-PWM) 30 ns
EHRPWM_A/B forced high/low
Delay time, EHRPWM_TZn_IN active to
PWM4 td(TZ-PWMZ) 30 ns
EHRPWM_A/B Hi-Z
PWM5 tw(SOC) Pulse duration, EHRPWM_SOCA/B output 32P(1) ns

(1) P = sysclk period in ns.

102 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

PWM1

EHRPWM_A/B

PWM1
PWM2

EHRPWM_SYNCO

PWM5

EHRPWM_SOCA/B

EPERIPHERALS_TIMNG_04

Figure 6-17. EHRPWM Switching Characteristics

PWM3

EHRPWM_A/B

EHRPWM_TZn_IN
EPERIPHERALS_TIMING_05

Figure 6-18. EHRPWM_TZn_IN to EHRPWM_A/B Forced Switching Characteristics

PWM4

EHRPWM_A/B

EHRPWM_TZn_IN

Figure 6-19. EHRPWM_TZn_IN to EHRPWM_A/B Hi-Z Switching Characteristics

6.11.5.3.4 EPWM Characteristics


PARAMETER MIN TYP MAX UNIT
Micro Edge Positioning (MEP) step size(1) 70 100 180 ps

(1) The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher
temperature and lower voltage and decrease with lower temperature and higher voltage.
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI
software libraries for details of using SFO functions in end applications. SFO functions help to estimate the number of MEP steps per
SYSCLK period dynamically while the HRPWM is in operation.

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 103


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.5.4 Enhanced Quadrature Encoder Pulse (eQEP)

Note
The device has multiple eQEP modules. The generic QEP_ prefix is used to represent the signal
names for all eQEP instances.

For more information, see Enhanced Quadrature Encoder Pulse (eQEP) Module section in the device TRM.
6.11.5.4.1 EQEP Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 1 4 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 2 7 pF

6.11.5.4.2 EQEP Timing Requirements


NO. PARAMETER DESCRIPTION MIN MAX UNIT
Synchronous(3) 3P(1)
QEP1 tw(QEPP) QEP input period ns
With input qualifier 2 × (P(1) + U(2))
Synchronous(3) 2 + 3P(1)
QEP2 tw(INDEXH) QEP Index Input High time ns
With input qualifier 2P(1) + U(2)
Synchronous(3) 3P(1)
QEP3 tw(INDEXL) QEP Index Input Low time ns
With input qualifier 2P(1) + U(2)
Synchronous(3) 3P(1)
QEP4 tw(STROBH) QEP Strobe High time ns
With input qualifier 2P(1) + U(2)
Synchronous(3) 3P(1)
QEP5 tw(STROBL) QEP Strobe Input Low time ns
With input qualifier 2P(1) + U(2)

(1) P = sysclk period in ns.


(2) U = the input qualifier sampling window. See GPIO Electrical Data and Timing section for details on Input Qualifier Mode.
(3) The GPIO GPxQSELn Asynchronous mode should not be used for eQEP module input pins.

QEP1

QEP_A/B

QEP2

QEP_I

QEP3
QEP4

QEP_S

QEP5 EPERIPHERALS_TIMNG_03

Figure 6-20. EQEP Timing Requirements

104 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.11.5.4.3 EQEP Switching Characteristics


(3)

NO. PARAMETER DESCRIPTION MIN MAX UNIT


QEP6 td(CNTR)xin Delay time, external clock to counter increment 4 + U(2) + 6P(1) ns
Delay time, QEP input edge to position compare
QEP7 td(PCS-OUT)QEP 4 + U(2) + 7P(1) + 4 ns
sync output

(1) P = sysclk period in ns.


(2) U = the input qualifier sampling window. See GPIO Electrical Data and Timing section for details on Input Qualifier Mode.
(3) Some EQEP signals are pinmuxed with I2C0 SDA and SCl pins. These pins use an alternate open drain voltage buffer and may not
meet the specified parameters. Values are pending additional post-silicon validation.

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 105


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.5.5 Fast Serial Interface (FSI)

Note
The device has multiple FSI modules. FSIn is a generic prefix applied to FSI signal names, where n
represents the specific FSI module.

For more information, see Fast Serial Interface section in the device TRM.
6.11.5.5.1 FSI Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 0.8 4 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 1 7 pF

6.11.5.5.2 FSIRX Timing Requirements


NO. PARAMETER DESCRIPTION MIN MAX UNIT
FSIR1 tc(RX_CLK) Cycle time, FSIRXn_CLK 16.67 ns
Pulse width, FSIRXn_CLK low or
FSIR2 tw(RX_CLK) 0.35P(1) – 1 0.65P(1) + 1 ns
FSIRXn_CLK high
Setup time, FSIRXn_D[0:1] valid before
FSIR3 tsu(RX_D–RX_CLK) 1.7 ns
FSIRXn_CLK
Hold time with respect to both edges of
FSIR4 th(RX_CLK–RX_D) 2 ns
FSIRXn_CLK

(1) P = Tc(RX_CLK) = RX Interface clock period in ns.

FSIR1

FSIR2 FSIR2

FSI_RXn_CLK

FSI_RXn_D0

FSI_RXn_D1

FSIR3 FSIR4

Figure 6-21. FSI Timing Requirements

6.11.5.5.3 FSIRX Switching Characteristics


NO. PARAMETER DESCRIPTION MIN MAX UNIT
FSIRXn_CLK delay compensation at
FSIR5 td(RX_CLK) 10 30 ns
RX_DLYLINE_CTRL[RXCLK_DLY]=31
FSIRXn_D0 delay compensation at
FSIR6 td(RX_D0) 10 30 ns
RX_DLYLINE_CTRL[RXCLK_DLY]=31
FSIRXn_D1 delay compensation at
FSIR7 td(RX_D1) 10 30 ns
RX_DLYLINE_CTRL[RXCLK_DLY]=31
Incremental delay of each delay line
FSIR8 td(DELAY_ELEMENT) element for FSIRXn_CLK, FSIRXn_D0, and 0.3 1 ns
FSIRXn_D1

106 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

NO. PARAMETER DESCRIPTION MIN MAX UNIT


FSIR_TD Delay skew between FSIRXn_TDM_CLK
tskew(RX_CLK-TX_TDM_D) –3 3 ns
M1 delay and FSIRXn_TDM_D[0:1]
FSIR_TD tskew(RX_CLK- Delay time, FSIRXn_CLK input to
2 12 ns
M2 TX_TDM_CLK) FSITXn_TDM_CLK output
FSIR_TD Delay time, FSIRXn_D0 input to
tskew(RX_D0-TX_TDM_D0) 2 12 ns
M3 FSITXn_TDM_D0 output
FSIR_TD Delay time, FSIRXn_D1 input to
tskew(RX_D1-TX_TDM_D1) 2 12 ns
M4 FSITXn_TDM_D1 output

6.11.5.5.4 FSITX Switching Characteristics


NO. PARAMETER DESCRIPTION MIN MAX UNIT
FSIT1 tc(TX_CLK) Cycle time, FSITXn_CLK 16.67 ns
Pulse width, FSITXn_CLK low or
FSIT2 tw(TX_CLK) 0.5P(1) – 1 0.5P(1) + 1 ns
FSITXn_CLK high
Delay time, FSITXn_Dx valid after
FSIT3 td(TX_CLK-TX_D) 0.25P(1) – 2 0.25P(1) + 2 ns
FSITXn_CLK high or FSITXn_CLK low
FSITXn_CLK delay compensation at
FSIT4 td(TXCLKL) 9.95 30 ns
TX_DLYLINE_CTRL[TXCLK_DLY]=31
FSITXn_D0 delay compensation at
FSIT5 td(TX_D0) 9.95 30 ns
TX_DLYLINE_CTRL[TXCLK_DLY]=31
FSITXn_D1 delay compensation at
FSIT6 td(TX_D1) 9.95 30 ns
TX_DLYLINE_CTRL[TXCLK_DLY]=31
Incremental delay of each delay line
FSIT7 td(TX_DELAY_ELEMENT) element for FSITXn_CLK, FSITXn_D0, and 0.3 1 ns
FSITXn_D1
Delay skew introduced between
FSIT_TD tskew(TX_TDM_CLK-
FSITXn_TDM_CLK delay and –2.5 2.5 ns
M1 TX_TDM_D)
FSITXn_TDM_D[0:1] delays
FSIT_TD tskew(TX_TDM_CLK- Delay time, FSITXn_TDM_CLK input to
2 12 ns
M2 TX_CLK) FSITXn_CLK output
FSIT_TD Delay time, FSITXn_TDM_D0 input to
tskew(TX_TDM_D0-TX_D0) 2 12 ns
M3 FSITXn_D0 output
FSIT_TD Delay time, FSITXn_TDM_D1 input to
tskew(TX_TDM_D1-TX_D1) 2 12 ns
M4 FSITXn_D1 output

(1) P = tc(TX_CLK) = FSITX Interface clock period in ns.

FSIT1

FSIT2 FSIT2

FSI_TXn_CLK

FSI_TXn_D0

FSI_TXn_D1

FSIT3

Figure 6-22. FSI Switching Characteristics - FSI Mode

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 107


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.5.5.5 FSITX SPI Signaling Mode Switching Characteristics


NO. PARAMETER DESCRIPTION MIN MAX UNIT
FSIT4 tc(TX_CLK) Cycle time, FSITXn_CLK 16.67 ns
Pulse width, FSITXn_CLK low or
FSIT5 tw(TX_CLK) 0.5P(1) – 1 0.5P(1) + 1 ns
FSITXn_CLK high
Delay time, FSITXn_CLK high to FSITXn_D0
FSIT6 td(TX_CLKH–TX_D0) 3 ns
valid
Delay time, FSITXn_D1 low to FSITXn_CLK
FSIT7 td(TX_D1-TX_CLK) P(1) – 3 ns
high
Delay time, FSITXn_CLK low to FSITXn_D1
FSIT8 td(TX_CLK-TX_D1) P(1) ns
high

(1) P = tc(TX_CLK) = FSITX Interface clock period in ns.

FSIT4

FSIT5 FSIT5

FSI_TXn_CLK
FSIT6

FSI_TXn_D0

FSIT8
FSIT7
FSI_TXn_D1

Figure 6-23. FSI Switching Characteristics - SPI Mode

108 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.11.5.6 General Purpose Input/Output (GPIO)


For more details about features and additional description information on the device GPIO, see the
corresponding subsections within Signal Descriptions and Detailed Description sections.
For more information, see General-Purpose Interface (GPIO) section in the device TRM.
6.11.5.6.1 GPIO Timing Conditions
PARAMETER BUFFER TYPE MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 0.75 6.6 V/ns
OUTPUT CONDITIONS
LVCMOS 3 10 pF
CL Output Load Capacitance
I2C OD FS(1) 3 10 pF

(1) A pull-up resistor is required for buffer type I2C OD FS.

6.11.5.6.2 GPIO Timing Requirements


NO. PARAMETER DESCRIPTION BUFFER TYPE MIN MAX UNIT
D3 LVCMOS 2P(1) + 2 ns
tw(GPIO_IN) Minimum Input Pulse Width
D4 I2C OD FS(2) 2P(1) +2 ns

(1) P = functional clock period in ns.


(2) A pull-up resistor is required for buffer type I2C OD FS.

6.11.5.6.3 GPIO Switching Characteristics


NO. PARAMETER DESCRIPTION BUFFER TYPE MIN MAX UNIT
D1 tw(GPIO_OUT) Minimum Output Pulse Width LVCMOS 0.975P(1) –2 ns
D2 tw(GPIO_OUT) Minimum Output Pulse Width Low I2C OD FS(2) 2P(1) + 160 ns
D3 tw(GPIO_OUT) Minimum Output Pulse Width High I2C OD FS(2) 2P(1) + 160 ns

(1) P = functional clock period in ns.


(2) A pull-up resistor is required for buffer type I2C OD FS.

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 109


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.5.7 Inter-Integrated Circuit (I2C)


For more details about features and additional description information on the device Inter-Integrated Circuit, see
the corresponding subsections within Signal Descriptions and Detailed Description sections.
For more information, see the Inter-Integrated Circuit (I2C) section in the device TRM.

