Ours Academy: Sin 20 Sin 40 Sin 80 3 4 3 8 3 4 3 2
Ours Academy: Sin 20 Sin 40 Sin 80 3 4 3 8 3 4 3 2
1. If A and B are finite sets, then n A B is 10. cos 60 sin 240 cos 720 =
1 1 1 1
(a) n A n B (a) (b) (c) (d)
8 4 8 4
(b) n A n B n A B
11. sin 200 sin 400 sin 800 =
(c) n A n B n B A
3 3 3 3
(d) n A n B n A B (a) (b) (c) (d)
4 8 4 2
2. If A = {4, 5, 8, 12}, B = {1, 4, 6, 9} and C = {1,
2, 3, 4}, then A – (B – A) is 12. If 1,1 , 2 ,....... n 1 are the nth roots of unity
(a) A (b) B then 1 1 1 2 ... 1 n 1
(c) 2A (d)
(a) n 1 (b) n (c) -1 (d) 1
3. If X = {1, 2, 3, 4} and Y = {2, 4, 6, 8, 10, 12},
then which of the following is not a function? 4 n 1
1 i
(a) {(1, 2), (2, 2), (3, 8), (4, 8)} 13. =
(b) {(1, 10), (2, 6), (3, 6), (4, 10)} 1 i
(c) {(1, 8), (2, 8), (3, 8), (4, 8)} (a) i (b) -i (c) 1 (d) -1
(d) {(1, 4), (2, 4), (4, 8)} 14. log log i =
1 x 2x
4. If f x log 1 x , then f 1 x 2 is
(a) log (b) log i
equal to 2 2
(a) 2f (x) (b) f (x) i
(c) log (d) log i
1 x 2 2 2 2
(c) log x (d) log
1 x
1 i
If If f x x , g x x 5 x 6 then
2 2 15. log
5. 1 i
g 2 g 3 g 0 i
(a) (b) (c) (d) i
f 0 f 1 f 2 2 2 2 2
a) 2 (b) 1 (c) 5/6 (d) 6/5 16. If , are the roots of x -x+2=0 then 2
4 2 3
(a) (b) (c) 1 (d)
3 3 4
OURS ACADEMY : Near Bus Stand, Rishi Nagar, Hisar. M. 9467134541, 9812130823
OURS ACADEMY
5 2x x 36. The centre of the circle passing through the
21. The solution of 5, x R is points( h,0), (k,0), (0,h), (0,k) is
3 6
(a) x > 8 (b) x 8 (c) x < 8 (d) x 8 h h k k
22. If nP7 = 42 nP5 then n = (a) , (b) ,
2 2 2 2
(a) 5 (b) -1 (c) 7 (d) 12
hk hk h h
23. If 12Pr = 1320 then r = (c) , (d) ,
(a) 2 (b) 3 (c) 4 (d) 5 2 2 2 2
24. 2n n
If C3 : C2 = 44 : 3 then n = 37. If the points (0,0),(2,0),(0,4),(1,k) are concyclic
(a) 6 (b) 7 (c) 8 (d) 9 then k2 - 4k =
25. If nC3 = nC9 then nC2 = (a) -1 (b) 1 (c) 0 (d) -3
(a) 66 (b) 132 (c) 72 (d) 98 38. The locus of the centre of a circle passing
5
through a point and touching a line is
3
26. The 5th term in the expansion of 2x 2 is (a) a straight line (b) an ellipse
x
(c) a parabola (d) a hyperbola
(a) 810.x-2 (b) 810.x-4
(c) 810 (d) 810.x-5 39. The focus and vertex of a parabola are (4, 5)
and (3, 6). The equation of axis is
27. 1 2 6 (a) 2x-y+3=0 (b) 2x-y=0
(c) 2x+y-13=0 (d) x+y-9=0
(a) 98 70 2 (b) 99 70 2
40. If the parabola y 2 4ax passes through (-3, 2)
(c) 99 70 2 (d) 98 70 2 then the length of its latusrectum is
28. 3 1 5 3 1 5 (a)
2
3
(b)
1
3
(c)
4
3
(d) 4
