0% found this document useful (0 votes)
12 views7 pages

T 18

Uploaded by

Ca Arun Singla
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
12 views7 pages

T 18

Uploaded by

Ca Arun Singla
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

OURS ACADEMY

 e 5 log x  e 4 log x   1 t2 
1.   e3log x  e 2 log x dx = 9. The area bounded by the curve x  a  1  t 2  ,
 
x3 x3 2at
(a) x + c (b) 3x2+c (c)  c (d) c y in sq. units is
3 2 1 t2
x  a2  a2 3 a 2
2.  x dx = (a)
2
(b)  a 2 (c)
4
(d)
2
(a) x  c (b) - x  c (c) |x| + c (d) x2 + c 10. The order and degree of the differential equation
of rectangular hyperbola is
e x 1  x e 1
3.  e x  x e dx  11.
(a) 2,2 (b) 3,2 (c) 1,2 (d) 1,1
The D.E whose solution is y  c sin x is
1 dy
(b) log e  x  c
x e
(a) log|ex+xe|+c (a)  y cot x (b) y2  y  0
e dx
1 dy dy
(c)  log e  x  c
x e
(d)  log e  x  c
x e
e (c)  y cos x (d)  y cos ecx
dx dx
sin 6 x
 cos8 x dx 
3 1/ 3
4.  d2y   dy 
12. Order and degree of 1   2 
 2  is
 dx   dx 
tan 7 x sec 7 x
(a) c (b) c (a) 2,3 (b) 2,9 (c) 2,6 (d) 2,2
7 7 13. If i+pj+k, 2i+3j+qk are like parallel vectors then
tan 7 x sec 7 x (p,q)=
(c) c (d) c
7 7  3 3 3 3 
k
1  (a)  2,  (b) (2,2) (c)  ,  (d)  ,2 

 dx   2 2 2 2 
5. 1  x2 6 then upper limit k= 14. The angle made by the vector 2i-3j+6k with X-
1/ 3
1 axis is
(a) 3 (b) (c) 1 (d) 2 + 3 (a) Cos 1 ( 2 / 7) (b) Cos 1 (3 / 7)
3
6. The sum of the roots of a equation is 2 and (c) Cos 1 (6 / 7) (d)   Cos 1 (3/ 7)
sum of their cubes is 98, then the equation is-
15. If  is the angle between the vectors 3i+2j+k
(a) x2 + 2x + 15 = 0
and 2i-3j, then the value of  is
(b) x2 + 15 x + 2 = 0
(a) 45 0 (b) 60 0 (c) 90 0 (d) 120 0
(c) 2x2 – 2x + 15 = 0
16. Angle between the planes 2x-y+2z =3,
(d) x2 – 2x – 15 = 0 3x+6y+2z=4 is

3
7. x cos xdx =
(a) Cos
41
(b) Cos
4
1

 21 441
(a)  (b)  2 (c) -  3 (d) 0 (c) Sin
1 4
(d) Sin
1 4

21 441
8. The area of the region bounded by the curve 17. If the distance between the points (k,2) and
y  x 3 , x-axis and the ordinates x=1, x=4 is (3,4) is 8 then k =
255 225 (a) 3  60 (b) 60 (c) - 60 (d) 57
(a) sq. units (b) sq. units 18. The point which is equidistant from the points
4 2
(a, 0, 0), (0, b, 0), (0, 0, c) and (0, 0, 0) is
125 124
(c)
3
sq. units (d)
3
sq. units (a) a , b, c  (b)  a, b, c 
a b c
(c) 2a ,2b,2c  (d)  2 , 2 , 2 
 

