0% found this document useful (0 votes)
32 views8 pages

1 Pre - Calculus

Uploaded by

Carlo G. Haictin
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
32 views8 pages

1 Pre - Calculus

Uploaded by

Carlo G. Haictin
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

PRE-CALCULUS

.ALGEBRA.
LOGARITHM PROPERTIES OF EXPONENT

𝑦𝑦 = 𝑒𝑒 𝑥𝑥 𝑥𝑥 𝑎𝑎 ∙ 𝑥𝑥 𝑏𝑏 = 𝑥𝑥 𝑎𝑎+𝑏𝑏

ln(𝑦𝑦) = 𝑥𝑥 ln(𝑒𝑒) = 𝑥𝑥 𝑥𝑥 𝑎𝑎
= 𝑥𝑥 𝑎𝑎−𝑏𝑏
𝑥𝑥 𝑏𝑏
ln(𝑒𝑒) = 1
(𝑥𝑥𝑥𝑥)𝑎𝑎 = 𝑥𝑥 𝑎𝑎 𝑦𝑦 𝑎𝑎

(𝑥𝑥 𝑎𝑎 )𝑏𝑏 = 𝑥𝑥 𝑎𝑎𝑎𝑎


𝑦𝑦 = 𝑏𝑏 𝑥𝑥
𝑎𝑎 𝑏𝑏 𝑎𝑎
𝑏𝑏
𝑥𝑥 𝑏𝑏 = √𝑥𝑥 𝑎𝑎 = � √𝑥𝑥 �
𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏 (𝑦𝑦) = 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑏𝑏 (𝑏𝑏) = 𝑥𝑥
𝑎𝑎 𝑎𝑎 𝑎𝑎
√𝑥𝑥 ∙ �𝑦𝑦 = �𝑥𝑥𝑥𝑥

𝒍𝒍𝒍𝒍( )   𝒍𝒍𝒍𝒍𝒍𝒍( ) 𝑎𝑎
√𝑥𝑥 𝑎𝑎 𝑥𝑥
= �
𝑎𝑎
�𝑦𝑦 𝑦𝑦
ln (𝑥𝑥) log (𝑥𝑥)
ln(x) = = = 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒 (𝑥𝑥)
ln (𝑒𝑒) log (𝑒𝑒)

𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒 (𝑥𝑥) = ln(𝑥𝑥) → 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛/𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 REMAINDER THEOREM


𝐹𝐹(𝑥𝑥)
log (𝑥𝑥) ln (𝑥𝑥)
𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏 (𝑥𝑥) = = 𝑥𝑥 − 𝑘𝑘
log (𝑏𝑏) ln (𝑏𝑏)
𝐹𝐹(𝑘𝑘) ℎ𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
Then: (𝑥𝑥 − 𝑘𝑘) 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝐹𝐹(𝑥𝑥)
𝒍𝒍𝒍𝒍𝒍𝒍() & 𝒍𝒍𝒍𝒍() proper�es

𝑙𝑙𝑙𝑙(𝑥𝑥𝑥𝑥) = 𝑙𝑙𝑙𝑙(𝑥𝑥) + 𝑙𝑙𝑙𝑙(𝑦𝑦)


FACTOR THEOREM
𝑥𝑥
𝑙𝑙𝑙𝑙 � � = 𝑙𝑙𝑙𝑙(𝑥𝑥) − 𝑙𝑙𝑙𝑙(𝑦𝑦) 𝐹𝐹(𝑥𝑥)
𝑦𝑦
𝑥𝑥 − 𝑘𝑘
𝑙𝑙𝑙𝑙(𝑥𝑥 𝑛𝑛 ) = 𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥)
𝐹𝐹(𝑘𝑘) = 0

Then: (𝑥𝑥 − 𝑘𝑘)𝑖𝑖𝑖𝑖 𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝐹𝐹(𝑥𝑥)


An�-𝒍𝒍𝒍𝒍() and an�log

ln (𝑥𝑥)

𝑒𝑒 ln (𝑥𝑥) = 𝑥𝑥

𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏 (𝑥𝑥)

𝑏𝑏 𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏(𝑥𝑥) = 𝑥𝑥
PRE-CALCULUS
QUADRATIC EQUATION BINOMIAL PROPERTY
𝑎𝑎𝑥𝑥 2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0
(𝑥𝑥 + 𝑦𝑦)𝑛𝑛

−𝑏𝑏 ± √𝑏𝑏 2 − 4𝑎𝑎𝑎𝑎 # 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = (𝑛𝑛 + 1)


