T 15
T 15
LM 0 a b OP LM x + 1 x+2 x+a OP
2. If M -a 0
P
c , then is equal to MM xx ++ 23 x+3 PP
x + b is
NM-b -c 0QP N x+4 x+c Q
(a) 3 (b) -3
(a) =0 (b) =2abc
(c) 0 (d) None
(c) =-abc (d) =a2+b2+c2. 11. If f(x) = logx(log x), then f’ (x) at x=e is
3. If A+B+C = then (a) 0 (b) e
(c) 2e (d) 1/e.
LMsin(A + B + C) sin B cos C OP
MM-sin B 0 tan A PP FG 1 cos x IJ , then dy is
Ncos(A + B) - tan A 0 Q
12. If y = tan-1 H 1 cos x K dx
(a) 2 (b) 1 (a) 1/4 (b) 1/2
(c) zero (d) None (c) 1 (d) 2.
4. If every element of a third order det. of value F I
1+ x 2 1
If y = tan-1 G JK
is multiplied by 5 then the value of the new
det. is -
13.
H x , they y’ (0)=
(a) 1 (b) ½
(a) (b) 5 (c) 0 (d) None
(c) 25 (d) 125 . 14. The derivative of sin-1x w.r.t. cos-1
5. For any 2 x 2 matrix A, if A (Adj. A) = 1 -x 2 is
3x 5 a 2 b2 a 2 b2
28. f x is a (c) (d)
2x 2 8 x 9 a 2 b2 c 2 d2
(a) even function (b) odd function 39. The square root of 2 2 3i is
(c) rational function (d) linear function
29. The general solution of cosec x = –2 is
(a) 1 3i
(b) 1 3i
(c) 1 3i (d) 1 3i
(a) (b)
6 6
40. The modulus of 2 3 is equal to
(c) n 1 (d) n 1
n n
OURS ACADEMY : Near Bus Stand, Rishi Nagar, Hisar. M. 9467134541, 9812130823
OURS ACADEMY
52. If A1,A2 be two A.M’s and G1,G2 be two G..M.’s
1 i 2 i between a and b, then (A1+A2)/G1G2 is equal to
41. The modulus of
3 i is equal to
ab ab
(a) 0 (b) 1 (c) 2 (d) 1/2 (a) (b)
ab ab
z1
42. If z1 1 2i and z 2 6 5i , then z is equal 2ab ab
2 (c) (d)
ab 2ab
to
53. The value of 1 + 3 C1 + 4 C 2 is
5 5 5
(a) (b) (c) (d) None (a) 5 C1 (b) 5 C2
61 6 61
(c) 5 C3 (d) none
43. If z is a complex number, then z z is
54. The number of lines that can be drawn through
(a) 2 Im (z) (b) 2Re (z) n points on a circle, is
(c) 2i Im (z) (d) 2i Re (z) (a) n (b) (n – 1)
1i n n 1
44. The conjugate of complex number is (c) n (n – 1) (d)
1 i 2
(a) –i (b) i 55. The number of chords that can be drawn through
(c) i2 (d) 1 21 points on a circle, is
45. If z is a complex number and z is conjugate of (a) 210 (b) 211
z, then z z is (c) 209 (d) none
(a) |z| (b) |z|2 (c) 2|z| (d) 0 56. The ratio of coefficient of xn in 1 x
2n
and
46. Which of the following is a linear inequation of
coefficient of x n in 1 x
2n 1
two variables is
(a) a bx 0 (b) ax + by (a) 1 : 1 (b) 2 : 1
(c) ax by 0 (d) all of these (c) 1 : 2 (d) none
47. Which of the following points lies in the graph of 57. The sum of coefficient of two middle terms in
the expansion of 1 x
2n 1
the inequation 2x y 8 0 is
(a) (4, 3) (b) 1, 3) (a) 2n 1
Cn (b) 2n 1
Cn 1
(c) (0, 7) (d) none
(c) Cn2n
(d) Cn 1 2n
48. Which of the points lies in the half-plane
58. If the 17th and 18th terms in the expansion of
x y
1 0
2 a are equal, then a is equal to
50
2 3
(a) (0, 1) (b) (1, 5) (a) 1 (b) 0
(c) (–3, –4) (d) none (c) 2 (d) 3
49. The solution set of the inequality y 0 is In the expansion of 1 x , coefficient of x r is
n
59.