110 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.11.5.7.1 I2C
The device contains four multicontroller Inter-Integrated Circuit (I2C) controllers. Each I2C controller was
designed to be compliant to the Philips I2C-bus™ specification version 2.1. However, the device IOs are not
fully compliant to the I2C electrical specification. The speeds supported and exceptions are described per port
below:
• I2C1, I2C2, and I2C3
– Speeds:
• Standard-mode (up to 100Kbits/s)
– 3.3V
• Fast-mode (up to 400Kbits/s)
– 3.3V
– Exceptions:
• The IOs associated with these ports are not compliant to the fall time requirements defined in the I2C
specification because the IOs are implemented with higher performance LVCMOS push-pull IOs that
were designed to support other signal functions that could not be implemented with I2C compatible
IOs. The LVCMOS IOs being used on these ports are connected so they emulate open-drain outputs.
This emulation is achieved by forcing a constant low output and disabling the output buffer to enter the
Hi-Z state.
• The I2C specification defines a maximum input voltage VIH of (VDDmax + 0.5V), which exceeds the
absolute maximum ratings for the device IOs. The system must be designed to provide the I2C signals
never exceed the limits defined in the Absolute Maximum Ratings section of this data sheet.
• I2C0
– Speeds:
• Standard-mode (up to 100Kbits/s)
– 3.3V
• Fast-mode (up to 400Kbits/s)
– 3.3V
– Exceptions:
• The IOs associated with this port were not design to support Hs-mode.
• The rise and fall times of the I2C signals connected to these ports must not exceed a slew rate of
0.8V/ns (or 8E+7V/s). This limit is more restrictive than the minimum fall time limits defined in the I2C
specification. Therefore, it may be necessary to add additional capacitance to the I2C signals to slow
the rise and fall times such that the signals do not exceed a slew rate of 0.8V/ns.
• The I2C specification defines a maximum input voltage VIH of (VDDmax + 0.5V), which exceeds the
absolute maximum ratings for the device IOs. The system must be designed to make sure the I2C
signals never exceed the limits defined in the Absolute Maximum Ratings section of this data sheet.

Refer to the Philips I2C-bus specification version 2.1 for timing details.
For more details about features and additional description information on the device Inter-integrated Circuit, see
the corresponding subsections within Signal Descriptions and Detailed Description sections.

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 111


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.5.8 Local Interconnect Network (LIN)

Note
The device has multiple LIN modules. LINn is a generic prefix applied to LIN signal names, where n
represents the specific LIN module.

For more information, see the Local Interconnect Network (LIN) Module section in the device TRM.
6.11.5.8.1 LIN Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 2 15 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 5 20 pF

6.11.5.8.2 LIN Timing Requirements


NO. PARAMETER DESCRIPTION MIN MAX UNIT
Delay time, LINn_RX shift register to
LIN2 td(LINn_RX) 0 10 ns
LINn_RX pin

6.11.5.8.3 LIN Switching Characteristics


NO. PARAMETER DESCRIPTION MIN MAX UNIT
LIN4 td(LINn_TX) Delay time, LINn_TX shift register to LINn_TX pin 10 ns

112 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.11.5.9 Modular Controller Area Network (MCAN)


For more details about features and additional description information on the device Controller Area Network
Interface, see the corresponding subsections within Signal Descriptions and Detailed Description sections.

Note
The device has multiple MCAN modules. MCANn is a generic prefix applied to MCAN signal names,
where n represents the specific MCAN module.

For more information, see Controller Area Network (MCAN) section in the device TRM.
6.11.5.9.1 MCAN Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 2 15 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 5 20 pF

6.11.5.9.2 MCAN Switching Characteristics


NO. PARAMETER DESCRIPTION MIN MAX UNIT
Delay time, transmit shift register to MCANn_TX
M1 td(MCAN_TX) 10 ns
pin
Delay time, MCANn_RX pin to receive shift
M2 td(MCAN_RX) 10 ns
register

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 113


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.5.10 Serial Peripheral Interface (SPI)


For more details about features and additional description information on the device Serial Port Interface, see
the corresponding subsections within Signal Descriptions and Detailed Description sections.

Note
The device has multiple SPI modules. The generic SPI_ prefix is used to represent the signal names
for all SPI instances.

For more information, see the Serial Peripheral Interface (SPI) section in the device TRM.
6.11.5.10.1 SPI Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 2 8.5 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 2 24 pF

6.11.5.10.2 SPI Controller Mode Timing Requirements


NO. PARAMETER DESCRIPTION MIN MAX UNIT
Normal Mode
Setup time, spi_d[x] valid before spi_sclk active
SM4 tsu(MISO-SPICLK) 2 ns
edge
Hold time, spi_d[x] valid after spi_sclk active
SM5 th(SPICLK-MISO) 3 ns
edge

114 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

PHA=0
EPOL=1
SPI_CS[i] (OUT)
SM1
SM3
SM8 SM2 SM9
SPI_SCLK (OUT) POL=0

SM1
SM3
SM2
POL=1
SPI_SCLK (OUT)
SM5
SM5

SM4 SM4

SPI_D[x] (IN) Bit n-1 Bit n-2 Bit n-3 Bit n-4 Bit 0

PHA=1
EPOL=1
SPI_CS[i] (OUT)
SM2
SM1
SM8 SM3 SM9
SPI_SCLK (OUT) POL=0
SM1
SM2
SM3
POL=1
SPI_SCLK (OUT)

SM5
SM4
SM4 SM5

SPI_D[x] (IN) Bit n-1 Bit n-2 Bit n-3 Bit 1 Bit 0

SPRSP08_TIMING_McSPI_02

Figure 6-24. SPI Controller Mode Receive Timing

6.11.5.10.3 SPI Controller Mode Switching Characteristics (Clock Phase = 0)


NO. PARAMETER DESCRIPTION MIN MAX UNIT
Normal Mode
SM1 tc(SPICLK) Cycle time, spi_sclk 20 ns
Typical Pulse duration, spi_sclk
SM2 tw(SPICLKL) –1 + 0.5P(1) ns
low
Typical Pulse duration, spi_sclk
SM3 tw(SPICLKH) –1 + 0.5P(1) ns
high
Delay time, spi_sclk active
SM6 td(SPICLK-SIMO) –3 2 ns
edge to spi_d[x] transition
Delay time, spi_cs[x] active to
SM7 tsk(CS-SIMO) 5 ns
spi_d[x] transition

Delay time, spi_cs[x] active to PHA = 0 –4 + B(3) ns


SM8 td(SPICLK-CS)
spi_sclk first edge PHA = 1 –4 + A(2) ns

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 115


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

NO. PARAMETER DESCRIPTION MIN MAX UNIT

Delay time, spi_sclk last edge PHA = 0 –4 + A(2) ns


SM9 td(SPICLK-CS)
to spi_cs[x] inactive PHA = 1 –4 + B(3) ns

(1) P = SPICLK period in ns.


(2) When P = 20.8ns, A = (TCS + 1) * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register. When P > 20.8ns, A = (TCS
+ 0.5) * Fratio * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register.
(3) B = (TCS + .5) * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register and Fratio = Even >= 2.

PHA=0
EPOL=1
SPI_CS[i] (OUT)
SM1
SM3
SM8 SM2 SM9
SPI_SCLK (OUT) POL=0

SM1

SM3
POL=1 SM2
SPI_SCLK (OUT)

SM7 SM6 SM6

SPI_D[x] (OUT) Bit n-1 Bit n-2 Bit n-3 Bit n-4 Bit 0

PHA=1
EPOL=1
SPI_CS[i] (OUT)

SM1
SM2
SM8 SM3 SM9
SPI_SCLK (OUT) POL=0

SM1
SM2

POL=1 SM3
SPI_SCLK (OUT)

SM6 SM6 SM6 SM6

SPI_D[x] (OUT) Bit n-1 Bit n-2 Bit n-3 Bit 1 Bit0

SPRSP08_TIMING_McSPI_01

Figure 6-25. SPI Controller Mode Transmit Timing

6.11.5.10.4 SPI Peripheral Mode Timing Requirements


NO. PARAMETER DESCRIPTION MIN MAX UNIT
SS1 tc(SPICLK) Cycle time, spi_sclk 40 ns
SS2 tw(SPICLKL) Typical Pulse duration, spi_sclk low 0.45 × P(1) ns
SS3 tw(SPICLKH) Typical Pulse duration, spi_sclk high 0.45 × P(1) ns
Setup time, spi_d[x] valid before spi_sclk active
SS4 tsu(SIMO-SPICLK) 5 ns
edge
Hold time, spi_d[x] valid after spi_sclk active
SS5 th(SPICLK-SIMO) 5 ns
edge

116 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

NO. PARAMETER DESCRIPTION MIN MAX UNIT


Setup time, spi_cs[x] valid before spi_sclk first
SS8 tsu(CS-SPICLK) 5 ns
edge
SS9 th(SPICLK-CS) Hold time, spi_cs[x] valid after spi_sclk last edge 5 ns

(1) P = SPICLK period.

PHA=0
EPOL=1
SPI_CS[i] (IN)

SS1
SS2
SS8 SS3 SS9
SPI_SCLK (IN) POL=0

SS1
SS2
POL=1 SS3
SPI_SCLK (IN)

SS5 SS4
SS4 SS5

SPI_D[x] (IN) Bit n-1 Bit n-2 Bit n-3 Bit n-4 Bit 0

PHA=1
EPOL=1
SPI_CS[i] (IN)

SS1
SS2
SS8 SS3 SS9
POL=0
SPI_SCLK (IN)

SS1
SS3
POL=1 SS2
SPI_SCLK (IN)

SS4
SS5
SS4 SS5

SPI_D[x] (IN) Bit n-1 Bit n-2 Bit n-3 Bit 1 Bit 0

SPRSP08_TIMING_McSPI_04

Figure 6-26. SPI Peripheral Mode Receive Timing

6.11.5.10.5 SPI Peripheral Mode Switching Characteristics


NO. PARAMETER DESCRIPTION MIN MAX UNIT
Normal Mode
Delay time, spi_sclk active edge to
SS6 td(SPICLK-SOMI) 2 17.12 ns
mcspi_somi transition
Delay time, spi_cs[x] active edge to
SS7 tsk(CS-SOMI) 20.95 ns
mcspi_somi transition

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 117


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

PHA=0
EPOL=1
SPI_CS[i] (IN)

SS1
SS2
SS8 SS3 SS9
SPI_SCLK (IN) POL=0

SS1
SS2
POL=1 SS3
SPI_SCLK (IN)

SS7 SS6 SS6

SPI_D[x] (OUT) Bit n-1 Bit n-2 Bit n-3 Bit n-4 Bit 0

PHA=1
EPOL=1
SPI_CS[i] (IN)

SS1
SS2
SS8 SS3 SS9
POL=0
SPI_SCLK (IN)

SS1
SS3
POL=1 SS2
SPI_SCLK (IN)

SS6 SS6 SS6 SS6

SPI_D[x] (OUT)
Bit n-1 Bit n-2 Bit n-3 Bit 1 Bit 0

SPRSP08_TIMING_McSPI_03

Figure 6-27. SPI Peripheral Mode Transmit Timing

118 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.11.5.11 Multi-Media Card/Secure Digital (MMCSD)


The MMCSD Host Controller provides an interface to embedded Multi-Media Card (MMC) and Secure Digital
(SD)devices. The MMCSD Host Controller deals with MMC/SD protocol at transmission level, data packing,
adding cyclic redundancy checks (CRCs), start/end bit insertion, and checking for syntactical correctness.
For more details about MMCSD interfaces, see the corresponding MMC subsection within Signal Descriptions
and Detailed Description sections.
For more information, see Multi-Media Card/Secure Digital (MMCSD) Interface section in Peripherals chapter in
the device TRM.
6.11.5.11.1 MMC Timing Conditions
PARAMETER MODE MIN MAX UNIT
INPUT CONDITIONS
Default Speed 0.69 2.06 V/ns
SRI Input Slew Rate
High Speed 0.69 2.06 V/ns
OUTPUT CONDITIONS
Default Speed 1 10 pF
CL Output Load Capacitance
High Speed 1 10 pF

6.11.5.11.2 MMC Timing Requirements - SD Card Default Speed Mode


NO. PARAMETER DESCRIPTION MIN MAX UNIT
Setup time, MMC_CMD valid before MMC_CLK
DS1 tsu(cmdV-clkH) 2.15 ns
rising edge
Hold time, MMC_CMD valid after MMC_CLK
DS2 th(clkH-cmdV) 19.67 ns
rising edge
Setup time, MMC_DAT[3:0] valid before
DS3 tsu(dV-clkH) 2.15 ns
MMC_CLK rising edge
Hold time, MMC_DAT[3:0] valid after MMC_CLK
DS4 th(clkH-dV) 19.67 ns
rising edge

MMC[x]_CLK

DS1 DS2

MMC[x]_CMD

DS3 DS4

MMC[x]_DAT[3:0]

