0% found this document useful (0 votes)
26 views11 pages

Irf 2804 S

The IRF2804S and IRF2804L are HEXFET® Power MOSFETs designed for automotive applications, featuring ultra-low on-resistance, a 175°C operating temperature, and fast switching capabilities. They can handle continuous drain currents of up to 210A and have a maximum power dissipation of 200W. The devices are optimized for efficiency and reliability, making them suitable for a variety of applications beyond automotive use.

Uploaded by

bophelo
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
26 views11 pages

Irf 2804 S

The IRF2804S and IRF2804L are HEXFET® Power MOSFETs designed for automotive applications, featuring ultra-low on-resistance, a 175°C operating temperature, and fast switching capabilities. They can handle continuous drain currents of up to 210A and have a maximum power dissipation of 200W. The devices are optimized for efficiency and reliability, making them suitable for a variety of applications beyond automotive use.

Uploaded by

bophelo
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

PD - 94495B

IRF2804S
IRF2804L
Features HEXFET® Power MOSFET
l Advanced Process Technology
l Ultra Low On-Resistance D
l 175°C Operating Temperature VDSS = 40V
l Fast Switching
l Repetitive Avalanche Allowed up to Tjmax RDS(on) = 2.5mΩ
G
Description
Specifically designed for Automotive applications, ID = 75A
S
this HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low on-
resistance per silicon area. Additional features of
this design are a 175°C junction operating tempera-
ture, fast switching speed and improved repetitive
avalanche rating. These features combine to make
this design an extremely efficient and reliable device
for use in Automotive applications and a wide variety D2 Pak TO-262
of other applications. IRF2804S IRF2804L

Absolute Maximum Ratings


Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon limited) 210
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (See Fig.9) 150 A
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package limited) 75
IDM Pulsed Drain Current  1080
PD @TC = 25°C Power Dissipation 200 W
Linear Derating Factor 1.3 W/°C
VGS Gate-to-Source Voltage ± 20 V
EAS Single Pulse Avalanche Energy‚ 670 mJ
EAS (tested) Single Pulse Avalanche Energy Tested Value‡ 1160
IAR Avalanche Current See Fig.12a, 12b, 15, 16 A
EAR Repetitive Avalanche Energy† mJ
TJ Operating Junction and -55 to + 175
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
Mounting Torque, 6-32 or M3 screw 10 lbf•in (1.1N•m)

Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 0.75
RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
RθJA Junction-to-Ambient ––– 62
HEXFET(R) is a registered trademark of International Rectifier.
www.irf.com 1
12/11/02
IRF2804S/IRF2804L
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 40 ––– ––– V VGS = 0V, ID = 250µA
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.031 ––– V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– 1.8 2.5 mΩ VGS = 10V, ID = 75A „
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = 10V, ID = 250µA
gfs Forward Transconductance 130 ––– ––– S VDS = 10V, ID = 75A
––– ––– 20 VDS = 40V, VGS = 0V
IDSS Drain-to-Source Leakage Current µA
––– ––– 250 VDS = 40V, VGS = 0V, TJ = 125°C
Gate-to-Source Forward Leakage ––– ––– 200 VGS = 20V
IGSS nA
Gate-to-Source Reverse Leakage ––– ––– -200 VGS = -20V
Qg Total Gate Charge ––– 160 240 ID = 75A
Q gs Gate-to-Source Charge ––– 41 62 nC VDS = 32V
Qgd Gate-to-Drain ("Miller") Charge ––– 66 99 VGS = 10V„
td(on) Turn-On Delay Time ––– 13 ––– VDD = 20V
tr Rise Time ––– 120 ––– ID = 75A
ns
td(off) Turn-Off Delay Time ––– 130 ––– RG = 2.5Ω
tf Fall Time ––– 130 ––– VGS = 10V „
Between lead, D
LD Internal Drain Inductance ––– 4.5 –––
6mm (0.25in.)
nH G
from package
LS Internal Source Inductance ––– 7.5 –––
and center of die contact S

Ciss Input Capacitance ––– 6450 ––– VGS = 0V


Coss Output Capacitance ––– 1690 ––– pF VDS = 25V
Crss Reverse Transfer Capacitance ––– 840 ––– ƒ = 1.0MHz, See Fig. 5
Coss Output Capacitance ––– 5350 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss Output Capacitance ––– 1520 ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz
Coss eff. Effective Output Capacitance ––– 2210 ––– VGS = 0V, VDS = 0V to 32V

Source-Drain Ratings and Characteristics


Parameter Min. Typ. Max. Units Conditions
D
IS Continuous Source Current MOSFET symbol
––– ––– 210
(Body Diode) showing the
A
I SM Pulsed Source Current integral reverse G