(a) half plane below the x-axis excluding the
(b) 1 n Cr
r
(a) n Cr
points on x-axis
(b) half plane below the x-axis including the points (c) n 1
Cr (d) none of these
on x-axis 9
(c) half plane above the x-axis 3x 2 1
60. The term independent of x in is
(d) none of these 2 3x
50. Region represented by the inequalities
7 18
x 0, y 0 lies in (a) (b)
18 7
(a) first quadrant (b) second quadrant (c) 7 (d) 18
(c) third quadrant (d) fourth quadrant
61. The value of e x cos e x dx is
51. 2n
C 3 : n C 2 12 : 1 , then n is
(a) sin e x e x c
(a) 10 (b) 5
(c) 15 (d) none (b) sin e x c
(c) e x sin e x cos e x c
(d) e x sin x sin e x c
OURS ACADEMY : Near Bus Stand, Rishi Nagar, Hisar. M. 9467134541, 9812130823
OURS ACADEMY
1
sin tan x
dx is
69.
The value of
sec 2 x
dx is
62. The value of tan2 x 4
1 x2
OURS ACADEMY : Near Bus Stand, Rishi Nagar, Hisar. M. 9467134541, 9812130823
OURS ACADEMY
76. A vector of magnitude 4 units which is parallel 3x 5
84. f x is a
to the vector 3 iˆ ˆj is given by 2x 2 8 x 9
(a) even function (b) odd function
3 ˆ 1 ˆ
(a) 3 iˆ ˆj (b) i j (c) rational function (d) linear function
2 2
2x 1
(c) 2 3 iˆ 2 ˆj (d) none of these 85. If f : R R is defined by f x then
3
77. If P(3, –1, 7) and Q(4, –5, –1) are two given
f 1 x
points, then the vector PQ is given by
3x 1 x3 2x 1 x4
(a) iˆ 4 ˆj 8kˆ (b) iˆ 4 ˆj 8kˆ (a) (b) (c) (d)
2 2 3 3
(c) iˆ 4 ˆj kˆ (d) 2iˆ 4 ˆj 8kˆ
86. If lies in the first quadrant and 5 tan 4 ,
78. The unit vector in the direction of the vector
5sin 3cos
then sin 2 cos
a iˆ ˆj 2kˆ is given by
1
(a)
2
6
iˆ ˆj 2kˆ (a)
5
14
(b)
3
14
(c)
14
(d) 0
79. If angle between any two vectors a and b is 0, 5 3 5 5
(a) (b) (c) (d)
then the value of a b is 2 4 4 8
(a) 1 (b) ab (c) 0 (d) –ab 3
90. If 90 180 , sin
0 0
, then sin 3 =
80. If a and b are any two vectors with magnitude 5
3 and 2 respectively such that a b 3 , then 117 117 125 125
angle between a and b is (a) (b) (c) (d)
125 125 117 117
(a) / 6 (b) / 3 91. cos 255 0 sin 165 0 =
(c) / 2 (d) 0
81. Which of the following intervals is a set-builder 3 1 3 1 2 1
(a) 0 (b) (c) (d)
form of (6, 12]: 2 2 2 2
(a) x : x R,6 x 12 92. If z1 z2 z3 and z1 z2 z3 0 then
(b) x : x R,6 x 12 z1 , z2 , z3 are vertices of
(c) x : x R, x is multiple of 6 (a) equilateral triangle (b) issosceles triangel
(c) Right angled triangle (d) scalene triangle
(d) x : x R,6 x 12
1 1
82. If A B , then which of the following 93. is
i 1 i 1
statement is true: (a) Positive rational number
(a) A B (b) B A (b) Purely imaginary
(c) A B A (d) A B B (c) Positive Integer
83. If A = {1, –1}, then A × A × A is (d) Negative integer
(a) {(1, 1, 1), (–1, –1, –1)}
(b) {(1, –1, 1), (1, –1, –1)} 94. The modulus of 1 i 3 4i
(c) {(1, 1, 1),(1, 1, –1),(1, –1, 1),(1, –1, –1),(–1, 1,
(a) 50 (b) 25 (c) 25 (d) 5 / 2
1)
(d) {(1, 1, 1), (1, 1, –1), (1, –1, 1), (1, –1, –1), The integral solution of 1 i 2 x is
x
95.