Figure 6-28. MMC – Default Speed – Receive Mode

6.11.5.11.3 MMC Switching Characteristics - SD Card Default Speed Mode


NO. PARAMETER DESCRIPTION MIN MAX UNIT
fop(clk) Operating frequency, MMC_CLK 25 MHz
DS5 tc(clk) Operating period, MMC_CLK 40 ns
DS6 tw(clkH) Pulse duration, MMC_CLK high 18.7 ns
DS7 tw(clkL) Pulse duration, MMC_CLK low 18.7 ns
Delay time, MMC_CLK falling edge to
DS8 td(clkL-cmdV) –14.1 14.1 ns
MMC_CMD transition
Delay time, MMC_CLK falling edge to
DS9 td(clkL-dV) –14.1 14.1 ns
MMC_DAT[3:0] transition

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 119


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

DS5

DS6 DS7

MMC[x]_CLK

D S8

MMC[x]_CMD

D S9

MMC[x]_DAT[3:0]

Figure 6-29. MMC – Default Speed – Transmit Mode

6.11.5.11.4 MMC Timing Requirements - SD Card High Speed Mode


NO. PARAMETER DESCRIPTION MIN MAX UNIT
Setup time, MMC_CMD valid before MMC_CLK
HS1 tsu(cmdV-clkH) 2.15 ns
rising edge
Hold time, MMC_CMD valid after MMC_CLK
HS2 th(clkH-cmdV) 2.67 ns
rising edge
Setup time, MMC_DAT[3:0] valid before
HS3 tsu(dV-clkH) 2.15 ns
MMC_CLK rising edge
Hold time, MMC_DAT[3:0] valid after MMC_CLK
HS4 th(clkH-dV) 2.67 ns
rising edge

MMC[x]_CLK

HS1 H S2

MMC[x]_CMD

HS3 H S4

MMC[x]_DAT[3:0]

Figure 6-30. MMC – High Speed – Receive Mode

6.11.5.11.5 MMC Switching Characteristics - SD Card High Speed Mode


NO. PARAMETER DESCRIPTION MIN MAX UNIT
fop(clk) Operating frequency, MMC_CLK 50 MHz
HS5 tc(clk) Operating period, MMC_CLK 20 ns
HS6 tw(clkH) Pulse duration, MMC_CLK high 9.2 ns
HS7 tw(clkL) Pulse duration, MMC_CLK low 9.2 ns
Delay time, MMC_CLK falling edge to
HS8 td(clkL-cmdV) –7.35 3.35 ns
MMC_CMD transition
Delay time, MMC_CLK falling edge to
HS9 td(clkL-dV) –7.35 3.35 ns
MMC_DAT[3:0] transition

120 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

HS5

HS6 HS7

MMC[x]_CLK

H S8

MMC[x]_CMD

H S9

MMC[x]_DAT[3:0]

Figure 6-31. MMC – High Speed – Transmit Mode

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 121


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.5.12 Octal Serial Peripheral Interface (OSPI)


OSPI0 offers two data capture modes, PHY mode and Tap mode.
PHY mode uses an internal reference clock to transmit and receive data via a DLL based PHY, where each
reference clock cycle produces a single cycle of OSPI0_CLK for Single Data Rate (SDR) transfers or a half
cycle of OSPI0_CLK for Double Data Rate (DDR) transfers. PHY mode supports four clocking topologies
for the receive data capture clock. Internal PHY Loopback - uses the internal reference clock as the PHY
receive data capture clock. Internal Pad Loopback - uses OSPI0_LBCLKO looped back into the PHY from the
OSPI0_LBCLKO pin as the PHY receive data capture clock. External Board Loopback - uses OSPI0_LBCLKO
looped back into the PHY from the OSPI0_DQS pin as the PHY receive data capture clock. DQS - uses the DQS
output from the attached device as the PHY receive data capture clock. SDR transfers are not supported when
using the Internal Pad Loopback and DQS clocking topologies. DDR transfers are not supported when using the
Internal PHY Loopback or Internal Pad Loopback clocking topologies.
Tap mode uses an internal reference clock with selectable taps to adjusted data transmit and receive capture
delays relative to OSPI0_CLK, which is a divide by 4 of the internal reference clock for SDR transfers or a divide
by 8 of the internal reference clock for DDR transfers. Tap mode only supports one clocking topology for the
receive data capture clock. No Loopback - uses the internal reference clock as the Tap receive data capture
clock. This clocking topology supports a maximum internal reference clock rate of 200MHz, which produces an
OSPI0_CLK rate up to 50MHz for SDR mode or 25MHz for DDR mode.
For more details about features and additional description information on the device Octal Serial Peripheral
Interface, see the corresponding subsections within Signal Descriptions and Detailed Description sections.
OSPI PHY Mode defines timing requirements and switching characteristics associated with PHY mode and
OSPI Tap Mode defines timing requirements and switching characteristics associated with Tap mode.
OSPI Timing Conditions presents timing conditions for OSPI0.
For more information, see Octal Serial Peripheral Interface (OSPI) section in the device TRM.
6.11.5.12.1 OSPI Timing Conditions
PARAMETER MODE MIN MAX UNIT
INPUT CONDITIONS
SRI Input slew rate 2 6 V/ns
OUTPUT CONDITIONS
CL Output load capacitance 3 15 pF
PCB CONNECTIVITY REQUIREMENTS
No Loopback
Propagation delay of OSPI0_CLK
Internal PHY Loopback 450 ps
trace
Internal Pad Loopback
td(Trace Delay) Propagation delay of OSPI0_DQS
DQS L(1) - 30 L(1) + 30 ps
trace
Propagation delay of
External Board Loopback 2L(1) - 30 2L(1) + 30 ps
OSPI0_LBCLKO trace
Propagation delay mismatch of
td(Trace Mismatch
OSPI0_D[7:0] and OSPI0_CSn[1:0] All modes 60 ps
Delay)
relative to OSPI0_CLK

(1) L = Propagation delay of OSPI0_CLK trace

6.11.5.12.2 OSPI PHY Mode

6.11.5.12.2.1 OSPI0 With PHY Data Training


Read and write data valid windows will shift due to variation in process, voltage, temperature, and operating
frequency. A data training method may be implemented to dynamically configure optimal read and write timing.

122 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Implementing data training enables proper operation across temperature with a specific process, voltage, and
frequency operating condition, while achieving a higher operating frequency.
Data transmit and receive timing parameters are not defined for the data training use case since they are
dynamically adjusted based on the operating condition.
6.11.5.12.2.1.1 OSPI DLL Delay Mapping for PHY Data Training
OSPI_PHY_CONFIGURATION_REG BIT
MODE DELAY VALUE
FIELD
Transmit
All modes PHY_CONFIG_TX_DLL_DELAY_FLD (1)

Receive
All modes PHY_CONFIG_RX_DLL_DELAY_FLD (2)

(1) Transmit DLL delay value determined by training software


(2) Receive DLL delay value determined by training software

6.11.5.12.2.1.2 OSPI Timing Requirements - PHY Data Training


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
Setup time, OSPI0_D[7:0] valid (1)
O15 tsu(D-LBCLK) DDR with DQS ns
before active OSPI0_DQS edge
Hold time, OSPI0_D[7:0] valid (1)
O16 th(LBCLK-D) DDR with DQS ns
after active OSPI0_DQS edge

(1) Minimum setup and hold time requirements for OSPI0_D[7:0] inputs are not defined when Data Training is used to find the optimum
data valid window.

OSPI_DQS

tO16t tO16t
O15 O15

OSPI_D[i:0]

Figure 6-32. . OSPI0 Timing Requirements – PHY Data Training, DDR with DQS

6.11.5.12.2.1.3 OSPI Switching Characteristics - PHY Data Training


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
O1 tc(CLK) Cycle time, OSPI0_CLK 3.3V, DDR 7.52 ns
O2 tw(CLKL) Pulse duration, OSPI0_CLK low DDR 0.475P(1) - 0.3 ns
O3 tw(CLKH) Pulse duration, OSPI0_CLK high DDR 0.475P(1) - 0.3 ns
0.475P(1) + (0.975 0.525P(1) + (1.025
Delay time, OSPI0_CSn[1:0] active edge
O4 td(CSn-CLK) DDR × M(2) × R(4)) + × M(2) × R(4)) + ns
to OSPI0_CLK rising edge
0.65TD(5) - 1 0.175TD(5) + 1
0.475P(1) + (0.975 0.525P(1) + (1.025
Delay time, OSPI0_CLK rising edge to
O5 td(CLK-CSn) DDR × N(3) × R(4)) - × N(3) × R(4)) - ns
OSPI0_CSn[1:0] inactive edge
0.065TD(5) - 1 0.175TD(5) + 1
Delay time, OSPI0_CLK active edge to (6) (6)
O6 td(CLK-D) DDR ns
OSPI0_D[7:0] transition

(1) P = OSPI0_CLK cycle time = SCLK period in ns


(2) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]
(3) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]
(4) R = REFCLK cycle time in ns
(5) TD = PHY_CONFIG_TX_DLL_DELAY_FLD

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 123


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

(6) Minimum and maximum delay times for OSPI0_D[7:0] outputs are not defined when Data Training is used to find the optimum data
valid window.

OSPI_CSn

tO4t tO3t tO5t

OSPI_CLK

tO2t
O6 O6 tO1t

OSPI_D[i:0]

Figure 6-33. OSPI0 Switching Characteristics – PHY DDR Data Training

6.11.5.12.2.2 OSPI0 Without Data Training

Note
Timing parameters defined in this section are only applicable when data training is not implemented
and DLL delays are configured as described in OSPI DLL Delay Mapping for PHY SDR Timing Modes
and OSPI DLL Delay Mapping for PHY DDR Timing Modes.

6.11.5.12.2.2.1 OSPI0 PHY SDR Timing


6.11.5.12.2.2.1.1 OSPI DLL Delay Mapping for PHY SDR Timing Modes
OSPI_PHY_CONFIGURATION_REG BIT
MODE DELAY VALUE
FIELD
Transmit
All Modes PHY_CONFIG_TX_DLL_DELAY_FLD 0x23
Receive
SDR with Internal PHY Loopback PHY_CONFIG_RX_DLL_DELAY_FLD 0x2D
SDR with External Board Loopback PHY_CONFIG_RX_DLL_DELAY_FLD 0xA

6.11.5.12.2.2.1.2 OSPI Timing Requirements - PHY SDR Mode


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
3.3V, SDR with
Setup time, OSPI0_D[7:0] valid
O19 tsu(D-CLK) Internal PHY 7 ns
before active OSPI0_CLK edge
Loopback
3.3V, SDR with
Hold time, OSPI0_D[7:0] valid
O20 th(CLK-D) Internal PHY 0 ns
after active OSPI0_CLK edge
Loopback
3.3V, SDR with
Setup time, OSPI0_D[7:0] valid
O21 tsu(D-LBCLK) External Board 7 ns
before active OSPI0_DQS edge
Loopback
3.3V, SDR with
Hold time, OSPI0_D[7:0] valid
O22 th(LBCLK-D) External Board 4.7 ns
after active OSPI0_DQS edge
Loopback

124 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

OSPI_CLK

O19 tO20t

OSPI_D[i:0]

Figure 6-34. OSPI0 Timing Requirements – PHY SDR with Internal PHY Loopback

OSPI_DQS

O21 tO22t

OSPI_D[i:0]

Figure 6-35. OSPI0 Timing Requirements – PHY SDR with External Board Loopback

6.11.5.12.2.2.1.3 OSPI Switching Characteristics - PHY SDR Mode


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
O7 tc(CLK) Cycle time, OSPI0_CLK 3.3V 7.5 ns
O8 tw(CLKL) Pulse duration, OSPI0_CLK low 0.475P(1) - 0.3 ns
O9 tw(CLKH) Pulse duration, OSPI0_CLK high 0.475P(1) - 0.3 ns
Delay time, OSPI0_CSn[1:0] active edge 0.475P(1) + (0.975 0.525P(1) + (1.025
O10 td(CSn-CLK) ns
to OSPI0_CLK rising edge × M(2) × R(4)) - 1 × M(2) × R(4)) + 1
Delay time, OSPI0_CLK rising edge to 0.475P(1) + (0.975 0.525P(1) + (1.025
O11 td(CLK-CSn) ns
OSPI0_CSn[1:0] inactive edge × N(3) × R(4)) - 1 × N(3) × R(4)) + 1
Delay time, OSPI0_CLK active edge to
O12 td(CLK-D) 3.3V –5.05 –3.36 ns
OSPI0_D[7:0] transition

(1) P = CLK cycle time = SCLK period in ns


(2) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]
(3) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]
(4) R = REFCLK cycle time in ns

OSPI_CSn

O10 tO11t
tO7t

OSPI_CLK

tO9t tO8t
O12

OSPI_D[i:0]