(a) 152 (b) 142 (c) 124 (d) 162
41. Equation of the parabola having focus (3, 2)
and vertex (-1, 2) is
29. The sequence is
(a) x 1 16 y 2 (b) x 1 16 y 2
2 2
5 sin x
cot 1 cot 59. L im
48. = x 0
x2
6
(a) 1 (b) -1 (c) 0 (d) doesn’t exist
5 3
(a) (b) (c) – (d) sin 3 x tan 4 x
6 6 6 6 60. L im =
x 0 x sin 5 x
7
49. sin(Tan-1 )= 5 12
24 (a) 1 (b) (c) 0 (d)
12 5
(a) 24/25 (b) 7/25 (c) 7/24 (d) 25/24
log 1 ax log 1 bx
12 13 61. L im
50. If Sin (
-1
) + Sec (-1
)= then x = x 0 x
13 x 2
(a) a b (b) a b
(a) 12 (b) 13 (c) 11 (d) 5
51. (Adj AT) = (c) a b (d) ab
(a) (Adj A)T (b) Adj A
Lim
x 1 2 x 3
(c) AT (d) Adj[A]1 62. =
x
x 2 3x 4
52. If Tr (A) = 2 + i Tr[ (2-i) A] =
(a) 2 + i (b) 2 - i (c) 3 (d) 5 2 1 1
(a) (b) 0 (c) (d)
2 0 0 3 3 4
0 2 0 x tan 2 x
53. If A = , then A4 = .... 63. The function f(x)= for x 0,
0 0 2 sin 3x. sin 5 x
(a) 16A (b) 32 I (c) 4A (d) 8A = k for x=0, is continuos at x=0, then f(0)
54. If A and B are two matrices such that A + B 2 2 2 2
and AB are both defined then (a) (b) (c) (d)
13 17 11 15
(a) A and B are two matrices not necessarily
64. The value of f(0) for the function f(x) =
of same order
(b) A and B are square matrices of same order e x e x
(c) A and B are matrices of same type so that it is continuous everywhere is
x
(d) A and B are rectangular matrices of same (a) 1 (b) 1/2 (c) 2 (d) 0
order
d log 1 cot 2 x
a b c 65. e =
dx
If A b c a (a) cosecx cotx (b) -cosecx.cotx
55. then cofactor of a21 is
c a b (c) cosec2x.cotx (d) 0
d 1 x 1 x 1
(a) b2 - ac (b) ac - b2 (c) a2-bc (d) bc-a2 66. sec sin 1 =
dx x 1 x 1
1990 1991 1992 (a) -1 (b) 0 (c) 1 (d) 2
1991 1992 1993 1
56. det = 67. The derivative of esin x w.r.t. logx is
1992 1993 1994
1 1
xesin x xesin x
(a) 1992 (b) 1993 (c) 1994 (d) 0 (a) (b)
57. If the value of a third order determinant is 11, 1 x2 1 x2
then the value of the determinant of A1 1
esin x
1
(a) 11 (b) 121 (c) 1/11 (d) 1/121 (c) (d) esin x . 1 x 2
1 x2
OURS ACADEMY : Near Bus Stand, Rishi Nagar, Hisar. M. 9467134541, 9812130823
OURS ACADEMY
1 sin 2 x dy 78. In a circle of radius 'r' units, the rate of change
68. If y= then =
1 sin 2 x dx x 0 of area of a sector is
(a) Directly proportional to the rate of change
1
(a) (b) 1 (c) -2 (d) 2 of the angle.
2 (b) Inversely proportional to the rate of change
d of the angle of the sector
69. {log10(sin-1x2)}=
dx (c) A constant
1 (d) Directly proportional to the radius
(a)
Sec
1 2
log10 .(sin x ). 1 x 4 79.
