12
Integration by parts
Z Z
dv du
u dx = uv − v dx
dx dx
Z Z
uv 0 (x)dx = uv − vu0 (x)dx
• Applications:
Z
Pn (x) sin(ax + b)dx Let u = Pn (x)
Z
Pn (x) cos(ax + b)dx Let u = Pn (x)
Z
Pn (x)eax+b dx Let u = Pn (x)
Z
Pn (x)(ln(ax + b))m dx Let u = (ln(ax + b))m
Z
eax+b sin(mx + n)dx Let u = eax+b or u = sin(mx + n)
Z
eax+b cos(mx + n)dx Let u = eax+b or u = cos(mx + n)
Z Z
Pn (x) arcsin(ax + b)dx = Pn (x) sin−1 (ax + b)dx Let u = sin−1 (ax + b)
Z Z
Pn (x) arctan(ax + b)dx = Pn (x) tan−1 (ax + b)dx Let u = tan−1 (ax + b)
13
• Example.
(1) R sinh−1 xdx
R
(2) R cosh−1 xdx
(3) R tanh−1 xdx
(4) R tan−1 xdx
(5) R sin−1 xdx
(6) R x3 arctan xdx =R x3 tan−1 xdx
R
(7) R x3 arccotxdx = x3 cot−1 xdx
(8) R x2 sin 2xdx
(9) 3x
Re 3xsin 2xdx
(10) e cos 2xdx
R √x
(11) e dx √
R
(12) ln(x + x2 + 1)dx
R ln(1 + x2 )
(13) dx
R 2 x2
(14) R x ln xdx
(15) x3 ln2 xdx
R ln x
(16) dx
R x22 3x
(17) R x e dx
(18) x2 e−2x dx
14
INTEGRATION TECHNIQUES
Z
dx
(1) √ , for a > 0,
a2 − x2
Z
dx
(2) √ ,
9 − 4x2
Z
dx
(3) √ ,
x − a2
2
Z
dx
(4) ,
a + x2
2
Z
dx
(5) 2
,
x − 3x + 7
Z
dx
(6) √ ,
x + a2
2
Z 1.5 p
(7) 9 − x2 dx,
0
Z 1.5 p
(8) 9 − x2 dx,
0
Z
dx
(9) , by using a hyperbolic substitution,
x2
+ 4x
Z
dx
(10) ,
sinh x
Z
(11) cosh−1 xdx,
Z
(12) sinh−1 xdx,
Z
(13) tanh−1 xdx,
Z
(14) cos−1 xdx,
Z
(15) sin−1 xdx,
Z
(16) tan−1 xdx.
15
•
16
•
17
•
18
•
19
•
20
•
21
•
22
•
23
•
24
25
Reduction formulae
sin3 xdx, find the result for I3 using the integration by parts.
R
• Example. Given that I3 =
26
Reduction formulae
cosn xdx. Prove that for any n ≥ 2,
R
(1) Let In =
1 n−1
In = cosn−1 x sin x + In−2 .
n n
Determine I0 , I1R, I2 , I3 , I4 .
(2) Let In = sinn xdx. Prove that for any n ≥ 2,
1 n−1
In = − cos x sinn−1 x + In−2 .
n n
Determine I0 , I1R, I2 , I3 , I4 .
(3) Let In = coshn 2xdx. Prove that for any n ≥ 2,
1 n−1
In = sinh 2x coshn−1 2x + In−2 .
2n n
(4) Let In = cothn xdx. Prove that for any n ≥ 2,
R
1
In = − cothn−1 x + In−2 .
n−1
(5) Let In = xn ex dx. Prove that for any n ≥ 1,
R
In = xn ex − nIn−1 .
x2 (1 + x6 )n dx. Prove that for any n ≥ 1,
R
(6) Let In =
x3 (1 + x6 )n 2n
In = + In−1 .
3(2n + 1) 2n + 1
xn (x2 − 1)9 dx. Prove that for any n ≥ 2,
R
(7) Let In =
xn−1 (x2 − 1)10 n−1
In = + In−2 .
n + 19 n + 19
R π/6
(8) Let In = 0 tann dx. Prove that for any n ≥ 2,
√ !n−1
1 3
In = − In−2 .
n−1 3
Then, find I4 .
R π/2 R π/2
(9) Wallis’ integral: In = 0 sinn dx = 0 cosn dx. Prove that for any n ≥ 0,
n+1
In+2 = In .
n+2
Then, find I9 and I10 .
R π/2
(10) Let In = 0 xn cos xdx. Prove that for any n ≥ 2,
π n
In = − n(n − 1)In−2 .
2
Then, find I3 .
27