OURS ACADEMY:Near Bus Stand, Rishi Nagar, Hisar. M.9467134541,9812130823


OURS ACADEMY
19. A coin is tossed two times, then the probability of 31. Which of the following is not true, if A and B are
getting atleast one times head. two matrices each of order n x n, then
(a) 3/4 (b) 1/4 (c) 1/2 (d) 2/3. (a) ( A  B )'  B ' A' (b) ( A  B )'  A' B '
20. The mean of 10 numbers is 25. if 3 is added to (c) ( AB )'  A' B ' (d) ( ABC )'  C ' B ' A'
every number, then a new mean is
(a) 22 (b) 55 (c) 28 (d) none of these.  3 4 
32. If 5A =  4 x  and A AT = AT A=I then x=
21. sin[2 Sin-1 (3/5)] =  
(a) 24/25 (b) 12/25 (c) 48/25 (d) 6/25 (a) 3 (b) -3 (c) 2 (d) -2
 33. If A=( 1 2 3 4) and AB = (3 4 -1)then the order of
22. If Sin-1 x - Cos-1 x = then x = matrix B is
6
(a) 2×3 (b) 3×3 (c) 4×3 (d) 1×3
3 3
(a) 1/2 (b) (c) - 1/2 (d) -  1  2 
2 2  
34. If A    2 1  then minor of a is
8 5 31
23. If Cos-1 ( ) - Cos-1 ( ) = cos-1x then x 2 1  
17 13  
140 220 7 221 (a) -1 (b) 0 (c) 1 (d) -1
(a) (b) (c) (d)
221 221 11 220 a b c
24. If Cos-1 x + Cos-1 y + Cos-1 z =  then b c a
(a) x2 + y2 + z2 = 2xyz 35. =
(b) x2 + y2 + z2 + 2xyz = 0 c a b
(c) x2 + y2 + z2 + 2xyz = 1 (a) a3 + b3 + c3 (b) a3 + b3 + c3 - 3abc
(d) xy + yz + zx = xyz (c) 3abc - a - b - c
3 3 3
(d) 0
  1  1  36. The number of solutions of the equations of 2x
25. co s  co s  1     sin  1     
  7   7  + 5y = 11, 6x + 15y = 1 are ...
(a) 1 (b) 2 (c) 4 (d) 0
1 1 4 37. The equations
(a)  (b) 0 (c) (d)
3 3 9 2 x  4 y  z  0, x  2 y  2 z  5,3x  6 y  7 z  2 have
26. (Adj AT) = (a) unique solution
(a) (Adj A)T (c) Adj A (b) no solution
(c) A T
(d) Adj[A]1 (c) infinite number of solutions
(d) two solutions
27. A 3x3 is a non - singular matrix  A2 (Adj A) =
2 1 i 1 i 1
(a) A A (b) I (c) A I (d) A I
1 i i 1 i
 x  3 2 y  x 0  7 
38. is a
28. If  z  1 4a  z   3 2a , (x+y+z+a) = i 1 i 1 i
   
(a) -1 (b) 0 (c) 1 (d) 8 (a) real number (b) irrational number
(c) complex member (d) Purely imaginary
 1 2   3 3 
29. If A-2B =  3 0
 and 2A-3B =  1 1 then B = cos   Sin 0 
  
 Sin Cos 0 
 -5 7  -5 7   -5 7   -5 -7 
39. Let F(  )=  
(a)  5  (b)   (c)   (d)  
 1  -5 -1  5 -1   -5 -1   0 0 1 
2 3 4
where   R then, [F (  )]-1 is equal to
If A  4 5 6 (a) F(-  ) (b) F(  -1)
30. then 3A =
7 8 9  (c) F(2  ) (d) 0
 6 9 12  6 9 12 40. The value of K so that the system of equations
  4 5 6  x  ky  3 z  0, 3 x  ky  2 z  0,
(a) 12 15 18  (b) 
21 24 27 7 8 9  2 x  3 y  4 z  0 have non-zero solutions then
2 3 4  2 3 4 (a) 33/2 (b) -33/2
12 15 18  4 5 6  (c) 0 (d) 4
(c)   (d) 
 7 8  9 12 24 27

