0% found this document useful (0 votes)
4 views31 pages

Lecture2 KNN

The document outlines an introduction to machine learning, focusing on the k-Nearest Neighbors (KNN) algorithm and its applications. It includes reminders for upcoming tests and assignments, as well as discussions on ethical responsibilities in machine learning. The content also covers the definition of learning problems, examples of learning tasks, and the machine learning framework.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
4 views31 pages

Lecture2 KNN

The document outlines an introduction to machine learning, focusing on the k-Nearest Neighbors (KNN) algorithm and its applications. It includes reminders for upcoming tests and assignments, as well as discussions on ethical responsibilities in machine learning. The content also covers the definition of learning problems, examples of learning tasks, and the machine learning framework.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 31

10-­‐601  

Introduction  to  Machine  Learning


Machine  Learning  Department
School  of  Computer  Science
Carnegie  Mellon  University

Machine  Learning  in  


Practice  +  k-­‐Nearest  
Neighbors
Intro  Readings: KNN  Readings:
Mitchell  1 Mitchell  8.2
Matt  Gormley
HTF  1,  2 HTF  13.3 Lecture  2
Murphy  1 Murphy  -­‐-­‐-­‐ January  23,  2016
Bishop  1 Bishop  2.5.2

1
Reminders
• Background Test
– Tue,  Jan.  24  at  6:30pm
– **Your test  location depends on your
registration status  – see Piazza  for details
• Background Exercises (Homework 1)
– Released:  Tue,  Jan.  24  after the test
– Due:  Mon,  Jan.  30  at  5:30pm

2
Machine  Learning  &  Ethics
What  ethical  responsibilities  do  we   Some  topics  that  we  
won’t  cover  are  probably  
have  as  machine  learning  experts? deserve  an  entire  course

If  our  search  results  for  news  are  


optimized  for  ad  revenue,  might  
they  reflect  gender  /  racial  /  socio-­‐
economic  biases?
http://bing.com/

http://arstechnica.com/
Should  restrictions  be  placed  on  
intelligent  agents  that  are  capable  of  
interacting  with  the  world?

How  do  autonomous  vehicles  make  


decisions  when  all  of  the  outcomes  
are  likely  to  be  negative? 3
http://vizdoom.cs.put.edu.pl/
Outline
• Defining  Learning  Problems
– Artificial  Intelligence  (AI)
– Mitchell’s  definition  of  learning
– Example  learning  problems
– Data  annotation
– The  Machine  Learning  framework
• Classification
– Binary  classification
– 2D  examples
– Decision  rules  /  hypotheses
• k-­‐Nearest  Neighbors  (KNN)
– KNN  for  binary  classification
– Distance  functions
– Special  cases
Covered  
– Choosing  k Next  
Lecture
4
This  section  is  based  on  Chapter  1  of  (Mitchell,  1997)

DEFINING  LEARNING  PROBLEMS

5
Artificial  Intelligence
The  basic  goal  of  AI  is  to  develop  intelligent  
machines.  

This  consists  of  many  sub-­‐goals: Artificial  


• Perception Intelligence

• Reasoning Machine  
• Control  /  Motion  /  Manipulation Learning

• Planning
• Communication
• Creativity
• Learning
6
Amazon  Go
https://www.amazon.com/b?node=16008589011
https://www.youtube.com/watch?v=NrmMk1Myrxc

7
Slide  from  Roni  Rosenfeld

Artificial  Intelligence  (AI):  


Example  Tasks:

– Identify  objects  in  an  image


– Translate  from  one  human  language  to  another
– Recognize  speech
– Assess  risk  (e.g.  in  loan  application)
– Make  decisions  (e.g.  in  loan  application)
– Assess  potential  (e.g.  in  admission  decisions)
– Categorize  a  complex  situation  (e.g.  medical  diagnosis)
– Predict  outcome  (e.g.  medical  prognosis,  stock  prices,  
inflation,  temperature)
– Predict  events  (default  on  loans,  quitting  school,  war)
– Plan  ahead  under  perfect  knowledge  (chess)
– Plan  ahead  under  partial  knowledge  (Poker,  Bridge)

©  Roni  Rosenfeld,  2016 8


Well-­‐Posed  Learning  Problems
Three  components:
1. Task,  T
2. Performance  measure,  P
3. Experience,  E

Mitchell’s  definition  of  learning:


A  computer  program  learns if  its  performance  
at  tasks  in  T,  as  measured  by  P,  improves  with  
experience  E.