Figure 6-36. OSPI0 Switching Characteristics – PHY SDR

6.11.5.12.2.2.2 OSPI0 PHY DDR Timing

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 125


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.5.12.2.2.2.1 OSPI DLL Delay Mapping for PHY DDR Timing Modes
OSPI_PHY_CONFIGURATION_REG BIT
MODE DELAY VALUE
FIELD
Transmit
3.3V PHY_CONFIG_TX_DLL_DELAY_FLD 0x17
Receive
3.3V, DQS PHY_CONFIG_RX_DLL_DELAY_FLD 0xA
3.3V, External Board Loopback PHY_CONFIG_RX_DLL_DELAY_FLD 0x34
All other modes PHY_CONFIG_RX_DLL_DELAY_FLD 0x0

6.11.5.12.2.2.2.2 OSPI Timing Requirements - PHY DDR Mode


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
3.3V, DDR with
Setup time, OSPI0_D[7:0] valid
O15 tsu(D-LBCLK) External Board 7 ns
before active OSPI0_DQS edge
Loopback
Setup time, OSPI0_D[7:0] valid 3.3V, DDR with
O15 tsu(D-LBCLK) –0.86 ns
before active OSPI0_DQS edge DQS
3.3V, DDR with
Hold time, OSPI0_D[7:0] valid
O16 th(LBTCLK-D) External Board 4.7 ns
after active OSPI0_DQS edge
Loopback
Hold time, OSPI0_D[7:0] valid 3.3V, DDR with
O16 th(LBTCLK-D) –0.95 ns
after active OSPI0_DQS edge DQS

OSPI_DQS

tO16t tO16t
O15 O15

OSPI_D[i:0]

Figure 6-37. OSPI0 Timing Requirements – PHY DDR with External Board Loopback or DQS

6.11.5.12.2.2.2.3 OSPI Switching Characteristics - PHY DDR Mode


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
O1 tc(CLK) Cycle time, OSPI0_CLK 15 ns
O2 tw(CLKL) Pulse duration, OSPI0_CLK low 0.475P(1) - 0.3 ns
O3 tw(CLKH) Pulse duration, OSPI0_CLK high 0.475P(1) - 0.3 ns
Delay time, OSPI0_CSn[1:0] active edge 0.475P(1) - (0.975 0.525P(1) - (1.025
O4 td(CSn-CLK) ns
to OSPI0_CLK rising edge × M(2) × R(4)) × M(2) × R(4)) + 7
Delay time, OSPI0_CLK rising edge to 0.475P(1) + (0.975 0.525P(1) + (1.025
O5 td(CLK-CSn) ns
OSPI0_CSn[1:0] inactive edge × N(3) × R(4)) - 7 × N(3) × R(4))
Delay time, OSPI0_CLK active edge to
O6 td(CLK-D) 3.3V –6.35 –1.16 ns
OSPI0_D[7:0] transition

(1) P = OSPI0_CLK cycle time = SCLK period in ns


(2) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]
(3) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]
(4) R = REFCLK cycle time in ns

126 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

OSPI_CSn

tO4t tO3t tO5t

OSPI_CLK

tO2t
O6 O6 tO1t

OSPI_D[i:0]

Figure 6-38. OSPI0 Switching Characteristics – PHY DDR

6.11.5.12.3 OSPI Tap Mode

6.11.5.12.3.1 OSPI0 Tap SDR Timing

6.11.5.12.3.1.1 OSPI Timing Requirements - Tap SDR Mode


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
Setup time, OSPI0_D[7:0] valid 10.4 - (0.975 ×
O19 tsu(D-CLK) No Loopback ns
before active OSPI0_CLK edge T(1) × R(2))
Hold time, OSPI0_D[7:0] valid 0.7 + (0.975 ×
O20 th(CLK-D) No Loopback ns
after active OSPI0_CLK edge T(1) × R(2))

(1) T = OSPI_RD_DATA_CAPTURE_REG[DELAY_FLD]
(2) R = REFCLK cycle time in ns

OSPI_CLK

O19 tO20t

OSPI_D[i:0]

Figure 6-39. OSPI0 Timing Requirements – Tap SDR, No Loopback

6.11.5.12.3.1.2 OSPI Switching Characteristics - Tap SDR Mode


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
O7 tc(CLK) Cycle time, OSPI0_CLK 20 ns
O8 tw(CLKL) Pulse duration, OSPI0_CLK low 0.475P(1) - 0.3 ns
O9 tw(CLKH) Pulse duration, OSPI0_CLK high 0.475P(1) - 0.3 ns
Delay time, OSPI0_CSn[1:0] active edge 0.475P(1) + (0.975 0.525P(1) + (1.025
O10 td(CSn-CLK) ns
to OSPI0_CLK rising edge × M(2) × R(4)) - 1 × M(2) × R(4)) + 1
Delay time, OSPI0_CLK rising edge to 0.475P(1) + (0.975 0.525P(1) + (1.025
O11 td(CLK-CSn) ns
OSPI0_CSn[1:0] inactive edge × N(3) × R(4)) - 1 × N(3) × R(4)) + 1
Delay time, OSPI0_CLK active edge to
O12 td(CLK-D) –4.25 7.25 ns
OSPI0_D[7:0] transition

(1) P = CLK cycle time = SCLK period in ns


(2) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]
(3) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]
(4) R = REFCLK cycle time in ns

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 127


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

OSPI_CSn

O10 tO11t
tO7t

OSPI_CLK

tO9t tO8t
O12

OSPI_D[i:0]

Figure 6-40. OSPI0 Switching Characteristics – Tap SDR, No Loopback

6.11.5.12.3.2 OSPI0 Tap DDR Timing

6.11.5.12.3.2.1 OSPI Timing Requirements - Tap DDR Mode


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
Setup time, OSPI0_D[7:0] valid 12.04 - (0.975 ×
O13 tsu(D-CLK) No Loopback ns
before active OSPI0_CLK edge T(1) × R(2))
Hold time, OSPI0_D[7:0] valid 1.84 + (0.975 ×
O14 th(CLK-D) No Loopback ns
after active OSPI0_CLK edge T(1) × R(2))

(1) T = OSPI_RD_DATA_CAPTURE_REG[DELAY_FLD]
(2) R = REFCLK cycle time in ns

OSPI_CLK

tO14t tO14t
O13 O13

OSPI_D[i:0]

Figure 6-41. OSPI0 Timing Requirements – Tap DDR, No Loopback

6.11.5.12.3.2.2 OSPI Switching Characteristics - Tap DDR Mode


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
O1 tc(CLK) Cycle time, OSPI0_CLK 40 ns
O2 tw(CLKL) Pulse duration, OSPI0_CLK low 0.475P(1) - 0.3 ns
O3 tw(CLKH) Pulse duration, OSPI0_CLK high 0.475P(1) - 0.3 ns
Delay time, OSPI0_CSn[1:0] active edge 0.475P(1) + (0.975 0.525P(1) + (1.025
O4 td(CSn-CLK) ns
to OSPI0_CLK rising edge × M(2) × R(4)) - 1 × M(2) × R(4)) + 1
Delay time, OSPI0_CLK rising edge to 0.475P(1) + (0.975 0.525P(1) + (1.025
O5 td(CLK-CSn) ns
OSPI0_CSn[1:0] inactive edge × N(3) × R(4)) - 1 × N(3) × R(4)) + 1
Delay time, OSPI0_CLK active edge to –17.94 + (0.975 × –1.56 + (1.025 ×
O6 td(CLK-D) ns
OSPI0_D[7:0] transition T(5) × R(4)) T(5) × R(4))

(1) P = CLK cycle time = SCLK period in ns


(2) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]
(3) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]
(4) R = REFCLK cycle time in ns
(5) T = OSPI_RD_DATA_CAPTURE_REG[DDR_READ_DELAY_FLD]

128 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

OSPI_CSn

tO4t tO3t tO5t

OSPI_CLK

tO2t
O6 O6 tO1t

OSPI_D[i:0]

Figure 6-42. OSPI0 Switching Characteristics – Tap DDR, No Loopback

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 129


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.5.13 Programmable Real-Time Unit and Industrial Communication Subsystem (PRU-ICSS)


The device has integrated a single Programmable Real-Time Unit and Industrial Communication Subsystem
(PRU-ICSS0). The programmable nature of the PRU cores, along with their access to pins, events and all device
resources, provides flexibility in implementing fast real-time responses, specialized data handling operations,
custom peripheral interfaces, and in offloading tasks from the other processor cores in the device.
For more details about features and additional description information on the device PRU-ICSS, see the
corresponding subsections within Signal Descriptions and Detailed Description sections.

Note
The PRU-ICSS0 supports an internal wrapper multiplexing that expands the device top-level
multiplexing.

130 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.11.5.13.1 PRU-ICSS Programmable Real-Time Unit (PRU)

Note
The PRU-ICSS PRU signals have different functionality depending on the mode of operation. The
signal naming in this section matches the naming used in the PRU Module Interface section in the
device TRM.

6.11.5.13.1.1 PRU-ICSS PRU Timing Conditions


PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 1 3 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 2 30 pF

6.11.5.13.1.2 PRU-ICSS PRU Switching Characteristics - Direct Output Mode


NO. PARAMETER DESCRIPTION MIN MAX UNIT
PRDO1 tsk(PRU_GPO) PRU_GPO (data out) skew 3 ns

GPO[n:0]
PRDO1 PRU_TIMING_02

A. n in GPO[n:0] = 19.

Figure 6-43. PRU-ICSS PRU Direct Output Timing

6.11.5.13.1.3 PRU-ICSS PRU Timing Requirements - Parallel Capture Mode


NO. PARAMETER DESCRIPTION MIN MAX UNIT
PRPC1 tc(PRU_CLOCK) Cycle time, PRU_CLOCK 20 ns
PRPC2 tw(PRU_CLOCKL Pulse duration, PRU_CLOCK Low 10 ns
PRPC3 tw(PRU_CLOCKH) Pulse duration, PRU_CLOCK High 10 ns
Setup time, PRU_DATAIN valid before
PRPC4 tsu(PRU_DATAIN-PRU_CLK) 4 ns
PRU_CLOCK active edge
tth(PRU_CLOCK- Hold time, PRU_DATAIN valid after
PRPC5 0 ns
PRU_DATAIN) PRU_CLOCK active edge

PRPC1
PRPC3
PRPC2

CLOCKIN

DATAIN

PRPC5
PRPC4 PRU_TIMING_03

Figure 6-44. PRU-ICSS PRU Parallel Capture Timing Requirements – Rising Edge Mode
Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 131
Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

PRPC1
PRPC3
PRPC2
CLOCKIN

DATAIN

PRPC5
PRPC4 PRU_TIMING_04

Figure 6-45. PRU-ICSS PRU Parallel Capture Timing Requirements – Falling Edge Mode

6.11.5.13.1.4 PRU-ICSS PRU Timing Requirements - Shift In Mode


NO. PARAMETER DESCRIPTION MIN MAX UNIT
PRSI1 tw(PRU_DATAINH) Pulse duration, PRU_DATAIN High 2+ 2P(1) ns
PRSI2 tw(PRU_DATAINL) Pulse duration, PRU_DATAIN Low 2 + 2P(1) ns

(1) P = Internal shift in clock period, defined by PRU_GPI_DIV0 and PRU0_GPI_DIV1 bit fields in the GPCFGn register.

PRSI1
PRSI2

DATAIN

PRU_TIMING_05

Figure 6-46. PRU-ICSS PRU Shift In Timing

6.11.5.13.1.5 PRU-ICSS PRU Switching Characteristics - Shift Out Mode


NO. PARAMETER DESCRIPTION MIN MAX UNIT
PRSO1 tc(PRU_CLOCKOUT) Cycle time, PRU_CLOCKOUT 10 ns
PRSO2L tw(PRU_CLOCKOUTL) Pulse duration, PRU_CLOCKOUT Low –0.3 + 0.475 × P(1) × Z(2) ns
PRSO2H tw(PRU_CLOCKOUTH) Pulse duration, PRU_CLOCKOUT High –0.3 + 0.475 × P(1) × Y(3) ns
td(PRU_CLOCKOUT- Delay time, PRU_CLOCKOUT to
PRSO3 0 3 ns
PRU_DATAOUT) PRU_DATAOUT Valid

(1) P = Software programmable shift out clock period, defined by PRU0_GP0_Div0 and PRU0_GPO_DIV1 bit fields in the GPCFGn
register.
(2) The Z parameter is defined as follows:
If PRU0_GPI_DIV0 and PRU0_GPI_DIV1 are INTEGERS -or- if PRU0_GPI_DIV0 is a NON-INTEGER and PRU0_GPI_DIV1 is an
EVEN INTEGER then,
Z equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1).
If PRU0_GPI_DIV0 is a NON-INTEGER and PRU0_GPI_DIV1 is an ODD INTEGER then,
Z equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1 + 0.5).
If PRU0_GPI_DIV0 is an INTEGER and PRU0_GPI_DIV1 is a NON-INTEGER then,
Z equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1 + 0.5 * PRU0_GPI_DIV0).
If PRU0_GPI_DIV0 and PRU0_GPI_DIV1 are NON-INTEGERS then,
Z equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1 + 0.25 * PRU0_GPI_DIV0).
(3) The Y parameter is defined as follows:
If PRU0_GPI_DIV0 and PRU0_GPI_DIV1 are INTEGERS -or- if PRU0_GPI_DIV0 is a NON-INTEGER and PRU0_GPI_DIV1 is an
EVEN INTEGER then,
Y equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1).
If PRU0_GPI_DIV0 is a NON-INTEGER and PRU0_GPI_DIV1 is an ODD INTEGER then,
Y equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1 - 0.5).
If PRU0_GPI_DIV0 is an INTEGER and PRU0_GPI_DIV1 is a NON-INTEGER then,
Y equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1 - 0.5 * PRU0_GPI_DIV0).
If PRU0_GPI_DIV0 and PRU0_GPI_DIV1 are NON-INTEGERS then,
Y1 equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1 - 0.25 * PRU0_GPI_DIV0) and

132 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Y2 equals (PRU0_GPI_DIV0 * PRU0_GPI_DIV1 + 0.25 * PRU0_GPI_DIV0), where Y1 is the first high pulse and Y2 is the second high
pulse.