2
x.Co sec 2 x dx
2x (a) tan x - cot x + c (b) tan x + cot x + c
(b) log10 .(sin 1 x 2 ). 1 x 4 (c) tan x cot x + c (d) Sec x tan x + c
1 sin x Cos x
(c)
log10 .(sin 1 2
x ). 1 x 4 80. 1 sin 2 x
dx
2
(d) 1 2
(a) x c (b) x c
log10 .(sin x ). 1 x 4
2
(c) sin x cos x c (d) x c
1 1 x
70. The derivative of Cos w.r.t. Sec2 x
1 x2 81. (1 tan x)3 dx
1 2x
Tan is 1 1
1 x2 (a) c (b) c
2(1 tan x ) 3
(1 tan x) 3
1
(a) 0 (b) 1 (c) 2 (d) 1 1
2 c (d) c
(c)
71. f(x)=x3 - 27x + 5 is monotonically increasing (1 tan x) 2
2(1 tan x ) 2
for
e x (1 x)
(a) x < -3 (b) >3 82. Sin 2 ( xe x ) dx
(c) <3 (d) x > 3 (a) tan (xex) + c (b) - cot(xex) + c
72. The diagonal of the rectangle of maximum (c) sin (xex) + c (d) sin ex + c
area having perimeter 100 cm is
sin cos
(a) (b) 10 (c) (d) 15 83. 1 sin 2
d =
73. The absolute minimum of y = c cosh x/c is 0
(a) 1/c (b) c/2 (c) c (d) 2c (a) (b) + and >0
74. The slope of the normal to the curve given by (c) /2 (d) /3
84. =
x a( sin ), y a(1 cos ) at 2a
f ( x )dx
1 1
2
0 f ( x ) f (2a x )
(a) (b) (c) –1 (d) 2
2 2 (a) a (b) a/2 (c) 0 (d) 2a
75. The point on the curve y x 2 4x 5 at
which the tangent drawn is parallel to x-axis is 2
4
(a) (0, 5) (b) (1, 2) (c) (2, 1) (d) (3, 2) 85. sin xdx =
0
76. If the curves ay x 2 7 and x 3 y cut
3 3
orthogonally at (1, 1) then a = (a) (b) (c) (d) 0
12 7 16
1
(a) 1 (b) – 6 (c) 6 (d) 86. The area between the curve y 2 9 x and
6
77. The velocity v of a particle moving along a the line y 3x is
straight line when it is at a distance X from the 1 8
point of start is given by a+bv2=x2, then the (a) sq. units (b) sq. units
acceleration is 3 3
X X b b2
1 1
(a) (b) (c) (d) (c) sq, units (d) sq. units
b b2 X X 2 5
OURS ACADEMY : Near Bus Stand, Rishi Nagar, Hisar. M. 9467134541, 9812130823
OURS ACADEMY
87. The area bounded by the ellipse 97. Two cards are drawn from a pack of 52 cards.
Find the probaility of getting both the Aces?
3 x 2 y 6 with the co-ordinate axes in
2 2
(a) 1/26 (b) 1/2 (c) 1/221 (d) None
sq. units is
98. The probability that a leap year selected at
(a) 6 (b) 8 (c) 12 (d) 3 random will contain 53 sunday is :
88. The number of arbitarary constants in the so- (a) 1/7 (b) 2/7 (c) 2/366 (d) 3/366.
lution of a differential equation of degree 3 and 99. If mean of x and 1
x is m, then mean of x2 and
order 2 is 1
(a) 2 (b) 3 (c) 5 (d) 1 is :
x2
(a) m2 (b) m2/4
89. I.F of 1 x dy
3
dx
3x 2
y sin 2 x (c) 2m - 1
2
(d) 2m2 + 1.
100. The mean of a set of observation is x. If each
1 1 observation is divided by , and then is
(a) 1 x 3 (b) (c) 3x 2 (d) increased by 10, then the mean of new set is -
1 x3 x3
(a) x/ (b) (x + 10)/
dy (c) (x + 10 )/ (d) x + 10.
90. The solution of y sin x
dx 101. If the pth term of an A.P. is q and the qth term is
p, then the rth term is
ex
(a) ye
x
sin x cos x c (a) q - p + r (b) p - q + r
2 (c) p + q + r (d) p + q - r.
ex 102. The fourth term of an A.P. is 4, then the sum of
(b) e y
x
cos x sin x C first sevent terms is
2
(a) 4 (b) 28
(c) y e
x
sin x cos x c (c) 16 (d) 40
(d) y e x sin x cos x c 103. The first and last terms of an A.P. are 1 and 11.
If the sum of its terms is 36, then number of
91. If =3i-2j+k, = -i+j+k then the unit vector terms will be
parallel to the vector ( ) is (a) 5 (b) 6
(a) (2/3)i -(1/3)j+(2/3)k (c) 7 (d) 8.
(b) (2/5)i -(1/5)j+(2/5)k 104. The third term of an A.P. is 7 & its 7th terms is 2
more than thrice of its 3rd term, then the sum of
(c) ( 2 / 3 ) i (1 / 3 ) j (2 / 3 )k
first 20 terms is
(d) (2 / 3 ) i (1 / 3 ) j (2 / 3 )k (a) 640 (b) 740
92. If a and b be two unit vectors and a+b is also (c) 74 (d) 700.
a unit vector then (a,b)= 105. A student reads common difference of an A.P.
(a) / 4 (b) / 3 (c) 2 / 3 (d) / 2 as -2 instead of 2 and got the sum of first five
93. The perpenducular distance from origin to the terms as -5. The actual sum of first five terms is
plane 3x - 2y - 2z = 2 (a) 25 (b) -25
(c) 35 (d) -35.
