T 18
T 18
e 5 log x e 4 log x 1 t2
1. e3log x e 2 log x dx = 9. The area bounded by the curve x a 1 t 2 ,
x3 x3 2at
(a) x + c (b) 3x2+c (c) c (d) c y in sq. units is
3 2 1 t2
x a2 a2 3 a 2
2. x dx = (a)
2
(b) a 2 (c)
4
(d)
2
(a) x c (b) - x c (c) |x| + c (d) x2 + c 10. The order and degree of the differential equation
of rectangular hyperbola is
e x 1 x e 1
3. e x x e dx 11.
(a) 2,2 (b) 3,2 (c) 1,2 (d) 1,1
The D.E whose solution is y c sin x is
1 dy
(b) log e x c
x e
(a) log|ex+xe|+c (a) y cot x (b) y2 y 0
e dx
1 dy dy
(c) log e x c
x e
(d) log e x c
x e
e (c) y cos x (d) y cos ecx
dx dx
sin 6 x
cos8 x dx
3 1/ 3
4. d2y dy
12. Order and degree of 1 2
2 is
dx dx
tan 7 x sec 7 x
(a) c (b) c (a) 2,3 (b) 2,9 (c) 2,6 (d) 2,2
7 7 13. If i+pj+k, 2i+3j+qk are like parallel vectors then
tan 7 x sec 7 x (p,q)=
(c) c (d) c
7 7 3 3 3 3
k
1 (a) 2, (b) (2,2) (c) , (d) ,2
dx 2 2 2 2
5. 1 x2 6 then upper limit k= 14. The angle made by the vector 2i-3j+6k with X-
1/ 3
1 axis is
(a) 3 (b) (c) 1 (d) 2 + 3 (a) Cos 1 ( 2 / 7) (b) Cos 1 (3 / 7)
3
6. The sum of the roots of a equation is 2 and (c) Cos 1 (6 / 7) (d) Cos 1 (3/ 7)
sum of their cubes is 98, then the equation is-
15. If is the angle between the vectors 3i+2j+k
(a) x2 + 2x + 15 = 0
and 2i-3j, then the value of is
(b) x2 + 15 x + 2 = 0
(a) 45 0 (b) 60 0 (c) 90 0 (d) 120 0
(c) 2x2 – 2x + 15 = 0
16. Angle between the planes 2x-y+2z =3,
(d) x2 – 2x – 15 = 0 3x+6y+2z=4 is
3
7. x cos xdx =
(a) Cos
41
(b) Cos
4
1
21 441
(a) (b) 2 (c) - 3 (d) 0 (c) Sin
1 4
(d) Sin
1 4
21 441
8. The area of the region bounded by the curve 17. If the distance between the points (k,2) and
y x 3 , x-axis and the ordinates x=1, x=4 is (3,4) is 8 then k =
255 225 (a) 3 60 (b) 60 (c) - 60 (d) 57
(a) sq. units (b) sq. units 18. The point which is equidistant from the points
4 2
(a, 0, 0), (0, b, 0), (0, 0, c) and (0, 0, 0) is
125 124
(c)
3
sq. units (d)
3
sq. units (a) a , b, c (b) a, b, c
a b c
(c) 2a ,2b,2c (d) 2 , 2 , 2
2 x 3 x 1 53. If y = xx + 2x then
dy
=
41. L im dx
x 1 2 x2 x 3 (a) xx.log(ex)+2x (b) xx + 2x log2
1 1 2 2 (c) xx.log(ex)+2x.log2 (d) xx - 2x log2
(a) (b) (c) (d)
10 10 5 5 dy
54. If x=acos3t, y=asin3t then at t= is
x If x2 dx 3
1
f x x 5 If 2 x 3 L im f x 1
42. (a) 3 (b) (c) 3 (d)
x 7 If x3
x 3 3 3
(a) -2 (b) -4 (c) 0 (d) 1 55.