𝑥𝑥 =
2𝑎𝑎
𝑁𝑁 𝑡𝑡ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = [ 𝑛𝑛 𝐶𝐶(𝑟𝑟−1) ][𝑥𝑥 𝑛𝑛−(𝑟𝑟−1) 𝑦𝑦 𝑟𝑟−1 ]
𝑏𝑏 2 − 4𝑎𝑎𝑎𝑎 > 0  two real dis�nct roots

𝑏𝑏 2 − 4𝑎𝑎𝑎𝑎 = 0  two real equal roots

𝑏𝑏 2 − 4𝑎𝑎𝑎𝑎 < 0  complex conjugate roots


.TRIGONOMETRY.
Sine, Cosine, and Tangent
Suppose 𝑟𝑟1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟2 are the roots:
𝑏𝑏
Sum of Roots: 𝑟𝑟1 + 𝑟𝑟2 = −
𝑎𝑎
𝑐𝑐
Product of Roots : 𝑟𝑟1 ∙ 𝑟𝑟2 =
𝑎𝑎

DEGREE OF AN EQUATION
3𝑥𝑥 4 𝑦𝑦 − 2𝑥𝑥 3 𝑧𝑧 4 + 7𝑦𝑦𝑧𝑧 5 → 7𝑡𝑡ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥 + 90)
si n(𝑥𝑥)
FACTORING USING SYNTHETIC DIVISION 𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) =
co s(𝑥𝑥)
𝑥𝑥 3 + 𝑥𝑥 2 − 2

𝑥𝑥 3 + 𝑥𝑥 2 + 0𝑥𝑥 − 2
Cosine is an even fxn because its graph is symmetric about the y-
1 1 0 −2 axis.

(𝑥𝑥 − 1) Even Func�on: 𝐹𝐹(−𝑥𝑥) = 𝐹𝐹(𝑥𝑥)


2 1 � 𝑜𝑜𝑜𝑜 � 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
(𝑥𝑥 − 2)
Odd Func�on: 𝐹𝐹(−𝑥𝑥) = −𝐹𝐹(𝑥𝑥)
2 1 1 0 −2

2 6 12
1 3 6 10 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≠ 0
RIGHT TRIANGLE
𝑥𝑥 − 2 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑺𝑺𝑺𝑺𝑺𝑺 − 𝑪𝑪𝑪𝑪𝑪𝑪 − 𝑻𝑻𝑻𝑻𝑻𝑻


1 1 1 0 −2
𝒄𝒄𝟐𝟐 = 𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐
1 2 2
1 2 2 0 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0

𝑥𝑥 2 + 2𝑥𝑥 + 2 𝑥𝑥 − 1 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓


Therefore:

𝑥𝑥 3 + 𝑥𝑥 2 − 2 = (𝑥𝑥 − 1)(𝑥𝑥 2 + 2𝑥𝑥 + 2)


PRE-CALCULUS
OBLIQUE TRIANGLE
Square of a Trigo Fxn
Sine Law 𝑠𝑠𝑠𝑠𝑛𝑛2 (𝜃𝜃) =
1
[1 − cos(2𝜃𝜃)]
2
𝑎𝑎 𝑏𝑏 𝑐𝑐
= = 1
𝑆𝑆𝑆𝑆𝑆𝑆(𝐴𝐴) 𝑆𝑆𝑆𝑆𝑆𝑆(𝐵𝐵) 𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶) cos2 (𝜃𝜃) = [1 + cos(2𝜃𝜃)]
2

1 − co s(2𝜃𝜃)
𝑡𝑡𝑡𝑡𝑛𝑛2 (𝜃𝜃) =
1 + co s(2𝜃𝜃)
Cosine Law

𝑎𝑎2 = 𝑏𝑏2 + 𝑐𝑐 2 − 2𝑏𝑏𝑏𝑏 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴)


Half Angles Trigo Fxn
𝑏𝑏2 = 𝑎𝑎2 + 𝑐𝑐 2 − 2𝑎𝑎𝑎𝑎 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝐵𝐵)
𝜃𝜃 1
𝑐𝑐 2 = 𝑎𝑎2 + 𝑏𝑏2 − 2𝑎𝑎𝑎𝑎 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶) sin � � = � [1 − cos(𝜃𝜃)]
2 2