PRSO1
PRSO2H PRSO2L

CLOCKOUT

DATAOUT

PRSO3
PRU_TIMING_06

Figure 6-47. PRU-ICSS PRU Shift Out Timing

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 133


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.5.13.2 PRU-ICSS PRU Sigma Delta and Peripheral Interface

6.11.5.13.2.1 PRU-ICSS PRU Sigma Delta and Peripheral Interface Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 1 3 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 2 18 pF

6.11.5.13.2.2 PRU-ICSS PRU Timing Requirements - Sigma Delta Mode


NO. PARAMETER DESCRIPTION MIN MAX UNIT
PRSD1 tc(SD_CLK) Cycle time, SD_CLK 40 ns
PRSD2L tw(SD_CLKL) Pulse duration, SD_CLK Low 20 ns
PRSD2H tw(SD_CLKH) Pulse duration, SD_CLK High 20 ns
Setup time, SD_D valid before SD_CLK active
PRSD3 tsu(SD_D-SDCLK) 10 ns
edge
Hold time, SD_D valid after SD_CLK active
PRSD4 tsu(SDCLK-SD_D) 5 ns
edge

PRSD1
PRSD2H

SDx_CLK

PRSD2L

SDx_D

PRSD4
PRSD3 PRU_TIMING_07

Figure 6-48. PRU-ICSS PRU SD_CLK Falling Active Edge

PRSD2L

SDx_CLK

SDx_D

PRSD4
PRSD3 PRU_TIMING_08

Figure 6-49. PRU-ICSS PRU SD_CLK Rising Active Edge

6.11.5.13.2.3 PRU-ICSS PRU Timing Requirements - Peripheral Interface Mode


NO. PARAMETER DESCRIPTION MIN MAX UNIT
PRPIF1 tw(PIF_DATA_INH) Pulse duration, PIF_DATA_IN High 2 + 0.475 × (4 × P(1)) ns

134 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

NO. PARAMETER DESCRIPTION MIN MAX UNIT


PRPIF2 tw(PIF_DATA_INL) Pulse duration, PIF_DATA_IN Low 2 + 0.475 × (4 × P(1)) ns

(1) P = 1x (or TX) clock period, defined by TX_DIV_FACTOR and TX_DIV_FACTOR_FRAC in the CFG_ED_P<n>_TXCFG register.

PRPIF1 PRPIF2

PIF_DATA_IN

PRUPIF_TIMING_01

Figure 6-50. PRU-ICSS PRU Peripheral Interface Timing Requirements

6.11.5.13.2.4 PRU-ICSS PRU Switching Characteristics - Peripheral Interface Mode


NO. PARAMETER DESCRIPTION MIN MAX UNIT
PRPIF3 tc(PIF_CLK) Cycle time, PIF_CLK 30 ns
PRPIF4 tw(PIF_CLKH) Pulse duration, PIF_CLK High 0.475P(1) ns
PRPIF5 tw(PIF_CLKL) Pulse duration, PIF_CLK Low 0.475P(1) ns
PRPIF6 td(PIF_CLK-PIF_DATA_OUT) Delay time, PIF_CLK fall to PIF_DATA_OUT –5 5 ns
PRPIF7 td(PIF_CLK-PIF_DATA_EN) Delay time, PIF_CLK fall to PIF_DATA_EN –5 5 ns

(1) P = 1x (or TX) clock period, defined by TX_DIV_FACTOR and TX_DIV_FACTOR_FRAC in the CFG_ED_P<n>_TXCFG register.

PRPIF3
PRPIF4 PRPIF5

PIF_CLK

PRPIF6

PIF_DATA_OUT

PRPIF7

PIF_DATA_EN

Figure 6-51. PRU-ICSS PRU Peripheral Interface Switching Characteristics

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 135


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.5.13.3 PRU-ICSS Pulse Width Modulation (PWM)

6.11.5.13.3.1 PRU-ICSS PWM Timing Conditions


PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 1 4 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 2 7 pF

6.11.5.13.3.2 PRU-ICSS PWM Switching Characteristics


NO. PARAMETER DESCRIPTION MIN MAX UNIT
PRPWM1 tsk(PWM_A/B) PWM_A/B skew 5 ns

PWM_A/B

PRPWM1
PRU_PWM_TIMING_01

Figure 6-52. PRU-ICSS PWM Timing

136 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.11.5.13.4 PRU-ICSS Industrial Ethernet Peripheral (IEP)

6.11.5.13.4.1 PRU-ICSS IEP Timing Conditions


PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 1 3 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 1 7 pF

6.11.5.13.4.2 PRU-ICSS IEP Timing Requirements - Input Validated with SYNCx


NO. PARAMETER DESCRIPTION MIN MAX UNIT
PRIEP1 tw(EDC_SYNCx_OUTL) Pulse duration, EDC_SYNCx_OUT Low –2 + 20P(1) ns
PRIEP2 tw(EDC_SYNCx_OUTH) Pulse duration, EDC_SYNCx_OUT High –2 + 20P(1) ns
tsu(EDIO_DATA_IN- Setup time, EDIO_DATA_IN valid before
PRIEP3 20 ns
EDC_SYNCx_OUT EDC_SYNCx_OUT active edge
th(EDC_SYNCx_OUT- Hold time, EDIO_DATA_IN valid after
PRIEP4 20 ns
EDIO_DATA_IN) EDC_SYNCx_OUT active edge

(1) P = PRU-ICSS IEP clock source period.

EDC_SYNC_OUTx

PRIEP2 PRIEP1

PRIEP3
PRIEP4

EDIO_DATA_IN[7:0]

PRU_IEP_TIMING_01

Figure 6-53. PRU-ICSS IEP SYNC Timing Requirements

6.11.5.13.4.3 PRU-ICSS IEP Timing Requirements - Digital IOs


NO. PARAMETER DESCRIPTION MIN MAX UNIT
IEPIO1 tw(EDIO_OUTVALIDL) Pulse duration, EDIO_OUTVALID Low –2 + 14P(1) ns
IEPIO2 tw(EDIO_OUTVALIDH) Pulse duration, EDIO_OUTVALID High –2 + 32P(1) ns
td(EDIO_OUTVALID- Delay time, EDIO_OUTVALID to EDIO_DATA
IEPIO3 0 18P(1) ns
EDIO_DATA_OUT) OUT
IEPIO4 tsk(EDIO_DATA_OUT) EDIO_DATA_OUT skew 6 ns

(1) P = PRU-ICSS IEP clock source period.

EDIO_DATA_OUT

IEPIO4 PRU_EDIO_DATA_OUT_TIMING_00

Figure 6-54. PRU-ICSS IEP Digital IOs Timing Requirements

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 137


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.5.13.4.4 PRU-ICSS IEP Timing Requirements - LATCHx_IN


NO. PARAMETER DESCRIPTION MIN MAX UNIT
PRLA1 tw(EDC_LATCHx_INL) Pulse duration, EDC_LATCHx_IN Low 2+ 3P(1) ns
PRLA2 tw(EDC_LATCHx_INH) Pulse duration, EDC_LATCHx_IN High 2 + 3P(1) ns

(1) P = PRU-ICSS IEP clock source period.

PRLA1

EDC_LATCH_INx

PRLA2
PRU_IEP_TIMING_02

Figure 6-55. PRU-ICSS IEP LATCH_INx Timing Requirements

138 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.11.5.13.5 PRU-ICSS Universal Asynchronous Receiver Transmitter (UART)

6.11.5.13.5.1 PRU-ICSS UART Timing Conditions


PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 0.01 0.33 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 1 30 pF

6.11.5.13.5.2 PRU-ICSS UART Timing Requirements


NO. PARAMETER DESCRIPTION MIN MAX UNIT
PRUR1H tw(RXH) Pulse duration, Receive start, stop, data bit High U(1) ns
PRUR1L tw(RXL) Pulse duration, Receive start, stop, data bit Low –2 + U(1) ns

(1) U = UART baud time = 1/programmed baud rate.

6.11.5.13.5.3 PRU-ICSS UART Switching Characteristics


NO. PARAMETER DESCRIPTION MIN MAX UNIT
PRUR2 f(baud) Maximum programmable baud rate U(1) ns
Pulse duration, Transmit start, stop, data bit
PRUR3H tw(TXH) –2 + U(1) ns
High

(1) U = UART baud time = 1/programmed baud rate.

PRUR1L
PRUR1H

Start
(1)
PRGi_UART0_RXD Bit

Data Bits

PRUR3L
PRUR3H
Start
(1) Bit
PRGi_UART0_TXD
Data Bits
PRU_UART_TIMING_01
(1) i in PRGi_UART0_RXD and PRGi_UART0_TXD = 0, 1 or 2

Figure 6-56. PRU-ICSS UART Timing Requirements and Switching Characteristics

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 139


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.5.13.6 PRU-ICSS Enhanced Capture Peripheral (ECAP)

6.11.5.13.6.1 PRU-ICSS ECAP Timing Conditions


PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 1 3 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 2 7 pF

6.11.5.13.6.2 PRU-ICSS ECAP Timing Requirements


NO. PARAMETER DESCRIPTION MIN MAX UNIT
PREP1 tw(CAP) Pulse duration, Capture input (asynchronous) 2+ 2P(1) ns
PREP2 tw(SYNCI) Pulse duration, Sync input (asynchronous) 2 + 2P(1) ns

(1) P = core_clk period

PREP1

CAP

PREP2

SYNCI

PRU_ECAP_TIMING_01

Figure 6-57. PRU-ICSS ECAP Timing

6.11.5.13.6.3 PRU-ICSS ECAP Switching Characteristics


NO. PARAMETER DESCRIPTION MIN MAX UNIT
Pulse duration, Auxiliary PWM (APWM) output
PREP3 tw(APWM) 2P(1) ns
high/low
PREP4 tw(SYNCO) Pulse duration, Sync output (asynchronous) P(1) ns

(1) P = core_clk period

PREP3

APWM_OUT

SYNC_OUT

PRI_ECAP_TIMING_02

Figure 6-58. PRU-ICSS ECAP Switching Characteristics

140 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.11.5.13.7 PRU-ICSS MDIO and MII

6.11.5.13.7.1 PRU-ICSS MDIO Timing

6.11.5.13.7.1.1 PRU-ICSS MDIO Timing Conditions


PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 0.9 3.6 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 10 470 pF

6.11.5.13.7.1.2 PRU-ICSS MDIO Timing Requirements


NO. PARAMETER DESCRIPTION MIN MAX UNIT
Setup time, MDIO[x]_MDIO valid before
MDIO1 tsu(MDIO-MDC) 90 ns
MDIO[x]_MDC high
Hold time, MDIO[x]_MDIO valid from
MDIO2 th(MDC-MDIO) 0 ns
MDIO[x]_MDC high

6.11.5.13.7.1.3 PRU-ICSS MDIO Switching Characteristics


NO. PARAMETER DESCRIPTION MIN MAX UNIT
MDIO3 tc(MDC) Cycle time, MDIO[x]_MDC 400 ns
MDIO4 tw(MDCH) Pulse duration, MDIO[x]_MDC high 160 ns
MDIO5 tw(MDCL) Pulse duration, MDIO[x]_MDC low 160 ns
Delay time, MDIO[x]_MDC low to
MDIO7 td(MDC-MDIO) –150 150 ns
MDIO[x]_MDIO valid

MDIO3
MDIO4
MDIO5
MDIO[x]_MDC

MDIO1

MDIO2

MDIO[x]_MDIO
(input)