9
Definition  from  (Mitchell,  1997)
Example  Learning  Problems
(historical  perspective)
1.  Learning  to  recognize  spoken  words
THEN NOW
“…the SPHINX system (e.g.
Lee 1989) learns speaker-
specific strategies for
recognizing the primitive
sounds (phonemes) and
words from the observed
speech signal…neural
network methods…hidden
Markov models…”

(Mitchell, 1997)
Source:  https://www.stonetemple.com/great-­‐knowledge-­‐box-­‐
showdown/#VoiceStudyResults

10
Example  Learning  Problems
(historical  perspective)
2.  Learning  to  drive  an  autonomous  vehicle
THEN NOW
“…the ALVINN system
(Pomerleau 1989) has used
its learned strategies to drive
unassisted at 70 miles per
hour for 90 miles on public
highways among other
cars…”

(Mitchell, 1997)
waymo.com

11
Example  Learning  Problems
(historical  perspective)
2.  Learning  to  drive  an  autonomous  vehicle
THEN NOW
“…the ALVINN system
(Pomerleau 1989) has used
its learned strategies to drive
unassisted at 70 miles per
hour for 90 miles on public
highways among other
cars…”

https://www.geek.com/wp-­‐
(Mitchell, 1997)
content/uploads/2016/03/uber.jpg

12
Example  Learning  Problems
(historical  perspective)
3.  Learning  to  beat  the  masters  at  board  games
THEN NOW
“…the world’s top computer
program for backgammon,
TD-GAMMON (Tesauro,
1992, 1995), learned its
strategy by playing over one
million practice games
against itself…”

(Mitchell, 1997)

13
Example  Learning  Problems

3.  Learning  to  beat  the  masters  at  chess


1. Task,  T:

2. Performance  measure,  P:  

3. Experience,  E:  

14
Example  Learning  Problems

4.  Learning  to  respond  to  voice  commands  (Siri)


1. Task,  T:

2. Performance  measure,  P:  

3. Experience,  E:

15
Capturing  the  Knowledge  of  Experts
1980 1990 2000 2010

Solution  #1:  Expert  Systems Give me directions to Starbucks


• Over  20  years  ago,  we   If: “give me directions to X”
had  rule  based  systems Then: directions(here, nearest(X))

• Ask  the  expert  to How do I get to Starbucks?


1. Obtain  a  PhD  in  
If: “how do i get to X”
Linguistics Then: directions(here, nearest(X))
2. Introspect  about  the  
structure  of  their  native   Where is the nearest Starbucks?
language
If: “where is the nearest X”
3. Write  down  the  rules   Then: directions(here, nearest(X))
they  devise
16
Capturing  the  Knowledge  of  Experts
1980 1990 2000 2010

Solution  #1:  Expert  Systems Give medirections


I need directionstotoStarbucks
Starbucks
• Over  20  years  ago,  we   If:
If: “give me directions
“I need directions to
to X”
X”
had  rule  based  systems Then:
Then: directions(here,
directions(here, nearest(X))
nearest(X))
• Ask  the  expert  to How do I get to Starbucks?
Starbucks directions
1. Obtain  a  PhD  in  
If:
If: “how do i get to X”
Linguistics Then:
“X directions”
Then: directions(here,
directions(here, nearest(X))
nearest(X))
2. Introspect  about  the  
structure  of  their  native   Where
Is thereis athe nearest Starbucks?
Starbucks nearby?
language
If:
If: “where is the
“Is there an Xnearest
nearby”X”
3. Write  down  the  rules   Then:
Then: directions(here,
directions(here, nearest(X))
nearest(X))
they  devise
17
Capturing  the  Knowledge  of  Experts
1980 1990 2000 2010

Solution  #2:  Annotate  Data  and  Learn


• Experts:
– Very  good  at  answering  questions  about  specific  
cases
– Not  very  good  at  telling  HOW they  do  it
• 1990s:  So  why  not  just  have  them  tell  you  what  
they  do  on  SPECIFIC  CASES  and  then  let  
MACHINE  LEARNING  tell  you  how  to  come  to  
the  same  decisions  that  they  did 18
Capturing  the  Knowledge  of  Experts
1980 1990 2000 2010

Solution  #2:  Annotate  Data  and  Learn


1. Collect  raw  sentences  {x1, …, xn}
2. Experts  annotate  their  meaning  {y1, …, yn}

x1: How do I get to Starbucks? x3: Send a text to John that I’ll be late
y1: directions(here, y3: txtmsg(John, I’ll be late)
nearest(Starbucks))
x4: Set an alarm for seven in the
x2: Show me the closest Starbucks
morning
y2: map(nearest(Starbucks)) y4: setalarm(7:00AM) 19
Example  Learning  Problems

