Ch.
a-(7 )2 fod A" inn tenms ot A.
|A- aTl= o
2-32 +36 =o
(a-4) Ca-9) = D.
gn divi ding 2^ dy (2-4) (a-4) gel
(a-4) Ca -4) (a) + a a+4] eA
Quttent remain den
4.
4a+b =qn
giues
b= 4"- a =
4^-9-4)-(
(A- 4) (A- (A) + aA+bT
a A+ b I I by c- I4 -Thorem
=(a4") n+ (14)- )
Scanned with CGMScanner
w
(S) Venity Cayley .tHailbm theorpm fo
a-(21)3)4
am d find ita imveAAR .
A5
A-4a A + | A * - A as a linean i
(olgmomial 1
2
Henca A Batsfies its own ch-egu, B henee
3
Cayluy tamiltm theorem io vetfed.
A 4A-5I 20 At[A-4 Ta 5
Cosiden (5- 4a -7a+-a -io): (a-a-5)
2-4-52424.
-223
+ &a.
32- |12 -1°
32-122-IS
Scanned with CaMScanner
a4a5)+a)
+ (A +5){
-(024 +31) (o) + (A+51)
CH sheo.
A +5 I a dinean pstynonial
M
iagemalsatom. )0
De fr Too the
matrices 9 &B
simidan xhue e s t a -ainglan ion
matix Puch tat
12
whic CAse we rite AB. D1
Remark. 2
Any two sii laa matices have ssame eigen )2
valves. 2
Proot. Ret A SB 3
ansingulan
matix PAnch bat
hal
’hene eiot 2
4
B pA P.
Conden B-a pAp- p'aI P|
=rl
|pPl= |2)=1.
A &B hoave same chanaetueshc efuains
&ame
etgun valus.
A &B have
Scanned with GaMScanner
Pef: iagonalisation of a matix A
mon- singlen
cha proCem of finding p shee
MAM == D
matri Much Hhat
D io a
iagonal matix.
simi dan mabice
Note as A & D ae
tti same eigen
D) A &D have
e A
Values.
Aheorem eigen
squan matix with distinet
sti natix whose cotum
values and is
Mià be
Cam
4 A then A
ane che eigen vectorA trans formatin
diagonalised y tte dimilaniky
See D i dtagonul matix
tt
MA M =p. wshee
oiagonal elements ane thi egen
wshose
valws bt A.
Note.
M io called "modal matrix "
"Spechal mabix 4
P is lalled
ane st dishaeA
No te: T# th chanctuenhe valus
hen aloo chi procs hotdagood provided iti
eigen vectms o4 A a linan hy indepenolent.
ScGnned with CaMScanner
Calculation o4 powa mabiy
we ave D= AM (on diagonalitaha)
A : M DM
A- (MDM) (MD M)
- MD(MM) DM-!
M
= M Dm-!
: M D TD
a' AA =(Mpm)(M DM)
MD*pM
Mp3
= M b2 T D m!
amd
A= MD" M n amg poibue Categu.
Note
a diagonal matix
n
D