OURS ACADEMY:Near Bus Stand, Rishi Nagar, Hisar. M.9467134541,9812130823


OURS ACADEMY

 2 x  3  x 1  53. If y = xx + 2x then
dy
=
41. L im dx
x 1 2 x2  x  3 (a) xx.log(ex)+2x (b) xx + 2x log2
1 1 2 2 (c) xx.log(ex)+2x.log2 (d) xx - 2x log2
(a) (b)  (c) (d) 
10 10 5 5 dy 
54. If x=acos3t, y=asin3t then at t= is
x If x2 dx 3
 1
f  x  x  5 If 2  x  3 L im f  x   1
42. (a) 3 (b) (c)  3 (d)
x  7 If x3
x 3  3 3

(a) -2 (b) -4 (c) 0 (d) 1 55.
d
dx

sin 2 x  3 = 
sin 2  x  5  tan  x  5  cos 2 x  3  cos 2 x  3
L im  (a) (b)
43. x 5
x 2
 25   x  5  2x  3 2 2x  3
(a) 1 (b) 1/10 (b) 0 (d)-6 (c) 2 x  3 cos 2 x  3 (d) cos 2 x  3

Lim
1  3  5  .....  ( 2n  1) x a a
44. = x a
n 
2  4  6  ....  2n 56. If
1  b x a
and  2  then
(a) 0 (b) 1 (c) -1 (d) 5 b b x b x
x  log x
Lim d d
45. x  x  log x
=
(a) 1    2 (b) 1   3 2
(a) 1 (b) -1 (c) 0 (d) 2 dx dx
f  x  f 1 d
(c) 1   2 2 (d) 0
If f  x   x  x  1, then Lx
im 
2
46. dx
1 x 1 dy
(a) 3 (b) 0 (c) -1 (d) 2 57. If cosy=x.cos(a+y) then =
dx
1 cos 2 (a  y ) cos 2 (a  y )
47. The function defined by f (x)  x.sin (a) (b)
x sin a cos a
for x  0 ; =0 for x=0 is ............ at x = 0 cos a cos(a  y )
(a) continuous (b) right continuous (c) 2 (d)
sin ( a  y ) sin a
(c) left continuous (d) can not be determined
dy
sin 2 ax 58. If x=a(cost+log(tan t 2 )), y=asint then =
48. If the function f(x) = 2 for x  0, 1 for x=0 dx
x (a) sin t (b) cot t (c) tan t (d) tan2 t
is continuous at x = 0 then a = dy
1 1 59. If xy = yx then =
(a) ±1 (c) 
(b) 0 (d)  dx
2 3  y ( y  x log y ) y ( y  x log y )
49. The value of f(0) for the function f(x) = (a) x( y log x  x) (b) x( y log x  x)
e x  e x
so that it is continuous everywhere is  x( y log x  x) x( y log x  x)
x (c) y ( y  x log y ) (d) y ( y  x log y )
(a) 1 (b) 1/2 (c) 2 (d) 0
2 x 2  4 f '( x) d  1 2 x 1  x 2 
50. If f '(2) =2, f '' (2)=1 then L im  60. sin  sec 1 =
x 2 x2 dx  1 x2 1  x 2 
(a) 4 (b) 0 (c) 2 (d)  1 2 4 1
51. tan20º + 2 tan50º = (a) 2 (b) 2 (c) 2 (d)
1 x 1 x 1 x 1 x2
(a) tan 70º (b) cot 70º (c) sin 70º (d) tan 30º 61. The set of values of ‘x’ for which f(x) = cos x -
d  1 x  x is decreasing in
52. sin =
dx  a (a) (-  , 0) (b) (0,  ) (c) (-  ,  ) (d) 
1 1
(a) (b) 62.    is increasing in
2 2
a x a  x2
2

1 1 (a) (-5, 0) (b) (0, 5)


(c)
a2  x2
(d)
x2  a2 (c)   ,  5  5,   (d) (-5, 5)