𝜃𝜃 1
cos � � = � [1 + cos(𝜃𝜃)]
TRIGONOMETRIC IDENTITIES 2 2

𝜃𝜃 1 − co s(𝜃𝜃) sin (𝜃𝜃)


Pythagorean Rela�ons tan � � =
2 sin (𝜃𝜃)
=
1 + co s(𝜃𝜃)
𝑠𝑠𝑠𝑠𝑛𝑛2 (𝜃𝜃) + 𝑐𝑐𝑐𝑐𝑠𝑠 2 (𝜃𝜃) = 1

𝑠𝑠𝑠𝑠𝑐𝑐 2 (𝜃𝜃) − 𝑡𝑡𝑡𝑡𝑛𝑛2 (𝜃𝜃) = 1


Product of Two Func�on
𝑐𝑐𝑐𝑐𝑐𝑐 2 (𝜃𝜃) − 𝑐𝑐𝑐𝑐𝑡𝑡 2 (𝜃𝜃) = 1
2 sin(𝐴𝐴) sin(𝐵𝐵) = cos(𝐴𝐴 − 𝐵𝐵) − cos(𝐴𝐴 + 𝐵𝐵)

2 cos(𝐴𝐴) cos(𝐵𝐵) = cos(𝐴𝐴 + 𝐵𝐵) + cos(𝐴𝐴 − 𝐵𝐵)


Sum and Difference of Angles
2 sin(𝐴𝐴) cos(𝐵𝐵) = sin(𝐴𝐴 + 𝐵𝐵) + sin(𝐴𝐴 − 𝐵𝐵)
𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴 ± 𝐵𝐵) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴)𝑐𝑐𝑐𝑐𝑐𝑐(𝐵𝐵) ± co s(𝐴𝐴) si n(𝐵𝐵)

𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴 ± 𝐵𝐵) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴)𝑐𝑐𝑐𝑐𝑐𝑐(𝐵𝐵) ∓ si n(𝐴𝐴) si n(𝐵𝐵)


Sum of Two Func�on
− → 2 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠)
1 1
𝑡𝑡𝑡𝑡𝑡𝑡(𝐴𝐴) ± 𝑡𝑡𝑡𝑡𝑡𝑡(𝐵𝐵) sin(𝐴𝐴) + sin(𝐵𝐵) = 2 sin � (𝐴𝐴 + 𝐵𝐵)� cos � (𝐴𝐴 − 𝐵𝐵)�
𝑡𝑡𝑡𝑡𝑡𝑡(𝐴𝐴 ± 𝐵𝐵) = 2 2
1 ∓ 𝑡𝑡𝑡𝑡𝑡𝑡(𝐴𝐴)𝑡𝑡𝑡𝑡𝑡𝑡(𝐵𝐵)

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 1 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 1 1
cos(𝐴𝐴) + cos(𝐵𝐵) = 2 cos � (𝐴𝐴 + 𝐵𝐵)� cos � (𝐴𝐴 − 𝐵𝐵)�
2 2

sin (𝐴𝐴 + 𝐵𝐵)


tan(𝐴𝐴) + tan(𝐵𝐵) =
Double of Angles cos (𝐴𝐴)cos (𝐵𝐵)
 Derive from sum of angles (𝐴𝐴 = 𝐵𝐵)

sin(2𝜃𝜃) = 2 sin(𝜃𝜃) cos (𝜃𝜃)


Difference of Two Func�on
cos (2𝜃𝜃) = cos2 (𝜃𝜃) − sin2 (𝜃𝜃)
1 1
sin(𝐴𝐴) − sin(𝐵𝐵) = 2 cos � (𝐴𝐴 + 𝐵𝐵)� sin � (𝐴𝐴 − 𝐵𝐵)�
2tan (𝜃𝜃) 2 2
tan(2𝜃𝜃) =
1 − tan2 (𝜃𝜃)
1 1
cos(𝐴𝐴) − cos(𝐵𝐵) = 2 sin � (𝐴𝐴 + 𝐵𝐵)� sin � (𝐴𝐴 − 𝐵𝐵)�
2 2

sin (𝐴𝐴 − 𝐵𝐵)


tan(𝐴𝐴) − tan(𝐵𝐵) =
cos (𝐴𝐴)cos (𝐵𝐵)
PRE-CALCULUS
.Plane and Solid Geometry. .ANALYTIC GEOMETRY.
RECTANGULAR COORDINATE SYSTEM
𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨
 AKA Cartesian Coordinates System