––– ––– 1080


(Body Diode)  p-n junction diode. S

VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 75A, VGS = 0V „
trr Reverse Recovery Time ––– 56 84 ns TJ = 25°C, IF = 75A, VDD = 20V
Q rr Reverse Recovery Charge ––– 67 100 nC di/dt = 100A/µs „
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by „ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
max. junction temperature. (See fig. 11). Coss eff. is a fixed capacitance that gives the same charging time
‚ Limited by TJmax, starting TJ = 25°C, L=0.24mH as Coss while VDS is rising from 0 to 80% VDSS .
RG = 25Ω, I AS = 75A, VGS =10V. Part not † Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
recommended for use above this value. avalanche performance.
ƒ ISD ≤ 75A, di/dt ≤ 220A/µs, VDD ≤ V(BR)DSS, ‡ This value determined from sample failure population. 100%
TJ ≤ 175°C tested to this value in production.
2 www.irf.com
IRF2804S/IRF2804L

10000 10000
VGS
VGS
VGS
VGS
TOP 15V
TOP 10V15V TOP
TOP
15V
15V
10V 10V
8.0V 10V
8.0V
8.0V
ID, Drain-to-Source Current (A)

7.0V 8.0V

ID, Drain-to-Source Current (A)


7.0V 7.0V
1000 6.0V 7.0V
6.0V
6.0V
5.5V 6.0V
5.5V 5.5V
5.0V 5.5V
5.0V 1000 5.0V
BOTTOM 4.5V 5.0V
BOTTOM 4.5V
BOTTOM 4.5V BOTTOM 4.5V

100

100
10
4.5V 4.5V
20µs PULSE WIDTH 20µs PULSE WIDTH
Tj = 25°C Tj = 175°C
1 10
0.1 1 10 100 0.1 1 10 100
VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V)

Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics

1000 300
G fs , Forward Transconductance ( S)
ID, Drain-to-Source Current (Α)

250 T J = 25°C
T J = 175°C
100 200

150 T J = 175°C
T J = 25°C
10 100

50
VDS = 10V VDS = 10V
20µs PULSE WIDTH 20µs PULSE WIDTH
1 0
4.0 5.0 6.0 7.0 8.0 9.0 0 40 80 120 160 200

VGS, Gate-to-Source Voltage (V) ID, Drain-to-Source Current (A)

Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance


Vs. Drain Current
www.irf.com 3
IRF2804S/IRF2804L

12000 20
VGS = 0V, f = 1 MHZ ID= 75A
Ciss = Cgs + Cgd, Cds SHORTED
VDS= 32V

VGS , Gate-to-Source Voltage (V)


10000 Crss = Cgd
16 VDS= 20V
Coss = Cds + Cgd
VDS= 8.0V
C, Capacitance (pF)

8000
12
Ciss
6000
8
4000

4
2000 Coss

Crss
0
0
0 40 80 120 160 200 240
1 10 100
Q G Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)

Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs.


Drain-to-Source Voltage Gate-to-Source Voltage

1000.0 10000
OPERATION IN THIS AREA
LIMITED BY RDS(on)
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)

T J = 175°C
100.0 1000

10.0 100 100µsec

1.0 10 1msec
T J = 25°C Tc = 25°C
Tj = 175°C
10msec
VGS = 0V Single Pulse
0.1 1
0.2 0.6 1.0 1.4 1.8 2.2 0 1 10 100 1000

VSD, Source-toDrain Voltage (V) VDS , Drain-toSource Voltage (V)

Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area


Forward Voltage
4 www.irf.com
IRF2804S/IRF2804L

300 2.0
ID = 75A

RDS(on) , Drain-to-Source On Resistance


LIMITED BY PACKAGE
VGS = 10V
250
ID , Drain Current (A)

200 1.5

(Normalized)
150

100
1.0

50

0
0.5
25 50 75 100 125 150 175
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T C , Case Temperature (°C)
TJ , Junction Temperature (°C)

Fig 9. Maximum Drain Current Vs. Fig 10. Normalized On-Resistance


Case Temperature Vs. Temperature

1
Thermal Response ( Z thJC )

D = 0.50

0.1 0.20

0.10

0.05
0.02
0.01
0.01

SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006 1E-005 0.0001 0.001 0.01 0.1

t1 , Rectangular Pulse Duration (sec)

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

www.irf.com 5
IRF2804S/IRF2804L

1600
15V
ID

EAS, Single Pulse Avalanche Energy (mJ)


TOP 31A
53A
BOTTOM 75A
L DRIVER
VDS 1200

RG D.U.T +
V
- DD
IAS A 800
20V
VGS
tp 0.01Ω

Fig 12a. Unclamped Inductive Test Circuit 400


V(BR)DSS
tp

0
25 50 75 100 125 150 175

Starting TJ , Junction Temperature (°C)

I AS
Fig 12c. Maximum Avalanche Energy
Fig 12b. Unclamped Inductive Waveforms
Vs. Drain Current
QG

10 V
QGS QGD 4.0
VGS(th) Gate threshold Voltage (V)

VG
ID = 250µA
3.0
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
2.0
50KΩ

12V .2µF
.3µF

+
V
D.U.T. - DS
1.0
VGS -75 -50 -25 0 25 50 75 100 125 150 175
3mA T J , Temperature ( °C )