MDIO7

MDIO[x]_MDIO
(output)
CPSW2G_MDIO_TIMING_01

Figure 6-59. PRU-ICSS MDIO Timing Requirements and Switching Characteristics

6.11.5.13.7.2 PRU-ICSS MII Timing

6.11.5.13.7.2.1 PRU-ICSS MII Timing Conditions


PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 0.9 3.6 V/ns
OUTPUT CONDITIONS

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 141


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

PARAMETER MIN MAX UNIT


CL Output Load Capacitance 2 20 pF

6.11.5.13.7.2.2 PRU-ICSS MII Timing Requirements - MII[x]_RX_CLK


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
10Mbps 399.96 400.04 ns
PMIR1 tc(RX_CLK) Cycle time, MII[x]_RX_CLK
100Mbps 39.996 40.004 ns
10Mbps 140 260 ns
PMIR2 tw(RX_CLKH) Pulse duration, MII[x]_RX_CLK high
100Mbps 14 26 ns
10Mbps 140 260 ns
PMIR3 tw(RX_CLKL) Pulse duration, MII[x]_RX_CLK low
100Mbps 14 26 ns

PMIR1

PMIR2 PMIR3

MII_RX_CLK

PRU_MII_RT_TIMING_04

Figure 6-60. PRU-ICSS MII[x]_RX_CLK Timing

6.11.5.13.7.2.3 PRU-ICSS MII Timing Requirements - MII[x]_RXD[3:0], MII[x]_RX_DV, and MII[x]_RX_ER


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
Setup time, MII[x]_RXD[3:0] valid before
tsu(RXD-RX_CLK) 8 ns
MII[x]_RX_CLK
Setup time, MII[x]_RX_DV valid before
tsu(RX_DV-RX_CLK) 10Mbps 8 ns
MII[x]_RX_CLK
Setup time, MII[x]_RX_ER valid before
tsu(RX_ER-RX_CLK) 8 ns
MII[x]_RX_CLK
PMIR4
Setup time, MII[x]_RXD[3:0] valid before
tsu(RXD-RX_CLK) 8 ns
MII[x]_RX_CLK
Setup time, MII[x]_RX_DV valid before
tsu(RX_DV-RX_CLK) 100Mbps 8 ns
MII[x]_RX_CLK
Setup time, MII[x]_RX_ER valid before
tsu(RX_ER-RX_CLK) 8 ns
MII[x]_RX_CLK
Hold time, MII[x]_RXD[3:0] valid after
th(RX_CLK-RXD) 8 ns
MII[x]_RX_CLK
Hold time, MII[x]_RX_DV valid after
th(RX_CLK-RX_DV) 10Mbps 8 ns
MII[x]_RX_CLK
Hold time, MII[x]_RX_ER valid after
th(RX_CLK-RX_ER) 8 ns
MII[x]_RX_CLK
PMIR5
Hold time, MII[x]_RXD[3:0] valid after
th(RX_CLK-RXD) 8 ns
MII[x]_RX_CLK
Hold time, MII[x]_RX_DV valid after
th(RX_CLK-RX_DV) 100Mbps 8 ns
MII[x]_RX_CLK
Hold time, MII[x]_RX_ER valid after
th(RX_CLK-RX_ER) 8 ns
MII[x]_RX_CLK

142 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

PMIR4
PMIR5

MII_RX_CLK

MII_RXD[3:0],
MII_RX_DV, MII_RX_ER

Figure 6-61. PRU-ICSS MII[x]_RXD[3:0], MII[x]_RX_DV, and MII[x]_RX_ER Timing

6.11.5.13.7.2.4 PRU-ICSS MII Switching Characteristics - MII[x]_TX_CLK


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
10Mbps 399.96 400.04 ns
PMIT1 tc(TX_CLK) Cycle time, MII[x]_TX_CLK
100Mbps 39.996 40.004 ns
10Mbps 140 260 ns
PMIT2 tw(TX_CLKH) Pulse duration, MII[x]_TX_CLK high
100Mbps 14 26 ns
10Mbps 140 260 ns
PMIT3 tw(TX_CLKL) Pulse duration, MII[x]_TX_CLK low
100Mbps 14 26 ns

PMIT1

PMIT2 PMIT3

MII_TX_CLK

Figure 6-62. PRU-ICSS MII[x]_TX_CLK Timing

6.11.5.13.7.2.5 PRU-ICSS MII Switching Characteristics - MII[x]_TXD[3:0] and MII[x]_TXEN


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
Delay time, MII[x]_TX_CLK high to
td(TX_CLK-TXD) 0 25 ns
MII[x]_TXD[3:0] valid
10Mbps
Delay time, MII[x]_TX_CLK high to
td(TX_CLK-TX_EN) 0 25 ns
MII[x]_TX_EN valid
PMIT4
Delay time, MII[x]_TX_CLK high to
td(TX_CLK-TXD) 0 25 ns
MII[x]_TXD[3:0] valid
100Mbps
Delay time, MII[x]_TX_CLK high to
td(TX_CLK-TX_EN) 0 25 ns
MII[x]_TX_EN valid

PMIT4

MII_TX_CLK

MII_TXD[3:0], MII_TX_EN

Figure 6-63. PRU-ICSS MII[x]_TXD[3:0], MII[x]_TX_EN Timing

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 143


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.5.14 Sigma Delta Filter Module (SDFM)


For more information, see Sigma Delta Filter Module section in the device TRM.
6.11.5.14.1 SDFM Timing Conditions
PARAMETER MODE MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate Mode 0 0.5 5 V/ns

6.11.5.14.2 SDFM Switching Characteristics


(2)

NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT


M0-1 tc(SDC) Cycle time, SDx_Cy Mode 0 5P(1) 256P(1) ns
M0-2 tw(SDCHL) Pulse duration, SDx_Cy (high/low) Mode 0 2P(1) ns
Setup time, SDx_Dy valid before
M0-3 tsh(SDDV-SDCH) Mode 0 2P(1) ns
SDx_Cy high
Hold time, SDx_Dy wait after SDx_Cy
M0-4 th(SDCH-SDD) Mode 0 2P(1) ns
high

(1) P = SYSCLK period in ns.


(2) Some SDFM signals are pinmuxed with I2C0 SDA and SCL pins. These pins use an alternate open drain voltage buffer and may not
meet the specified parameters. Values are pending additional post-silicon validation.

144 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.11.5.15 Universal Asynchronous Receiver/Transmitter (UART)


For more details about features and additional description information on the device Universal Asynchronous
Receiver Transmitter, see the corresponding subsections within Signal Descriptions and Detailed Description
sections.
For more information, see Universal Asynchronous Receiver/Transmitter (UART) section in the device TRM.
6.11.5.15.1 UART Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 0.5 5 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 1 30 pF

6.11.5.15.2 UART Timing Requirements


NO. PARAMETER DESCRIPTION MIN MAX UNIT
4 tw(RX) Pulse width, receive data bit, high or low 0.95U(1) 1.05U(1) ns
5 tw(CTS) Pulse width, receive start bit, high or low 0.95U(1) ns

(1) U = UART baud time = 1 / Programmed baud rate.

6.11.5.15.3 UART Switching Characteristics


NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT
15pF 12
f(baud) Programmable baud rate Mbps
30pF 0.115
2 tw(TX) Pulse width, transmit data bit, high or low U(1) – 2.2 U(1) + 2.2 ns
3 tw(RTS) Pulse width, transmit start bit, high or low U(1) – 2.2 ns
1 td(CTS-TX) Delay time, receive CTS bit to transmit data 30 ns

(1) U = UART baud time = 1 / Programmed baud rate.

Figure 6-64. UART Timing Requirements and Switching Characteristics

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 145


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

6.11.6 Emulation and Debug


For more details about features and additional description information on the device Trace and JTAG interfaces,
see the corresponding subsections within Signal Descriptions and Detailed Description sections. For more
information, see the On-Chip Debug section in the device TRM.
6.11.6.1 JTAG
The acronym stands for the Joint Test Action Group, the committee of engineers who defined the boundary-
scan standard (IEEE std 1149.1). For more details about features and additional description information on the
device JTAG interface, see the corresponding subsections within Signal Descriptions and Detailed Description
sections.
6.11.6.1.1 JTAG Timing Conditions
PARAMETER MIN MAX UNIT
INPUT CONDITIONS
SRI Input Slew Rate 0.5 2.00 V/ns
OUTPUT CONDITIONS
CL Output Load Capacitance 5 15 pF

6.11.6.1.2 JTAG Timing Requirements


NO. PARAMETER DESCRIPTION MIN MAX UNIT
J1 tc(TCK) Cycle time, TCK 40 ns
J2 tw(TCKH) Pulse width, TCK high 16 ns
J3 tw(TCKL) Pulse width, TCK low 16 ns
tsu(TDI-TCKH) Input setup time, TDI valid to TCK high 2
J4 ns
tsu(TMS-TCKH) Input setup time, TMS valid to TCK high 2
th(TCK-TDI) Input hold time, TDI valid from TCK high 15.9
J5 ns
th(TCK-TMS) Input hold time, TMS valid from TCK high 15.9

6.11.6.1.3 JTAG Switching Characteristics


NO. PARAMETER DESCRIPTION MIN MAX UNIT
J6 td(TCKL-TDOI) Delay time, TCK low to TDO invalid –0.067005 ns
J7 td(TCKL-TDOV) Delay time, TCK low to TDO valid 11.89594 ns

J1
J2 J3

TCK
J4 J5 J4 J5

TDI / TMS

J7
J6

TDO

Figure 6-65. JTAG Timing Requirements and Switching Characteristics

146 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

6.11.6.2 Trace

6.11.6.2.1 Debug Trace Timing Conditions


PARAMETER MIN MAX UNIT
OUTPUT CONDITIONS
CL Output Load Capacitance 2 5 pF
OUTPUT CONDITIONS
td(Trace Mismatch) Propagation delay mismatch across all traces. 200 ps

6.11.6.2.2 Debug Trace Switching Characteristics


NO. PARAMETER DESCRIPTION MIN MAX UNIT
DBTR1 tc(TRC_CLK) Cycle time, TRC_CLK 9.75 ns
DBTR2 tw(TRC_CLKH) Pulse width, TRC_CLK high 4.13 ns
DBTR3 tw(TRC_CLKL) Pulse width, TRC_CLK low 4.13 ns
Output setup time, TRC_DATA valid to
DBTR4 tosu(TRC_DATAV-TRC_CLK) 1.22 ns
TRC_CLK edge
Output hold time, TRC_CLK edge to
DBTR5 toh(TRC_CLK-TRC-DATAI) 1.22 ns
TRC_DATA invalid
Output setup time, TRC_CTL valid to TRC_CLK
DBTR6 tosu(TRC_CTLV-TRC_CLK) 1.22 ns
edge
Output hold time, TRC_CLK edge to TRC_CTL
DBTR7 toh(TRC_CLK-TRC_CTLI) 1.22 ns
invalid

DBTR1
DBTR2 DBTR3

TRC_CLK
(Worst Case 1)
(Ideal)
(Worst Case 2)
DBTR4 DBTR5 DBTR4 DBTR5
DBTR6 DBTR7 DBTR6 DBTR7

TRC_DATA
TRC_CTL

SPRSP08_Debug_01

Figure 6-66. Trace Switching Characteristics

6.12 Decoupling Capacitor Requirements


6.12.1 Decoupling Capacitor Requirements
PARAMETER DESCRIPTION MIN TYP MAX UNIT
CVDD 1.2V VDD (Cap) 10 µF
CVDDS33 3.3V VDDS (Cap) 10 µF
CVDDA33 3.3V VDDA (Cap) 10 µF
CVDDS18 1.8V VDDS (Cap) 0.1 µF
CVDDA18 1.8V VDDA (Cap) 0.1 µF
CVPP 1.7V VPP (Cap) 0.1 µF
CVDDS18_LDO 1.8V LDO VDDS (Cap) 3.3 µF
CVDDA18_LDO 1.8V LDO VDDA (Cap) 4.7 µF
CADC_VREF ADC VREFHI (Cap) 4.7 µF

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 147


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

7 Detailed Description
7.1 Overview
The AM263Px Sitara Arm® Microcontrollers are built to meet the complex real-time processing and control
needs of next generation industrial and automotive embedded projects. AM263Px uniquely combines advanced
computing with industry leading real-time control peripherals to meet the growing performance needs of
applications such as HEV/EV (traction inverters, on-board chargers, and DC-DC converters), motor drives,
renewable energy, energy storage, and other general real-time constrained systems. AM263Px combines up to
four Cortex-R5F MCUs, a real-time control subsystem (CONTROLSS), a Hardware Security Module (HSM), and
one instance of Sitara’s PRU-ICSS, making AM263Px designed for advanced motor control and digital power
control applications.
The multiple R5F cores are arranged in cluster with 256KB of shared tightly coupled memory (TCM) along
with 3MB of shared SRAM. The multiple Arm® cores can be optionally programmed to run in lock-step option
for different functional safety configurations. Extensive ECC is included on on-chip memory, peripherals, and
interconnect for enhanced reliability. Cryptographic acceleration and secure boot are also available on AM263Px
devices in addition to granular firewalls managed by the HSM for developers to design the most secure systems.
The Real-Time Control Subsystem (CONTROLSS) is a revolutionary subsystem integrated into the device.
CONTROLSS contains multiple digital and analog control peripherals including: ADC, CMPSS, EPWM, ECAP,
and EQEP, among others to enable efficient execution of critical sense/process/actuate real-time signal chain
control loops. The integrated crossbar (XBAR) infrastructure enables flexible configuration and routing of
external signals to internal ports and internal signals to external pins.
The PRU-ICSS in AM263Px provides the flexible industrial communications capability necessary to run
EtherCAT®, PROFINET®, Ethernet/IP™, or for standard Ethernet connectivity and custom I/O interfacing. The
PRU also enables additional interfaces in the SoC including sigma delta decimation filters and absolute encoder
interfaces. The CPSW interface also provides two standard Ethernet ports.
TI provides a complete set of microcontroller software and development tools for the AM263Px family of
microcontrollers in addition to multiple pin-to-pin compatible devices for scalability and ease of use.