OURS ACADEMY:Near Bus Stand, Rishi Nagar, Hisar. M.9467134541,9812130823


OURS ACADEMY

63. The point ont he curve y  3x 2  2x  5 at which e x  e x


the tangent is perpendicular to the line 72.  e x  e  x dx 
x  2y  3  0 (a) log | e x  e  x |  c (b) log | e x  e  x |  c
(a) (0, –5) (b) (0, 5) (c) (–5, 0) (d) (5, 0)
1 x 1 x
(c) log | e  e |  c (d) log | e  e |  c
x x
64. The angle between the curves y = x 3 and
2 2
y  e3(x 1) at (1, 1) is
 x.e
x2
   73. dx =
(a) 0 (b) (c) (d) 1 x2
6 4 2 e c
65. The maximum value of (a) e x 2  c (b)
2
sin(+ /6) + cos( + /6) is attained at
   
(c)  e x  c
2
(d) e x   c
2 2

(a) (b) (c) (d) ex


12 6 3 2 74.  x
(1  2 x) dx =
 cos x dx 
0
66. ex
 9a) xe +c (b) +c
x

(a) sin x0 + c (b) cos x 0  c x


180 (c) 2ex x +c (d) ex x + c
180
sin x  c
0
(d) 180 sin x  c 0
(c)
 Cot x dx 
4
 75.
  3  1
(a)  Cot x  Cot x  x  c
3
67.  1  Sin 2 xdx if x   ,
2 4


3
1
(a) Sin x-Cos x + c (b) Sinx + Cos x + c (b) Cot 3 x  Cot x  c
3
( Sin x  Cos x) 2 1
(c) Cos x-Sin x + c (d) c (c)  Cot x  Cot x  x  c
3

2 3
Sin10 x 1
(d)  Cot x  Cot x  c
3
68.  Cos12 x dx  3

2
tan11 x tan 10 x
 cos
5
(a) c (b) c 76. x. sin 2 xdx =
11 10 0
tan 9 x (a) 2/7 (b) 1/7 (c) -1/7 (d) 3/7
(c) 10 tan9x + c. (d) c a
10 1
1  tan x 77. a dx =
 1  tan x dx   x2
2
69. 0
(a)  /2 (b)  /3 (c)  /4 (d)  /4a
(a) log | 1  tan x |  c 
(b) log | 1  tan x |  c Tanx
78.  Secx  Cosx dx =
(c) log | sin x  cos x |  c 0

(d) log | sin x  cos x |  c (a)  (b)  2 (c) -  (d) 2 


ax
70.  1  a 2 x dx = 79. If cos + cos = 0 = sin + sin, then
cos2 + cos2 is equal to -
(a) –2sin ( + ) (b) –2cos ( + )
(a)
1
log a
 
sin 1 a x  c (b)
1
log a
sin h a x  c   (c) 2sin ( + ) (d) 2cos ( + )

  a   c
5
(c) sin 1 a x  c (d) log a sin 1 x
 x(5  x)
10
80 dx =
| x | dx 
3
71. 0

 x4 x| x |3 512 510
(a) +c (b) +c (a) (b)
4 4 132 132
x4 x3 132 .512
(c) +c (d) c (c) 132.512 (d)
4 3 3

OURS ACADEMY:Near Bus Stand, Rishi Nagar, Hisar. M.9467134541,9812130823


OURS ACADEMY
3 d 2 y  dy 
3
dx     3 y  x 2 is
81.  ( x  1)(3  x) = 92. Degree of
dx 2  dx 
1
(a) 4 (b) 2 (c) 3 (d) 1
(a)  (b) -  (c)  2 (d) 0
93. The D.E whose solution is y 2  3ay  x 3 is
2

82.  (| x |  | x  1 |) dx =
0
(a) x 3
 y2 
dy
dx
 3x 2 y (b) x 3
 y2 
dy
dx
 3 xy

(a) 1 (b) -1 (c) 2 (d) 3 dy dy


3
(c) x 3
 y
dx
 3 xy 2 (d) y 2
 x3 
dx
 3 xy
4
dy
83.  | cos x | dx = 94. The solution of
dx
 tan y is

4 (a) log sin x  2 x  c (b) log sin y  x  c
(a) 2 - 2 (b) 2 2 (c) 2 -1 (d) 2  1 (c) log sin y  2 x  c (d) log sin x  2 y  c
2 dx
6 95. I.F of y log y  x  log y is
84.  cos xdx = dy
 2 1
4 5  2 (a) log  log y  (b)
log y
(a) (b) (c) 15  (d) 1
5 4 4
(c) log y
 1  
(d) log log y