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 1
𝐴𝐴 = 𝑏𝑏ℎ
2

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 1
𝐴𝐴 = (𝑏𝑏1 + 𝑏𝑏2 ) × ℎ
2

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 1 1
𝐴𝐴 = 𝑟𝑟𝑟𝑟 = 𝑟𝑟 2 𝜃𝜃
2 2

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴 = 𝜋𝜋𝑟𝑟 2 y  ordinate  range (YOR)


x  abscissa  domain (XAD)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴 = 𝜋𝜋(𝑟𝑟𝑜𝑜 2 − 𝑟𝑟𝑖𝑖2 )
Lines
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐴𝐴 = 𝜋𝜋𝜋𝜋𝜋𝜋 1. Distance between Two Points

𝑑𝑑 = �(𝑥𝑥2 − 𝑥𝑥1 )2 + (𝑦𝑦2 − 𝑦𝑦1 )2

𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 (𝑨𝑨𝒃𝒃 × 𝒉𝒉)


2. Slope of a line
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉 = 𝜋𝜋𝑟𝑟 2 ℎ

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 1


𝑉𝑉 = 𝜋𝜋𝑟𝑟 2 ℎ
3

𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒 4
𝑉𝑉 = 𝜋𝜋𝑟𝑟 3
3

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 4 ∆𝑦𝑦 𝑦𝑦2 − 𝑦𝑦1


𝑉𝑉 = 𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 𝑚𝑚 = tan(𝜃𝜃) = =
3 ∆𝑥𝑥 𝑥𝑥2 − 𝑥𝑥1

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒: 𝑐𝑐 = 𝑎𝑎 𝑜𝑜𝑜𝑜 𝑏𝑏
PRE-CALCULUS
3. Division of Line Segment 7. Area by Coordinates

1 𝑥𝑥1 𝑦𝑦1 1
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �𝑥𝑥2 𝑦𝑦2 1�
2 𝑥𝑥 𝑦𝑦3 1
3

8. Equa�on of Lines

∆𝑦𝑦 𝑦𝑦2 − 𝑦𝑦1


𝑚𝑚 = =
∆𝑥𝑥 𝑥𝑥2 − 𝑥𝑥1

i. Point-Slope Form

𝑦𝑦 − 𝑦𝑦1 = 𝑚𝑚(𝑥𝑥 − 𝑥𝑥1 )

4. Distance between a Line and a Point


ii. Two-Point Form
𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶
𝑑𝑑 =
±√𝐴𝐴2 + 𝐵𝐵2 𝑦𝑦2 − 𝑦𝑦1
𝑦𝑦 − 𝑦𝑦1 = � � (𝑥𝑥 − 𝑥𝑥1 )
𝑥𝑥2 − 𝑥𝑥1

5. Distance between Two Parallel Lines

𝐶𝐶2 − 𝐶𝐶1 iii. Slope – y-Intercept Form (𝒚𝒚 = 𝒃𝒃, 𝒙𝒙 = 𝟎𝟎)


𝑑𝑑 =
±√𝐴𝐴2 + 𝐵𝐵2
𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑏𝑏

6. Angle between Two Lines


iv. Intercept Form (𝒚𝒚 = 𝒃𝒃, 𝒙𝒙 = 𝟎𝟎 | 𝒙𝒙 = 𝒂𝒂, 𝒚𝒚 = 𝟎𝟎)
𝑚𝑚2 − 𝑚𝑚1
tan(𝜃𝜃) = 𝑥𝑥 𝑦𝑦
1 + 𝑚𝑚2 𝑚𝑚1 + =1
𝑎𝑎 𝑏𝑏

v. General Equa�on

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 = 0
PRE-CALCULUS
CONIC SECTION PARABOLA

If this term exist, the principal axis (symetry) is not


perpendicular or parallel to x or y axis.

ELLIPSE

STANDARD EQUATIONS

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃: (𝑥𝑥 − ℎ)2 = ±4𝑎𝑎(𝑦𝑦 − 𝑘𝑘)

HYPERBOLA
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: (𝑥𝑥 − ℎ)2 + (𝑦𝑦 − 𝑘𝑘)2 = 𝑟𝑟 2