IG ID
Current Sampling Resistors

Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage Vs. Temperature
6 www.irf.com
IRF2804S/IRF2804L

10000

Duty Cycle = Single Pulse


1000 Allowed avalanche Current vs
Avalanche Current (A)

avalanche pulsewidth, tav


assuming ∆ Tj = 25°C due to
0.01
avalanche losses. Note: In no
100 case should Tj be allowed to
exceed Tjmax
0.05
0.10
10

1
1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

tav (sec)

Fig 15. Typical Avalanche Current Vs.Pulsewidth

800 Notes on Repetitive Avalanche Curves , Figures 15, 16:


TOP Single Pulse (For further info, see AN-1005 at www.irf.com)
BOTTOM 10% Duty Cycle 1. Avalanche failures assumption:
ID = 75A Purely a thermal phenomenon and failure occurs at a
EAR , Avalanche Energy (mJ)

600 temperature far in excess of T jmax. This is validated for


every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
400 3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
200
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
T jmax (assumed as 25°C in Figure 15, 16).
0
tav = Average time in avalanche.
25 50 75 100 125 150 175 D = Duty cycle in avalanche = tav ·f
Starting T J , Junction Temperature (°C) ZthJC(D, tav ) = Transient thermal resistance, see figure 11)

PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC


Fig 16. Maximum Avalanche Energy Iav = 2DT/ [1.3·BV·Zth]
Vs. Temperature EAS (AR) = PD (ave)·t av
www.irf.com 7
IRF2804S/IRF2804L

Driver Gate Drive


D.U.T P.W.
Period D=
P.W.
Period
+

ƒ
*
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
- • Low Leakage Inductance D.U.T. ISD Waveform
Current Transformer
+
‚ Reverse
Recovery Body Diode Forward
- „ + Current Current
- di/dt
D.U.T. VDS Waveform
Diode Recovery
 dv/dt
VDD

RG • dv/dt controlled by RG V DD Re-Applied


• Driver same type as D.U.T. + Voltage Body Diode Forward Drop
• ISD controlled by Duty Factor "D" - Inductor Curent
• D.U.T. - Device Under Test

Ripple ≤ 5% ISD

* VGS = 5V for Logic Level Devices

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs

RD
V DS

V GS
D.U.T.
RG
+
-V DD

10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %

Fig 18a. Switching Time Test Circuit

VDS
90%

10%
VGS
td(on) tr t d(off) tf

Fig 18b. Switching Time Waveforms

8 www.irf.com
IRF2804S/IRF2804L

9
(
% 
0 ( 
8 '
1
7 2  
&
   /
.
5
$ 7($ 5
$ (
( (
1
3 ' (< : ,/
6
)
/
$ </ (
1 5 % '
2 ( 2 0 2
7,$ ,)
,7 * ( &
7
2 6
6$
1 & / 2
/
(75 (
5
1
,

D2Pak Part Marking Information



 /
+  

D2Pak Package Outline

7,  (
: 1
,/
6 :
 :
 </
)  1
2 %
5   0
(6
,  '
1' ( /( 6
$
6, 2
% $
(
& 0
6
, 72
 66( +
7
+
7 / $ 1
,

www.irf.com
www.irf.com
(5 
%
0 ( 
8 ' 
1 2  
7 &  
. &
5 7( 5
3$ $ $ (( (
1
' <( : /,
/
$
1 /< (
'
%
2 (5 2 0 2
7, ), &
$ 7,
* 6( 7
1 /2 6 /2
5 (& $
7(

TO-262 Part Marking Information


5
,1
IRF2804S/IRF2804L


 
 &

TO-262 Package Outline

 (
,1
/ : /
 
:
1 /<
%
/  2
,5  ' (0
1 (
' /( 66
$ 2 % $
,6 & (0 (
,6 7 +
66 7
7+ /2 $ ,1
(
3/
0
;$
(

10
IRF2804S/IRF2804L

D2Pak Tape & Reel Information


TRR

1.60 (.063)
1.50 (.059)
1.60 (.063)
4.10 (.161) 1.50 (.059)
3.90 (.153) 0.368 (.0145)
0.342 (.0135)

FEED DIRECTION 1.85 (.073) 11.60 (.457)


1.65 (.065) 11.40 (.449) 24.30 (.957)
15.42 (.609)
23.90 (.941)
15.22 (.601)
TRL
1.75 (.069)
10.90 (.429) 1.25 (.049)
10.70 (.421) 4.72 (.136)
16.10 (.634) 4.52 (.178)
15.90 (.626)

FEED DIRECTION

13.50 (.532) 27.40 (1.079)


12.80 (.504) 23.90 (.941)

330.00 60.00 (2.362)


(14.173) MIN.
MAX.

30.40 (1.197)
NOTES : MAX.
1. COMFORMS TO EIA-418. 26.40 (1.039) 4
2. CONTROLLING DIMENSION: MILLIMETER. 24.40 (.961)
3. DIMENSION MEASURED @ HUB.
3
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Data and specifications subject to change without notice.


This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 12/02
www.irf.com 11

You might also like