85.  1  x 2 dx  dy
96.  e x  y , x  1  y  1 then
(a) 0 (b) 1 (c) 2 (d) 3 dx
86. The area of the curve x  a cos3 t , x  1  y 
y  b sin 3 t in sq. units is 1
(a) 1 (b) e (c) 1 (d) e 
3 ab 3 ab  ab  ab e
(a) (b) (c) (d) 97. The differential equation of all straight lines in a
4 8 4 8
87. The area bounded by the parabola y  4 x and 2
plane passing through  0,1 is
its latusrectum is
(a) y  1  mx (b) y  m  x  1
8 3
(a) sq. units (b) sq. units
3 8 (c) y  xy1 (d) y  xy1  1
1 98. If a,  a are collinear and are in the same direction
(c) 12 sq. units (d) sq. units
3 then  is
88. The area bounded by the ellipse 3 x 2  2 y 2  6 (a) =0 (b) >0
with the co-ordinate axes in sq. units is (c) <0 (d) cannot be determined
 
(a) 6 (b) 8 (c) 12 (d) 3 99. Let A = 2iˆ + 3jˆ + 4k, ˆ AB = 5iˆ + 7jˆ + 6kˆ .

89. The area bounded by the parabola x  4  y 2 Then B =
and the Y-axis, in square units is ˆ ˆ
(a) -(7i+10j+10k) ˆ ˆ ˆ ˆ
(b) (7i-10j+10k)
(a) 3/32 (b) 32/3 (c) 33/2 (d) 16/4
ˆ ˆ ˆ
(c) (7i+10j-10k) ˆ ˆ
(d) (7i+10j+10k)ˆ
90. Area of the region bounded by y  x and y=2 is    
(a) 4 sq. units (b) 2 sq. units 100. If a.iˆ = a.(iˆ + ˆj) =a.(iˆ + ˆj + k)
ˆ then a=
1 (a) î (b) ˆj
(c) 1 sq . units (d) sq. units
2
2 (c) k̂ (d) ˆi + ˆj + kˆ
 dy  d2y
91. Order of  3 x  2 y     5 x  0 is
 dx  dx 2
(a) 2 (b) 1 (c) 4 (d) 3