4.  Learning  to  respond  to  voice  commands  (Siri)


1. Task,  T:  
predicting  action  from  speech
2. Performance  measure,  P:  
percent  of  correct  actions  taken  in  user  pilot  
study
3. Experience,  E:  
examples  of  (speech,  action)  pairs

20
Slide  from  Roni  Rosenfeld

The  Machine  Learning  Framework

• Formulate  a  task  as  a  mapping  from  input  to  output


– Task  examples  will  usually  be  pairs:  (input,  correct_output)
• Formulate  performance  as  an  error  measure
– or  more  generally,  as  an  objective  function  (aka  Loss  function)
• Examples:
– Medical  Diagnosis
• mapping  input  to  one  of  several  classes/categories  è Classification
– Predict  tomorrow’s  Temperature
• mapping  input  to  a  number    è Regression
– Chance  of  Survival: From  patient  data  to  p(survive  >=  5  years)
• mapping  input  to  probability  è Density  estimation
– Driving  recommendation
• mapping  input  into  a  plan  è Planning

©  Roni  Rosenfeld,  2016 21


Slide  from  Roni  Rosenfeld

Choices  in  ML  Formulation

Often,  the  same  task  can  be  formulated  in  more  than  one  way:
• Ex.  1:  Loan  applications  
– creditworthiness/score  (regression)
– probability  of  default  (density  estimation)
– loan  decision  (classification)
• Ex.  2:  Chess
– Nature  of  available  training  examples/experience:
• expert  advice  (painful  to  experts)
• games  against  experts  (less  painful  but  limited,  and  not  much  control)
• experts’  games  (almost  unlimited,  but  only  ”found  data”  – no  control)
• games  against  self   (unlimited,  flexible,  but  can  you  learn  this  way?)
– Choice  of  target  function:  boardàmove vs.  boardàscore

©  Roni  Rosenfeld,  2016 22


Slide  from  Roni  Rosenfeld

How  to  Approach  a  Machine  Learning  Problem

1. Consider  your  goal  à definition  of  task  T


– E.g.  make  good  loan  decisions,  win  chess  competitions,  …
2. Consider  the  nature  of  available  (or  potential)  experience  E
– How  much  data  can  you  get?    What  would  it  cost  (in  money,  time  or  effort)?
3. Choose  type  of  output  O  to  learn
– (Numerical?  Category?  Probability?  Plan?)  
4. Choose  the  Performance  measure  P (error/loss  function)

5. Choose  a  representation  for  the  input  X


6.Choose  a  set  of  possible  solutions  H (hypothesis  space)
– set  of  functions  h:  X  è O
– (often,  by  choosing  a  representation  for  them)
7. Choose  or  design  a  learning  algorithm
– for  using  examples  (E)  to  converge  on  a  member  of  H that  optimizes  P

©  Roni  Rosenfeld,  2016 23


CLASSIFICATION

24
Fisher  Iris  Dataset
Fisher  (1936)  used  150  measurements  of  flowers  
from  3  different  species:  Iris  setosa (0),  Iris  
virginica (1),  Iris  versicolor (2)  collected  by  
Anderson  (1936)
Species Sepal   Sepal   Petal   Petal  
Length Width Length Width
0 4.3 3.0 1.1 0.1
0 4.9 3.6 1.4 0.1
0 5.3 3.7 1.5 0.2
1 4.9 2.4 3.3 1.0
1 5.7 2.8 4.1 1.3
1 6.3 3.3 4.7 1.6
1 6.7 3.0 5.0 1.7
26
Full  dataset:  https://en.wikipedia.org/wiki/Iris_flower_data_set
Fisher  Iris  Dataset
Classification
Whiteboard:
– Binary  classification
– 2D  examples
– Decision  rules  /  hypotheses

28
K-­‐NEAREST  NEIGHBORS

29
k-­‐Nearest  Neighbors
Whiteboard:
– KNN  for  binary  classification
– Distance  functions

30
Takeaways
• Learning  Problems
– Defining  a  learning  problem  is  tricky
– Formalizing  exposes  the  many  possibilities
• k-­‐Nearest  Neighbors
– KNN  is  an  extremely  simple  algorithm  for  
classification

31

You might also like