(𝑥𝑥 − ℎ)2 (𝑦𝑦 − 𝑘𝑘)2


𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸: + = 1, 𝐴𝐴 > 𝐶𝐶
𝑎𝑎2 𝑏𝑏 2

(𝑦𝑦 − 𝑘𝑘)2 (𝑥𝑥 − ℎ)2


+ = 1, 𝐴𝐴 > 𝐶𝐶
𝑎𝑎2 𝑏𝑏 2

(𝑥𝑥 − ℎ)2 (𝑦𝑦 − 𝑘𝑘)2


ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦: − = 1, 𝐴𝐴 > 𝐶𝐶
𝑎𝑎2 𝑏𝑏 2

(𝑦𝑦 − ℎ)2 (𝑥𝑥 − 𝑘𝑘)2


− = 1, 𝐴𝐴 > 𝐶𝐶
𝑎𝑎2 𝑏𝑏 2

Shortcuts:
𝐷𝐷 𝐸𝐸
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (ℎ, 𝑘𝑘) = �− ,− �
2𝐴𝐴 2𝐶𝐶
PRE-CALCULUS
𝑓𝑓 Discrimant Latus Rectum (LR) Major Axis (a)
𝑒𝑒 =
𝑑𝑑 𝐵𝐵2 − 4𝐴𝐴𝐴𝐴
Parabola 𝑒𝑒 = 1 𝐵𝐵2 − 4𝐴𝐴𝐴𝐴 = 0 4𝑎𝑎 −𝐷𝐷
𝑦𝑦 2 → 𝑎𝑎 =
4𝐶𝐶
−𝐸𝐸
𝑥𝑥 2 → 𝑎𝑎 =
4𝐴𝐴
Circle 𝑒𝑒 = 0 𝐵𝐵2 − 4𝐴𝐴𝐴𝐴 < 0,
𝐹𝐹
𝐴𝐴 = 𝐶𝐶 𝑟𝑟 = �ℎ2 + 𝑘𝑘 2 −
𝐴𝐴

Ellipse 𝑒𝑒 < 1 𝐵𝐵2 − 4𝐴𝐴𝐴𝐴 < 0, 2𝑏𝑏 2 𝑐𝑐


𝑎𝑎 = 𝑑𝑑𝑑𝑑 =
𝑎𝑎 𝑒𝑒
±𝐴𝐴 ≠ ±𝐶𝐶
Hyperbola 𝑒𝑒 > 1 𝐵𝐵2 − 4𝐴𝐴𝐴𝐴 > 0 2𝑏𝑏 2 𝑐𝑐
𝑎𝑎 = 𝑑𝑑𝑑𝑑 =
𝑎𝑎 𝑒𝑒
±𝐴𝐴 ≠ ∓𝐶𝐶
PRE-CALCULUS
.INVERSE FUNCTIONS. .EVEN and ODD FUNCTIONS.
Inverse of a Func�on a func�on → 𝑭𝑭−𝟏𝟏 (𝒙𝒙) CALTECH:

𝐹𝐹(𝑥𝑥) +1 → 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
i. Interchange y and x. � −1 → 𝑜𝑜𝑜𝑜𝑜𝑜
ii. Isolate y. 𝐹𝐹(−𝑥𝑥)
≠ ±1 → 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑒𝑒𝑒𝑒

SUM and DIFFERENCE:


𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ± 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝑂𝑂𝑂𝑂𝑂𝑂 ± 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑂𝑂𝑂𝑂𝑂𝑂

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ± 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧)

Product and Quo�ent:


𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
Inverse of Trigonometric func�ons 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑂𝑂𝑂𝑂𝑂𝑂
𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
1 𝑂𝑂𝑂𝑂𝑂𝑂
csc −1 (𝑥𝑥) = sin−1 � �
𝑥𝑥 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 × 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑂𝑂𝑂𝑂𝑂𝑂
𝑂𝑂𝑂𝑂𝑂𝑂
1
sec −1 (𝑥𝑥) = cos −1 � �
𝑥𝑥
1 Deriva�ves:
cot −1 (𝑥𝑥) = tan−1 � �
𝑥𝑥 𝑑𝑑
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑂𝑂𝑂𝑂𝑂𝑂
𝑑𝑑𝑑𝑑
𝑑𝑑
𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
Deriva�ve of Inverse func�on 𝑑𝑑𝑑𝑑

𝑑𝑑 −1 1 Composi�on:
𝐹𝐹 (𝑥𝑥) =
𝑑𝑑𝑑𝑑 𝑑𝑑 • The composi�on of two even func�ons is even, and the
𝐹𝐹(𝑥𝑥)
𝑑𝑑𝑑𝑑 composi�on of two odd func�ons is odd.

• The composi�on of an even func�on and an odd func�on is


even.

You might also like