148 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

7.2 Processor Subsystems


7.2.1 Arm Cortex-R5F Subsystem
The R5FSS is a dual-core implementation of the Arm® Cortex®-R5F processor configured for dual-core (split)
or lockstep modes of operation. It also includes accompanying memories (L1 caches and tightly-coupled
memories), standard Arm® CoreSight™ debug and trace architecture, integrated Vectored Interrupt Manager
(VIM), ECC Aggregators, and various wrappers for protocol conversion and address translation for easy
integration into the SoC. The device supports up to two R5FSS modules for a total possible 4x functional cores
(dual-core mode) or 2x functional cores (lockstep mode).

Note
The Arm® Cortex®-R5F processor is a Cortex-R5 processor that includes the optional Floating-point
Unit (FPU) extension.

For more information, see R5FSS section in Processors and Accelerators chapter in the device TRM.

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 149


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

8 Applications, Implementation, and Layout


Note
Information in the following applications sections is not part of the TI component specification,
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for
determining suitability of components for their purposes, as well as validating and testing their design
implementation to confirm system functionality.

8.1 Device Connection and Layout Fundamentals


8.1.1 External Oscillator
For more information about External Oscillators, see the Input Clocks / Oscillators section.
8.1.2 JTAG, EMU, and TRACE
Texas Instruments supports a variety of eXtended Development System (XDS) JTAG controllers with various
debug capabilities beyond only JTAG support. A summary of this information is available in the XDS Target
Connection Guide.
For recommendations on JTAG, EMU, and TRACE routing, see the Emulation and Trace Headers Technical
Reference Manual
8.1.3 OSPI Connections for Flash-in-Package (ZCZ_F)
The ZCZ_F packages offers an internally connected on-die OSPI flash module (ISSI IS25LX064-JWLA3 OSPI
Flash device). Due to the internal connections, the ZCZ_F package comes with additional pin connection
requirements. Please reference Pin Connectivity Requirements for pin connectivity requirements and ball
names.
• The OSPI_D2 signal of Flash die (pin L1-OSPI0_ZCZ_F_WP) doubles as the active low Write Protect input
for the internally connected flash device. Therefore, pin L1-OSPI0_ZCZ_F_WP must be connected to the
relevant source (VDDS33) through a separate 4.7kΩ external pull resistor. This resistor must be placed as
close to the device as possible.
• The OSPI_RESET_OUT0 signal of Flash die (pin J3-OSPI0_ZCZ_F_RESET_OUT0) must be connected to
an open-drain equivalent of PORz or WARMRSTn in order to reset the on-die OSPI flash module. The open-
drain requirement is to prevent a bus contention between the external PORz or WARMRSTn connection via
pin J3-OSPI0_ZCZ_F_RESET_OUT0 and the package internal connection between the AM263P and the
OSPI flash device.
• The remaining pins internally connected for the on-die OSPI flash module should be left unconnected with no
PCB traces:
– H1
– J1
– J4
– K2
– K3
– K4
– L2
– M1
– M4
– P1
– P3
Pleased see ZCZ_F Package OSPI Connection Requirements for a visualization of the necessary connections.

150 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

AM263P

For all NC pins, do


H1 NC not connect any PCB
trace
J1 NC

J4 NC

K2 NC

K3 NC

K4 NC

L2 NC

M1 NC

M4 NC

P1 NC

P3 NC

VDDS33 For pin L1, place


4.7kΩ pull-up resistor as
close to SoC as
L1 possible

VDDS33

10kΩ
Open-Drain Output
J3 Buffer PORz

Figure 8-1. ZCZ_F Package OSPI Connection Requirements

8.1.4 UART Implementation


UART0 port is used during the UART boot mode and also used for UART fallback boot mode (Refer to AM263P
Technical Reference Manual for more details). Thus the UART0 port is recommended to be brought out to a
connector or a header for debug and failure analysis.
The below are the UART0 port pins that are recommended to be brought out for debugging.
• UART0_RXD - Ball Number A7
• UART0_TXD - Ball Number A6

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 151


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

9 Device and Documentation Support


9.1 Device Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
microcontrollers (MCUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for
example, XAM263PxAOLFGMZCZQ). Texas Instruments recommends two of three possible prefix designators
for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development
from engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS).
Device development evolutionary flow:

X Experimental device that is not necessarily representative of the final device's electrical specifications and
may not use production assembly flow.
P Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical
specifications.
null Production version of the silicon die that is fully qualified.

Support tool development evolutionary flow:


TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.
TMDS Fully-qualified development-support product.

X and P devices and TMDX development-support tools are shipped against the following disclaimer:
"Developmental product is intended for internal evaluation purposes."
Production devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production
devices. Texas Instruments recommends that these devices not be used in any production system because their
expected end-use failure rate still is undefined. Only qualified production devices are to be used.
For orderable part numbers of AM263Px devices in the ZCZ package type, see the Package Option Addendum
of this document, the TI website (ti.com), or contact your TI sales representative.

152 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

9.1.1 Standard Package Symbolization

Note
Some devices may have a cosmetic circular marking visible on the top of the device package which
results from the production test process. In addition, some devices may also show a color variation in
the package substrate which results from the substrate manufacturer. These differences are cosmetic
only with no reliability impact.

TI
aBBBBBB
BrSZfYtPPPQ1

XXXXXXX
A1 (PIN ONE INDICATOR) YYY ZZZ

Figure 9-1. Printed Device Reference

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 153


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

9.1.2 Device Naming Convention

Table 9-1. Nomenclature Description


FIELD PARAMETER FIELD DESCRIPTION VALUE DESCRIPTION
X Prototype
a(2) Device evolution stage P Preproduction (production test flow, no reliability data)
BLANK(1) Production
AM263P4
BBBBBBB Base production part number AM263P2 See Device Comparison.
AM263P1
r Device revision A SR 1.0
C AM263x Compatible Package (ZCZ-C)
S Special Features F AM263Px Sensor Package (ZCZ-F) + SIP Flash-in-Package
S AM263Px Sensor Package (ZCZ-S)
N
Device Operating
Z O See Operating Performance Points.
Performance Points
P
PRU-ICSS
D + CAN-FD Supported
+ Standard Analog
PRU-ICSS
+ EtherCAT HW Accelerator
E
+ CAN-FD Supported
+ Standard Analog
PRU-ICSS
+ EtherCAT HW Accelerator
F + CAN-FD Supported
+ Pre-integrated Stacks Enabled
+ Standard Analog
PRU-ICSS
K + CAN-FD Supported
+ Enhanced Analog
Features
PRU-ICSS
f (see Table 4-1, Device
+ EtherCAT HW Accelerator
Comparison) L
+ CAN-FD Supported
+ Enhanced Analog
PRU-ICSS
+ EtherCAT HW Accelerator
M + CAN-FD Supported
+ Pre-integrated Stacks
+ Enhanced Analog
PRU-ICSS
+ EtherCAT HW Accelerator
+ CAN-FD Supported
+ Pre-integrated Stacks
N + Enhanced Analog
+ EPWM Multi Compare Shadow Registers (XCMP)
+ EPWM Pulse Edge Monitoring
+ ECAP Pulse Edge Monitoring
+ Diode Emulation Logic (DEL) Function + XBAR
G Non-Functional Safety (AM263P1 only)
Y Functional Safety
F Functional Safety
PPP Package Designator ZCZ ZCZ NFBGA-N324 (15 mm × 15 mm) Package

154 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

Table 9-1. Nomenclature Description (continued)


FIELD PARAMETER FIELD DESCRIPTION VALUE DESCRIPTION
Auto Qualified (AEC-Q100)
Automotive Designator and Q1
–40°C to 150°C - Extended Automotive
Q1 Max Junction Temperature(3)
(see Section 6.5, ROC) Standard
BLANK
–40°C to 125°C - Extended Industrial
XXXXXXX Lot Trace Code (LTC)
YYY Production Code; For TI use only
O Pin one designator
G1 ECAT - Green package designator

(1) BLANK in the symbol or part number is collapsed so there are no gaps between characters.
(2) To designate the stages in the product development cycle, TI assigns prefixes to the part numbers. These prefixes represent
evolutionary stages of product development from engineering prototypes through fully qualified production devices.
Prototype devices are shipped against the following disclaimer:
“This product is still in development and is intended for internal evaluation purposes.”
Notwithstanding any provision to the contrary, TI makes no warranty expressed, implied, or statutory, including any implied warranty of
merchantability of fitness for a specific purpose, of this device.
(3) Applies to device max junction temperature.

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 155


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

9.2 Tools and Software


The following products support development for AM263Px platforms:
Development Tools
Code Composer Studio™ Integrated Development Environment Code Composer Studio (CCS) Integrated
Development Environment (IDE) is a development environment that supports TI's Microcontroller and Embedded
Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded
applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger,
profiler, and many other features. The intuitive IDE provides a single user interface taking you through each
step of the application development flow. Familiar tools and interfaces allow users to get started faster than ever
before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced
embedded debug capabilities from TI resulting in a compelling feature-rich development environment for
embedded developers.
SysConfig-PinMux Tool The SysConfig-PinMux Utility is a software tool which provides a Graphical User
Interface for configuring pin multiplexing settings, resolving conflicts and specifying I/O cell characteristics for
TI Embedded Processor devices. The tool can be used to automatically calculate the pinmux configuration to
satisfy entered system requirements. The tool will generate output C header/code files that can be imported
into software development kits (SDKs) and used to configure customer's software to meet custom hardware
requirements.
MCU-PLUS-SDK-AM263PX - MCU+ SDK for AM263Px - RTOS, No-RTOS - The AM263Px microcontroller
(MCU) plus software development kit (SDK) is a unified software platform for embedded processors providing
easy setup and fast out-of-the-box access to examples, benchmarks and demonstrations.
MOTOR-CONTROL-SDK-AM263PX - Motor control SDK for AM263Px - The AM263Px microcontroller (MCU)
plus software development kit (SDK) is a unified software platform for embedded processors providing easy
setup and fast out-of-the-box access to examples, benchmarks and demonstrations.
INDUSTRIAL-COMMUNICATIONS-SDK-AM263PX - Industrial Communications SDK for AM263Px - This
software development kit (SDK) includes real-time industrial communication protocols (EtherCAT, Ethernet/IP,
PROFINET, IO-Link, etc.) on TI processors. It also has PRU-ICSS firmware, drivers, communication stack
libraries, and application examples, along with documentation.
For more info on ecosystem and tools, check out the “Design and development” section of the device on ti.com.
AM263Px MCAL User Guide - User Guide for Microcontroller Abstraction Layer (MCAL) software of AM263P.
MCAL is a software module that enables direct access to on-chip MCU peripheral modules and makes the upper
software layer independent of the MCU.
For a complete listing of development-support tools for the processor platform, visit the Texas Instruments
website at ti.com. For information on pricing and availability, contact the nearest TI field sales office or authorized
distributor.
9.3 Documentation Support
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on
Notifications to register and receive a weekly digest of any product information that has changed. For change
details, review the revision history included in any revised document.
The following documents are provided to describe the AM263Px device.
AM263Px Technical Reference Manual Details the integration, the environment, the functional description, and
the programming models for each peripheral and subsystem in the AM263Px family of devices.
AM263Px TRM Register Addendum Details the memory mapped register information for each peripheral and
subsystem in the AM263Px family of devices.
AM263Px Errata Document - Describes the known exceptions to the functional specifications (advisories). This
document may also contain usage notes. Usage notes describe situations where the device's behaviour may

156 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

not match presumed or documented behaviour. This may include behaviours that affect device performance or
functional correctness.
9.4 Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.
9.5 Trademarks
Ethernet/IP™ is a trademark of ODVA, INC..
Sitara™, Code Composer Studio™, and TI E2E™ are trademarks of Texas Instruments.
CoreSight™ is a trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
EtherCAT® is a registered trademark of Beckhoff Automation GmbH.
PROFINET® is a registered trademark of PROFINET International.
IO-Link® is a registered trademark of PROFIBUS Nutzerorganisation e.V. eingetragener verein (e.v.) FED REP
GERMANY.
is a registered trademark of Arm.
All trademarks are the property of their respective owners.
9.6 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.