(a) 1 / 17 (b) 2 / 17
106. If in an infinite G.P., first term is equal to 10 times
(c) 3 / 17 (d) 4 / 17 the sum of all successive terms, then the common
94. The work done by the force F=2i-3j-2k in ratio is
moving a particle from(3,-2,5) to (1,-4,3) is (a) 1/9 (b) 1/10
(a) -2 (b) -3 (c) -4 (d) 6 (c) 1/11 (d) None
95. The number of points equidistant from two 107. The sum to infinity of the series
given points is 1+4/5 + 7/52 + 10/53 + ..... is -
(a) 0 (b) 1 (c) 2 (d) Infinite (a) 35/16 (b) 1/8
96. A = (1, -1, 2) and B = (2, 3, 7) are two points. If (c) 16/35 (d) None of these.
P, Q divide AB in the ratios 2 : 3, -2 : 3
108. The sum of the numbers 1, 8, 27 .......,1000 is
respectively then Px Q y (a) 385 (b) 381
38 38 2 47 (c) 3125 (d) None of these.
(a) (b) (c) (d)
5 5 5 6
OURS ACADEMY : Near Bus Stand, Rishi Nagar, Hisar. M. 9467134541, 9812130823
OURS ACADEMY
109. 113 + 123 + 133 + ..... + 203 is 116. If A is a matrix of 4x3 and B is a matrix of order
(a) 40075 (b) 41075 3x5 and C is a matrix of 5x4, then the number of
(c) 42075 (d) None of these. entries in AxBxC is equal to
110. The nth term of the series 7+77+777+ ........ is- (a) 12 (b) 15
(a) 7 x 10n-1 (b) 7 x 11n-1 (c) 16 (d) 20.
(c) 7/9 (10 )
n-1
(d) None of these 117. If a mastrix has 13 elements, then the possbile
dimensions (order) it can have are
111. The foot of the perpendicular from the point
(a) 1×13, 13×1 (b) 1×26, 26×1
(2, 4) upon x + y = 1 is
(c) 2×13, 13×2 (d) None of these
1 3 1 3 118. If AB=A, BA=B, then A = 2
(a) 2 , 2 (b) 2 , 2
(a) I (b) A
4 1 3 1 (c) B (d) None
(c) 3 , 2 (d) 4 , 2
112. Three lines 3x - y = 2, 5x + ay = 3 and
LM1 -1 OP LM
, B=
a 1 OP
, (A+B)2 =A2+B2,
2 x + y = 3 are concurrent, then a
119. If A =
N2 -1 Q N b -1 Q
(a) 2 (b) 3 then a =
(c) -1 d) -2 (a) -1 (b) 1
(c) 4 (d) -4.
( a h )2 sin(a h) – a 2 sin a
113. lim
h0 h
120. If A =
LM0 1OP
, then A4 =
(a) a2cos a + a sin a (b) a2 cos a + 2a sin a N1 0 Q
(c) 2a2 cos a + a sin a (d) none of these
114. The integrating factor of the different equation
LM1 0OP LM1 1 OP
dy
( x log x ) y 2 log x is given by
(a)
N0 1 Q (b)
N0 0 Q
dx
(c) M
L0 0O L0 1O
1 PQ
(d) M
0PQ
(a) ex (b) log x
(c) log(log x) (d) x N1 N1 .
OURS ACADEMY : Near Bus Stand, Rishi Nagar, Hisar. M. 9467134541, 9812130823
NDA MATH TEST-14 ANSWER KEY
1 D 26 A 51 A 76 C 101 D
2 A 27 B 52 D 77 A 102 B
3 D 28 A 53 D 78 A 103 B
4 A 29 C 54 B 79 A 104 B
5 D 30 B 55 B 80 D 105 C
6 A 31 B 56 D 81 D 106 D
7 B 32 A 57 C 82 B 107 A
8 A 33 D 58 B 83 C 108 D
9 B 34 B 59 D 84 A 109 B
10 C 35 B 60 D 85 C 110 D
11 B 36 C 61 B 86 C 111 B
12 B 37 B 62 A 87 A 112 D
13 A 38 C 63 D 88 A 113 B
14 C 39 D 64 C 89 A 114 B
15 D 40 C 65 B 90 A 115 A
16 A 41 C 66 B 91 A 116 C
17 B 42 D 67 B 92 C 117 A
18 D 43 D 68 C 93 B 118 B
19 B 44 A 69 B 94 D 119 B
20 A 45 B 70 B 95 D 120 A
21 B 46 D 71 B 96 A
22 D 47 B 72 C 97 C
23 B 48 A 73 C 98 B
24 A 49 B 74 C 99 C
25 A 50 A 75 C 100 C