0% found this document useful (0 votes)
10 views2 pages

Assignment # 2 de

Uploaded by

Maqsood Alam
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
10 views2 pages

Assignment # 2 de

Uploaded by

Maqsood Alam
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 2

National University of Computer & Emerging Sciences– FAST

MT203-Differential Equations Computer Science Major


Date: Fri 12th Feb 2010 Due Date: Wed 17th Feb 2010
Tutorial 2
Exact, Integrating Factor, Linear and Bernoulli Differential Equations

Q1. For the given solution u(x y), Find Exact Differential Equation du=0
2
x
(i) y
u=e
u=tan( y ¿−x )¿
2 3
(ii)
1
(iii) u= 2 2
(x + y )

Q2. Show that the following equations are exact and solve them.
(i) − y x−2 dx+ x −1 dy=0
(ii) ( cot y + x 2 ) dx=x cosec 2 ydy
(iii) sinh x cos y dx=cosh x sin y dy

Q3. Solve the initial values problems.


(i) ¿ −¿ e y ¿ dx−x e y dy=0; y ( 1 )=0
π
(ii) 2 sin ωy dx +ω cos ωy dy=0 ; y ( 0 ) =

(iii) 2 xydy−( x 2 + y 2 ) dx=0 ; y ( 1 )=2

Q4. Show that the given function is an integrating factor and solve.
(i) ydx +¿
(ii)( a+ 1 ) ydx + ( b +1 ) xdy =0 ; F=x a y b
(iii) 2 cos y dx−tan 2 x sin y dy=0 ; F=cos 2 x

Q5. Find an integrating factor.


(i) 2 xydx+ 3 x 2 dy=0 (ii) 2 cos y dx=sin y d y
(iii) 2 x tan y dx + sec 2 ydy =0 (iv)( 2 cos y + 4 x 2 ) dx−x sin y dy=0

Q6. Find the general solutions of the following linear differential equations.
(i) y ' + y sin x=e cos x (ii) y ' + y=e− x tan x
3
'
(iii) y = y tan x ; y ( π )=2 (iv) y ' +6 x 2 y=e−2 x / x 2 ; y (1 )=0

Q7. Solve the Non linear Differential equations.


(i) y ' +2 y= y 2 (ii) y ' + y=−x / y
' 1 1 4
(iii) y ' + xy=x y−1 (iv) y + y= (1−2 x) y
3 3
' tan y ' 1
(v) y = (vi) y = y
( x−1) (6 e −2 x )

You might also like