(–1, 1, 1), (–1, 1, –1), (–1, –1, 1), (–1, –1, –1)}
(a) x = 1 (b) x = -1 (c) x = 2 (d) x = 0
OURS ACADEMY : Near Bus Stand, Rishi Nagar, Hisar. M. 9467134541, 9812130823
OURS ACADEMY
96. If , are the roots ax2-2bx+c=0 then 109. If in an A.P., 3rd term is 18 and 7th term is
30, then sum of its 17 terms is
3 3 + 2 3 + 3 2 = (a) 600 (b) 612 (c) 624 (d) None
c2 bc 3 110. If S 1 =a 2 +a 4 +a 6 +...... upto 100 terms and
(a) (c 2b) (b) S2=a1+a3+a5+.....upto 100 terms of a certain A.P.
a3 a3 then its common difference d is
c3 bc (a) S1-S2 (b) S2-S 1
(c) (c 2b) (d) (c) S1 - S2/2 (d) None of these.
a3 a3
111. If a,b,c are in A.P. then 3 a,3b,3c are in
97. 42 42 42 ... (a) A.P. (b) G.P. (c) equal (d) None
(a) 7 (b)-6 (c) 5 (d)4 112. If the value of 1 + 2 + 3 + ..... + n is 55, then
98. One root of the equation the value of 1 3+23+33+....+n3 is-
x 1 x 3 x 2 x 4 12 0 is (a) 165 (b) 835
(c) 3025 (d) None of these.
(a) 1 (b) 2 (c) 1 (d) 0
113. If the straight line y=mx+c passes through
99. If 2 and 56 then the
3 3
the points (3,-4) and (-1,2) then value of m is
quadratic equation whose roots are is 2 3 3 2
(a) x 2 2 x 16 0 (b) x 2 2 x 15 0 (a) (b) (c) (d)
3 2 2 3
(c) x 2 2 x 12 0 (d) x 2 2 x 8 0 114. Equation of the line on which the length of
the perpendicular from origin is 5 and the
100. If , are the roots of x 2 -x+1=0 then angle which this perpendicular makes with
the x axis is 60O
5 5
(a) 2 (b) 1 (c) 12 (d) 4 (a) x 3 y 12 (b) 3 x y 10
101. Which of the following is a linear inequation of (c) x 3 y 8 (d) x 3 y 10
two variables
(a) a bx 0 (b) ax + by 115. The distance between the parallel lines
8x+6y+5=0 and 4x+3y-25=0 is
(c) ax by 0 (d) all of these
7 9 11 5
102. The number of permutations of the letters of the (a) (b) (c) (d)
word "ENGINEERING" is 2 2 2 4
11! 11! 11!
116. Equation of the circle with centre (1,2) and
11!
(a) 3! 2! (b) (3! 2!) 2 (c) (3!) 2 . 2! (d) 3!(2!) 2 passing through (2,1) is
(a) x2 + y2 – 6x + 10y + 18 = 0
103. If nP4 : nP5 = 1 : 2 then n = (b) x2 + y2 + 6x - 10y + 18 = 0
(a) 4 (b) 5 (c) 6 (d) 7 (c) x2 + y2 – 6x + 10y + 25 = 0
104. The number of ways in which 7 persons can be (d) x2 + y2 – 2x - 4y + 3 = 0
arranged around a circle is 117. The length of the diameter of the circle
(a) 360 (b) 720 (c) 5040 (d) 1440 x2 + y2 – 6x – 8y = 0 is
105 A polygon has 35 diagonals. The number of its (a) 100 (b) 10 (c) 20 (d) 5
sides are
118. The point on the parabola which is nearest to
(a) 8 (b) 9 (c) 10 (d) 11 directrix is
12
106. The 4th term in the expansion of 1
x is (a) End of latusrectum (b) Focus
x
(c) Vertex (d) Centre.
3 3
(a) 110 x 2 (b) 220 x 2 (c) 220x2 (d) 110x2 119. The parabolas y 2 4ax (a>0) and
9
OURS ACADEMY : Near Bus Stand, Rishi Nagar, Hisar. M. 9467134541, 9812130823
NDA MATH TEST-15 ANSWER KEY
1 A 26 B 51 B 76 C 101 C
2 A 27 B 52 B 77 B 102 B
3 C 28 C 53 B 78 C 103 C
4 D 29 D 54 D 79 B 104 B
5 B 30 C 55 A 80 A 105 C
6 B 31 C 56 B 81 A 106 B
7 B 32 D 57 C 82 A 107 A
8 C 33 C 58 A 83 D 108 B
9 B 34 A 59 B 84 C 109 D
10 C 35 B 60 A 85 A 110 D
11 D 36 C 61 B 86 A 111 B
12 B 37 A 62 C 87 B 112 C
13 B 38 D 63 A 88 B 113 B
14 B 39 A 64 D 89 C 114 D
15 B 40 B 65 B 90 A 115 C
16 D 41 B 66 C 91 A 116 D
17 C 42 C 67 B 92 A 117 B
18 A 43 B 68 B 93 B 118 C
19 A 44 B 69 A 94 A 119 A
20 A 45 B 70 C 95 D 120 C
21 C 46 C 71 A 96 A
22 A 47 A 72 B 97 A
23 B 48 B 73 B 98 A
24 D 49 B 74 C 99 D
25 B 50 A 75 B 100 B