9.7 Glossary
TI Glossary This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

Changes from April 25, 2024 to May 30, 2025 (from Revision C (May 2024) to Revision D (May
2025)) Page
• (Technology / Package): Updated the SIP flash part number from IS25LX064-LWLA3 to IS25LX064-JWLA3.1
• (Applications): Updated the list of applications...................................................................................................3
• (Description): Removed instances of single core AM263P1 in package information table................................ 4
• (Device Comparison): Updated table with DEVICE_ID of N variants. Removed column of AM2631. Updated
max Industrial temperature to 125°C. Added details of ZCZ_F Package for AM263P4.....................................7
• (ZCZ_S Pin Diagram): Pin names updated...................................................................................................... 12
• (ZCZ_F Pin Diagram): Pin names updated, multiple pins made NC................................................................ 13
• (Pin Attributes): ADC_VREF and DAC_VREF IO Voltage column updated to 1.8V. All pins connected to
internal Flash Die pins made NC in ZCZ_F package. Pins with GPIO names in ZCZ_F package changed
back to pin names compatible with other packages......................................................................................... 14
• (Reserved and No Connect): NC section added in Reserved and No Connect Section.................................. 69
• (Power Consumption Summary): AM263P PET link added............................................................................. 77
• OSPI0_ZCZ_F_WP and OSPI0_ZCZ_F_RESET_OUT0 pins added as pin connectivity requirements for
ZCZ_F package.............................................................................................................................................. 150
• Added new UART Implementation Section.................................................................................................... 151
• (Device Naming Convention): Added description for letter 'N'. Updated Industrial temperature to 125°C..... 154
• (Documentation Support): Added hyperlink to AM263P Errata document..................................................... 156

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 157


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
SPRSP81D – OCTOBER 2023 – REVISED MAY 2025 www.ti.com

Changes from March 16, 2024 to April 25, 2024 (from Revision B (March 2024) to Revision C
(May 2024)) Page
• Title: Changed title of device from "AM263Px Sitara™ Microcontrollers" to "AM263Px Sitara™
Microcontrollers with Optional Flash-in-Package".......................................................................................... 0
• (Features): Updated formatting in Memory, Industrial Connectivity, High Speed Interfaces, Security, and
Technology / Package sections........................................................................................................................1
• (Features): Added information on Timer modules and package specific options............................................... 1
• (Functional Block Diagram): Updated Functional Block Diagram to improve readability and clarity.................. 5
• (Device Comparison): Added Automotive GPN's to column headers.................................................................7
• (Device Comparison): Combined MCAN and CAN-FD rows..............................................................................7
• (Device Comparison): Updated JTAG ID section to list DEVICE_ID (Base Part Number) values instead of full
JTAG ID's............................................................................................................................................................7
• (Device Comparison): Updated Arm® Cortex-R5F row to include Lockstep information....................................7
• (Device Comparison): Updated table notes to reflect ZCZ-F Package options..................................................7
• (Device Identification): AM263Px Device Part Number Identifier table added................................................... 9
• (Related Products): Updated "Products to complete your design" section.......................................................10
• (Power Consumption Summary): Added in Power Consumption - Typical and Power Consumption - Traction
Inverter tables...................................................................................................................................................77
• (Electrical Characteristics): Added values for Input Leakage Current for ADC, ADC_R, CMPSSA, and
CMPSSB tables................................................................................................................................................ 78
• (Safety Comparators): Added "Vref Monitor (ROK2)" line item to Safety Comparators table.......................... 78
• (Safety System): Added Safety System table...................................................................................................78
• (Package Thermal Characteristics): Added values for moving air parameters................................................ 87
• (Peripheral Timings ePWM): Added MEP values for EPWM Characteristics table........................................ 102
• (Peripheral Timing OSPI): Added information and values for OSPI PHY External Loopback mode timing and
switching characteristics................................................................................................................................. 122

158 Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1


AM263P4, AM263P2, AM263P4-Q1, AM263P2-Q1
www.ti.com SPRSP81D – OCTOBER 2023 – REVISED MAY 2025

11 Mechanical, Packaging, and Orderable Information


The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
To learn more about TI packaging, visit the Packaging information website.

Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback 159


Product Folder Links: AM263P4 AM263P2 AM263P4-Q1 AM263P2-Q1
PACKAGE OPTION ADDENDUM

www.ti.com 7-Jun-2025

PACKAGING INFORMATION

Orderable part number Status Material type Package | Pins Package qty | Carrier RoHS Lead finish/ MSL rating/ Op temp (°C) Part marking
(1) (2) (3) Ball material Peak reflow (6)
(4) (5)

AM263P2ACOLFZCZR Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR - AM263P
2ACOLFZCZ
867
AM263P2ACOLFZCZR.B Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR See AM263P
AM263P2ACOLFZCZR 2ACOLFZCZ
867
AM263P2ASPDFZCZRQ1 Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 150 AM263P
2ASPDFZCZQ1
867
AM263P4ACOKFZCZRQ1 Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 150 AM263P
4ACOKFZCZQ1
867
AM263P4ACOKFZCZRQ1.B Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 150 AM263P
4ACOKFZCZQ1
867
AM263P4ACOLFZCZR Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 105 AM263P
4ACOLFZCZ
867
AM263P4ACOLFZCZR.B Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 105 AM263P
4ACOLFZCZ
867
AM263P4ACOMFZCZR Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 105 AM263P
4ACOMFZCZ
867
AM263P4ACOMFZCZR.B Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 105 AM263P
4ACOMFZCZ
867
AM263P4AFONFZCZRQ1 Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes SNAGCU Level-3-260C-168 HR -40 to 150 AM263P
4AFONF
548
AM263P4ASOKFZCZRQ1 Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 150 AM263P
4ASOKFZCZQ1
867

Addendum-Page 1
PACKAGE OPTION ADDENDUM

www.ti.com 7-Jun-2025

Orderable part number Status Material type Package | Pins Package qty | Carrier RoHS Lead finish/ MSL rating/ Op temp (°C) Part marking
(1) (2) (3) Ball material Peak reflow (6)
(4) (5)

AM263P4ASOKFZCZRQ1.B Active Production NFBGA (ZCZ) | 324 1000 | LARGE T&R Yes Call TI Level-3-260C-168 HR -40 to 150 AM263P
4ASOKFZCZQ1
867
XAM263P4ACOMFZCZ Active Preproduction NFBGA (ZCZ) | 324 1 | JEDEC TRAY (5+1) - Call TI Call TI -40 to 105
XAM263P4ACOMFZCZ.B Active Preproduction NFBGA (ZCZ) | 324 1 | JEDEC TRAY (5+1) - Call TI Call TI -40 to 105

(1)
Status: For more details on status, see our product life cycle.

(2)
Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance,
reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional
waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

(3)
RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

(4)
Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum
column width.

(5)
MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown.
Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

(6)
Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two
combined represent the entire part marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and
makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative
and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers
and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF AM263P2, AM263P2-Q1, AM263P4, AM263P4-Q1 :

• Catalog : AM263P2, AM263P4

Addendum-Page 2
PACKAGE OPTION ADDENDUM

www.ti.com 7-Jun-2025

• Automotive : AM263P2-Q1, AM263P4-Q1

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

Addendum-Page 3
PACKAGE MATERIALS INFORMATION

www.ti.com 8-Jun-2025

TAPE AND REEL INFORMATION

REEL DIMENSIONS TAPE DIMENSIONS


K0 P1

B0 W
Reel
Diameter
Cavity A0
A0 Dimension designed to accommodate the component width
B0 Dimension designed to accommodate the component length
K0 Dimension designed to accommodate the component thickness
W Overall width of the carrier tape
P1 Pitch between successive cavity centers

Reel Width (W1)


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Sprocket Holes

Q1 Q2 Q1 Q2

Q3 Q4 Q3 Q4 User Direction of Feed

Pocket Quadrants

*All dimensions are nominal


Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1
Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant
(mm) W1 (mm)
AM263P2ACOLFZCZR NFBGA ZCZ 324 1000 330.0 24.4 15.3 15.3 2.35 20.0 24.0 Q1
AM263P2ASPDFZCZRQ1 NFBGA ZCZ 324 1000 330.0 24.4 15.3 15.3 2.35 20.0 24.0 Q1
AM263P4ACOKFZCZRQ1 NFBGA ZCZ 324 1000 330.0 24.4 15.3 15.3 2.35 20.0 24.0 Q1
AM263P4ACOLFZCZR NFBGA ZCZ 324 1000 330.0 24.4 15.3 15.3 2.35 20.0 24.0 Q1
AM263P4ACOMFZCZR NFBGA ZCZ 324 1000 330.0 24.4 15.3 15.3 2.35 20.0 24.0 Q1
AM263P4ASOKFZCZRQ1 NFBGA ZCZ 324 1000 330.0 24.4 15.3 15.3 2.35 20.0 24.0 Q1

Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION

www.ti.com 8-Jun-2025

TAPE AND REEL BOX DIMENSIONS

Width (mm)
H
W

*All dimensions are nominal


Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
AM263P2ACOLFZCZR NFBGA ZCZ 324 1000 336.6 336.6 41.3
AM263P2ASPDFZCZRQ1 NFBGA ZCZ 324 1000 336.6 336.6 41.3
AM263P4ACOKFZCZRQ1 NFBGA ZCZ 324 1000 336.6 336.6 41.3
AM263P4ACOLFZCZR NFBGA ZCZ 324 1000 336.6 336.6 41.3
AM263P4ACOMFZCZR NFBGA ZCZ 324 1000 336.6 336.6 41.3
AM263P4ASOKFZCZRQ1 NFBGA ZCZ 324 1000 336.6 336.6 41.3

Pack Materials-Page 2
PACKAGE OUTLINE
ZCZ0324A NFBGA - 1.4 mm max height
PLASTIC BALL GRID ARRAY
A
15.1
B 14.9

BALL A1 CORNER

15.1
14.9

1.4 MAX
C

SEATING PLANE
0.45 BALL TYP
0.35 13.6 TYP 0.12 C

V
U
T
R
P
N
M
L
K SYMM
13.6
TYP J
H
G 324X Ø0.55
0.45
F
0.15 C A B
E
0.05 C
D
C
B (0.7) TYP
A

0.8 TYP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.8 TYP SYMM (0.7) TYP
4226659/A 03/2021
NOTES: NanoFree is a trademark of Texas Instruments.

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.

www.ti.com
EXAMPLE BOARD LAYOUT
ZCZ0324A NFBGA - 1.4 mm max height
PLASTIC BALL GRID ARRAY
SYMM
(0.8) TYP 324X (Ø 0.4)

A
B
(0.8) TYP
C
D
E
F
G
H
J SYMM

K
L
M
N
P
R
T
U

V
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
LAND PATTERN EXAMPLE
SCALE: 8X

0.05 MAX 0.05 MIN


ALL AROUND EXPOSED ALL AROUND METAL UNDER
METAL SOLDER MASK

(Ø 0.40)
SOLDER MASK (Ø 0.40) EXPOSED SOLDER MASK
OPENING METAL METAL OPENING
NON- SOLDER MASK SOLDER MASK
DEFINED DEFINED
(PREFERRED)
SOLDER MASK DETAILS
NOT TO SCALE
4226659/A 03/2021

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments
Literature number SNVA009 (www.ti.com/lit/snva009).

www.ti.com
EXAMPLE STENCIL DESIGN
ZCZ0324A NFBGA - 1.4 mm max height
PLASTIC BALL GRID ARRAY

SYMM
(0.8) TYP 324X (Ø 0.4)

A
B
(0.8) TYP
C
D
E
F
G
H
J SYMM

K
L
M
N
P
R
T
U
V
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

SOLDER PASTE EXAMPLE


BASED ON 0.150 mm THICK STENCIL
SCALE: 8X

4226659/A 03/2021

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

www.ti.com
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

You might also like