0% found this document useful (0 votes)
17 views7 pages

4.3 Edc - BJT

Uploaded by

Carlo G. Haictin
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
17 views7 pages

4.3 Edc - BJT

Uploaded by

Carlo G. Haictin
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

EDC - BJT

.HISTORY. .Construc�on.
 The BJT is constructed with three doped semiconductor regions
1904 - J.A Fleming separated by two P -N junc�ons.
 Vacuum Tube Diode
 The term bipolar refers to the use of both holes and electrons
AKA Fleming Valve, Thermionic Valve
as current carriers in the transistor structure.
 Thermionic Emission

Base – Emiter (BE) Junc�on


 The PN junc�on joining the base region and the emiter region.

Base – Collector (BC) Junc�on


 The PN junc�on joining the base region and the collector
region.

1906 - Lee de Forest Width: 1. Collector


 Vacuum Tube Triode 2. Emiter
 Added a 3rd element to the vacuum tube 3. Base Base – Width Ra�o(1:150)
called the Control Grid.
Doping: 1. Emiter – Heavily doped
 1st amplifier.
2. Collector
3. Base – lightly doped

Majority Carrier: Electron


 Electrons are faster.

1939 - Russell Ohl


 P-N junc�on

Majority Carrier: Holes


1947 - John Bardeen
- Water Bratain
- William Shockley – Supervisor
 December 23, 1947
 Point Contact Transistor – 1st transistor.

.DUAL DIODE MODEL.

1949 - William Shockley


 Bipolar Junc�on Transistor
Bipolar – 2 carriers (electron and holes)
Junc�on – boundary or interface between two
types of semiconductor materials
Transistor – Transfer Resistor
- it transfers the resistance from one end
of the device to the other end.
EDC - BJT
.Characteris�c Curve. .Power Dissipa�on.
𝑃𝑃𝐷𝐷 = 𝑉𝑉𝐶𝐶𝐶𝐶 ∙ 𝐼𝐼𝐶𝐶

𝑡𝑡𝑜𝑜𝑜𝑜
𝑃𝑃𝐷𝐷(𝑎𝑎𝑎𝑎𝑎𝑎.) = � � 𝑉𝑉𝐶𝐶𝐶𝐶(𝑠𝑠𝑠𝑠𝑠𝑠) ∙ 𝐼𝐼𝐶𝐶(𝑠𝑠𝑠𝑠𝑠𝑠)
𝑇𝑇

𝑃𝑃𝑂𝑂(𝑎𝑎𝑎𝑎) = 𝑉𝑉𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟𝑟𝑟) 𝐼𝐼𝐶𝐶(𝑟𝑟𝑟𝑟𝑟𝑟)

.Common Configura�on.
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
Cutoff Region
 Not-conduc�ng 𝐼𝐼𝐸𝐸 = 𝐼𝐼𝐵𝐵 + 𝐼𝐼𝐶𝐶 𝐼𝐼𝐸𝐸 = 𝐼𝐼𝐵𝐵 + 𝐼𝐼𝐶𝐶 − 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶
 𝐼𝐼𝐶𝐶 = 0
 𝑉𝑉𝐶𝐶𝐶𝐶 ≈ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 → 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶 𝑰𝑰𝑬𝑬 ≃ 𝑰𝑰𝑪𝑪

Ac�ve Region 𝛽𝛽 =
𝐼𝐼𝐶𝐶
→ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, ℎ𝑓𝑓𝑓𝑓
 Conducts at normal opera�on. 𝐼𝐼𝐵𝐵
 0 < 𝐼𝐼𝐶𝐶 < 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠. → 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (20 − 200)𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝛽𝛽 = 100
𝐼𝐼𝐶𝐶 𝛽𝛽
𝛼𝛼 = = → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐼𝐼𝐸𝐸 𝛽𝛽+1

𝐼𝐼𝐸𝐸
Satura�on Region 𝛾𝛾 =
𝐼𝐼𝐵𝐵
→ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 Reach Max Current (𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠. )
 𝐼𝐼𝐶𝐶 = 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠. 𝑰𝑰𝑪𝑪 = 𝜷𝜷𝑰𝑰𝑩𝑩
 𝑉𝑉𝐶𝐶𝐶𝐶 ≈ 𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 → 𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺
A BJT is a Current-Controlled Current Source (CCCS)
because a small change in 𝐼𝐼𝐵𝐵 can cause a large change in 𝐼𝐼𝐶𝐶 .