OURS ACADEMY:Near Bus Stand, Rishi Nagar, Hisar. M.9467134541,9812130823


OURS ACADEMY
 
101. If a  iˆ  2 ˆj  kˆ , b  3iˆ  ˆj  2 kˆ then the 112. If the d.rs of two lines are given by the equations
    2l  m  2n  0 and mn  nl  lm  0 then the angle
angle between a  b and a  b is
between the two lines is
1  4  1 4  (a) 60o (b) 30o
(a) cos   (b) cos  
 91   91  (c) 45o (d) 90 o
 2  1   2 113. The d.r's of the line of intersection of the planes
(c) cos 1   (d) cos  91 
 91    x+y+z-1=0 and 2x+3y+4z-7= 0 are
ˆ ˆ ˆ ˆ ˆ ˆ
102. If the vectors 2 i  j  k , i  4 j   k are (a) 1, 2, -3 (b) 2, 1, -3
(c) 4, 2, -6 (d) 1, -2, 1
perpendicular then   114. The Probability distribution of a random variable
(a) 1 (b) 2 (c) -2 (d) 4 X is given by
103.  iˆ ˆj kˆ    ˆj kˆ iˆ    iˆ kˆ ˆj   X= x 0 1 2 3 4
      P(X = x) 0.4 0.3 0.1 0.1 0.1
(a) 1 (b) -1 (c) 2 (d) -3 The variance of X is
104. The volume of the tetrahedron whose vertices (a) 1. 76 (b) 2.45
are ( 2,1,1) (1,1,2) (0,1,1) and (1,2,1) is (c) 3.2 (d) 4.8
1 2 115. Two unbiased coins whose faces are marked 1
(a) cubic.units (b) cubic.units and 2 are tossed. The mean value of the total of
3 3 the numbers is
4 5 (a) 3 (b) 4 (c) 5 (d) 2
(c) cubic.units (d) cubic.units 116. The probability of getting atleast two heads when
3 3
   an unbiased coin is tossed three times is
105. (a  iˆ)  iˆ  (a  ˆj )  ˆj  (a  kˆ)  kˆ  1 1 1 1
    (a) (b) (c) (d)
(a) 2a (b)  2a (c) a (d)  a 4 3 2 8
106. A point of trisection of the line joining the points 117. If for a B.D. with n=12, the ratio of variance to
(-1, 2), (3,-4) is 1
(a) (1/3, 1) (b) (5/3, -2) mean is , then the probability of 10 successes is
3
(c) (1/3, 2) (d) (5/3, 11) 10 2 10 2
107. The centroid and two vertices of a triangle are 15 2 1 12 2 1
(a) C10     (b) C10    
(4,-8), (-9, 7), (1,4) then the area of the triangle  3  3  3 3
is 10 10
(a) 333 sq.units (b) 166.5 sq.units 2 1
(c)   (d)  
(c) 111 sq.units (d) 55.5 sq.units 3  3
108. Orthocentre of the triangle with vertices (4,1), 118. cos2 48° – sin2 12° =
(7,4), (5,-2) is
(a) (0,0) (b) (1,2) 5 1 5 1
(a) (b)
(c) (3/2, 3/2) (d) (2,1) 4 8
109. The points (a,b), (-a, -b), (b 3, a 3) are 3 1 3 1
(c) (d)
the vertices of a triangle which is 4 2 2
(a) Isosceles (b) Equilateral
(c) Right angled (d) Scalane 1  2 sin 2
FG   IJ
110. XOZ plane divides the join of (2,3,1) and (6,7,1) in 119. H4 K =
the ratio
(a) 3: 7 (b) 2 : 7 (c) -3 : 7 (d) -2 : 7 (a) cos 2 (b) – cos 2
111. The locus of a point whose distance from (c) sin 2 (d) – sin 2
(1, 2, 3) is equal to its distance from the xy-plane 120. cos 24º + cos 5º + cos 175º + cos 204º + cos
is 300º =
(a) x 2  y 2  z 2  2x  4 y  6z  14  0
3
(a) 1/2 (b) – 1/2 (c) (d) 1
(b) x 2  y 2  2x  14  0 2
(c) x 2  y 2  2 x  4 y  6z  14  0
(d) y 2  4 y  6x  14  0

OURS ACADEMY:Near Bus Stand, Rishi Nagar, Hisar. M.9467134541,9812130823


OURS ACADEMY

NDA MATH TEST-18 (Ans Key)


1 C 21 B 41 B 61 B 81 B 101 A
2 B 22 B 42 A 62 D 82 C 102 D
3 D 23 C 43 B 63 B 83 A 103 A
4 C 24 C 44 A 64 A 84 D 104 A
5 C 25 B 45 C 65 C 85 D 105 C
6 B 26 C 46 B 66 B 86 C 106 B
7 A 27 C 47 B 67 A 87 A 107 D
8 B 28 C 48 B 68 D 88 B 108 A
9 C 29 B 49 A 69 D 89 C 109 C
10 C 30 C 50 C 70 A 90 D 110 A
11 A 31 A 51 B 71 A 91 A 111 A
12 C 32 B 52 B 72 C 92 C 112 A
13 B 33 B 53 D 73 B 93 A 113 B
14 B 34 D 54 A 74 C 94 B 114 D
15 D 35 D 55 A 75 A 95 B 115 B
16 A 36 B 56 C 76 D 96 A 116 B
17 B 37 C 57 A 77 B 97 D 117 A
18 C 38 B 58 A 78 B 98 C 118 B
19 C 39 D 59 B 79 A 99 B 119 B
20 C 40 A 60 A 80 D 100 B 120 A

OURS ACADEMY:Near Bus Stand, Rishi Nagar, Hisar. M.9467134541,9812130823

You might also like