.Mode of Opera�on.
 Deple�on Region Shrink when FB. Common – Common – Common –
 Deple�on Region Widen when RB. Base Collector / Emiter /
Emiter-
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐵𝐵 − 𝐸𝐸 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝐵𝐵 − 𝐶𝐶 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐹𝐹 𝑹𝑹𝑹𝑹 Follower
(Amplifier) Applica�on Boltage Current Everything
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹 𝐹𝐹𝐹𝐹 amplifier/ amplifier/
(ON switch) Isola�on/
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅 𝑹𝑹𝑹𝑹 Z – matching
(OFF switch)
Output 𝐼𝐼𝐶𝐶 𝐼𝐼𝐸𝐸 𝐼𝐼𝐶𝐶
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑅𝑅 𝑭𝑭𝑭𝑭
Input 𝐼𝐼𝐸𝐸 𝐼𝐼𝐵𝐵 𝐼𝐼𝐵𝐵
𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 𝐼𝐼𝐶𝐶 ≃ 𝐼𝐼𝐸𝐸 𝐼𝐼𝐸𝐸 ≫ 𝐼𝐼𝐵𝐵 𝐼𝐼𝐶𝐶 > 𝐼𝐼𝐵𝐵
𝑨𝑨𝒊𝒊 =
𝐼𝐼𝑖𝑖𝑖𝑖 𝐼𝐼𝐶𝐶 𝐼𝐼𝐸𝐸 𝐼𝐼𝐶𝐶
𝛼𝛼 = ≃ 1 𝛾𝛾 = ≫ 1 𝛽𝛽 = > 1
𝐼𝐼𝐸𝐸 𝐼𝐼𝐵𝐵 𝐼𝐼𝐵𝐵
𝐿𝐿𝐿𝐿𝐿𝐿 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑀𝑀𝑀𝑀𝑀𝑀
.Thermal Runaway. 𝒁𝒁𝒊𝒊𝒊𝒊 𝐿𝐿𝐿𝐿𝐿𝐿 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑀𝑀𝑀𝑀𝑀𝑀
1 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 𝑉𝑉𝐶𝐶 ≫ 𝑉𝑉𝐸𝐸 𝑉𝑉𝐵𝐵 ≃ 𝑉𝑉𝐸𝐸 𝑉𝑉𝐶𝐶 > 𝑉𝑉𝐵𝐵
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 → 𝑁𝑁𝑁𝑁𝑁𝑁 �𝑇𝑇 ∝ � 𝑨𝑨𝒗𝒗 =
𝑅𝑅 𝑉𝑉𝑖𝑖𝑖𝑖 𝑉𝑉𝐶𝐶 𝑉𝑉𝐸𝐸 𝑉𝑉𝐶𝐶
𝐴𝐴𝑣𝑣 = ≫1 𝐴𝐴𝑣𝑣 = ≃1 𝐴𝐴𝑣𝑣 = >1
𝑉𝑉𝐸𝐸 𝑉𝑉𝐵𝐵 𝑉𝑉𝐵𝐵
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐿𝐿𝐿𝐿𝐿𝐿 𝑀𝑀𝑀𝑀𝑀𝑀
𝒁𝒁𝒐𝒐𝒐𝒐𝒐𝒐 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐿𝐿𝐿𝐿𝐿𝐿 𝑀𝑀𝑀𝑀𝑀𝑀
𝑨𝑨𝑷𝑷 = 𝐴𝐴𝑣𝑣 ∙ 𝐴𝐴𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁/𝐴𝐴 𝑁𝑁/𝐴𝐴 180°
EDC - BJT
.AC Analysis.
Equivalent Circuit Frequency Response
Low Frequency Analysis
Cutoff-Frequency (𝒇𝒇𝑳𝑳 ) @𝑋𝑋𝐶𝐶 = 𝑅𝑅
1
𝑋𝑋𝐶𝐶 = 𝑅𝑅 =
2𝜋𝜋𝜋𝜋𝜋𝜋
1
𝑓𝑓𝐿𝐿 =
2𝜋𝜋𝜋𝜋𝜋𝜋

High Frequency Analysis

1
𝑓𝑓𝐻𝐻 =
2𝜋𝜋𝑅𝑅𝑇𝑇ℎ 𝐶𝐶

Miller Effect Capacitance

∆𝑉𝑉𝐶𝐶𝐶𝐶
𝑟𝑟𝑜𝑜 = ≈ ∞ ≈ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
∆𝐼𝐼𝐶𝐶
→ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

26𝑚𝑚𝑚𝑚
𝑟𝑟𝑒𝑒 =
𝐼𝐼𝐸𝐸

𝑉𝑉𝑏𝑏 = 𝐼𝐼𝑒𝑒 (𝑟𝑟𝑒𝑒 + 𝑅𝑅𝐸𝐸 )


𝐶𝐶𝑀𝑀𝑀𝑀 = (1 − 𝐴𝐴𝑣𝑣 )𝐶𝐶𝑓𝑓
𝑍𝑍𝑖𝑖𝑖𝑖 = 𝐵𝐵𝑎𝑎𝑎𝑎 (𝑟𝑟𝑒𝑒 + 𝑅𝑅𝐸𝐸 )
1
𝐶𝐶𝑀𝑀𝑀𝑀 = �1 − � 𝐶𝐶 ≈ 𝐶𝐶𝑓𝑓
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 → 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐴𝐴𝑣𝑣 𝑓𝑓
EDC - BJT
.Basic Configura�ons.
EDC - BJT
EDC - BJT
EDC - BJT

You might also like