d
dx
sin 2 x 3 =
sin 2 x 5 tan x 5 cos 2 x 3 cos 2 x 3
L im (a) (b)
43. x 5
x 2
25 x 5 2x 3 2 2x 3
(a) 1 (b) 1/10 (b) 0 (d)-6 (c) 2 x 3 cos 2 x 3 (d) cos 2 x 3
Lim
1 3 5 ..... ( 2n 1) x a a
44. = x a
n
2 4 6 .... 2n 56. If
1 b x a
and 2 then
(a) 0 (b) 1 (c) -1 (d) 5 b b x b x
x log x
Lim d d
45. x x log x
=
(a) 1 2 (b) 1 3 2
(a) 1 (b) -1 (c) 0 (d) 2 dx dx
f x f 1 d
(c) 1 2 2 (d) 0
If f x x x 1, then Lx
im
2
46. dx
1 x 1 dy
(a) 3 (b) 0 (c) -1 (d) 2 57. If cosy=x.cos(a+y) then =
dx
1 cos 2 (a y ) cos 2 (a y )
47. The function defined by f (x) x.sin (a) (b)
x sin a cos a
for x 0 ; =0 for x=0 is ............ at x = 0 cos a cos(a y )
(a) continuous (b) right continuous (c) 2 (d)
sin ( a y ) sin a
(c) left continuous (d) can not be determined
dy
sin 2 ax 58. If x=a(cost+log(tan t 2 )), y=asint then =
48. If the function f(x) = 2 for x 0, 1 for x=0 dx
x (a) sin t (b) cot t (c) tan t (d) tan2 t
is continuous at x = 0 then a = dy
1 1 59. If xy = yx then =
(a) ±1 (c)
(b) 0 (d) dx
2 3 y ( y x log y ) y ( y x log y )
49. The value of f(0) for the function f(x) = (a) x( y log x x) (b) x( y log x x)
e x e x
so that it is continuous everywhere is x( y log x x) x( y log x x)
x (c) y ( y x log y ) (d) y ( y x log y )
(a) 1 (b) 1/2 (c) 2 (d) 0
2 x 2 4 f '( x) d 1 2 x 1 x 2
50. If f '(2) =2, f '' (2)=1 then L im 60. sin sec 1 =
x 2 x2 dx 1 x2 1 x 2
(a) 4 (b) 0 (c) 2 (d) 1 2 4 1
51. tan20º + 2 tan50º = (a) 2 (b) 2 (c) 2 (d)
1 x 1 x 1 x 1 x2
(a) tan 70º (b) cot 70º (c) sin 70º (d) tan 30º 61. The set of values of ‘x’ for which f(x) = cos x -
d 1 x x is decreasing in
52. sin =
dx a (a) (- , 0) (b) (0, ) (c) (- , ) (d)
1 1
(a) (b) 62. is increasing in
2 2
a x a x2
2
2 3
Sin10 x 1
(d) Cot x Cot x c
3
68. Cos12 x dx 3
2
tan11 x tan 10 x
cos
5
(a) c (b) c 76. x. sin 2 xdx =
11 10 0
tan 9 x (a) 2/7 (b) 1/7 (c) -1/7 (d) 3/7
(c) 10 tan9x + c. (d) c a
10 1
1 tan x 77. a dx =
1 tan x dx x2
2
69. 0
(a) /2 (b) /3 (c) /4 (d) /4a
(a) log | 1 tan x | c
(b) log | 1 tan x | c Tanx
78. Secx Cosx dx =
(c) log | sin x cos x | c 0
a c
5
(c) sin 1 a x c (d) log a sin 1 x
x(5 x)
10
80 dx =
| x | dx
3
71. 0
x4 x| x |3 512 510
(a) +c (b) +c (a) (b)
4 4 132 132
x4 x3 132 .512
(c) +c (d) c (c) 132.512 (d)
4 3 3
82. (| x | | x 1 |) dx =
0
(a) x 3
y2
dy
dx
3x 2 y (b) x 3
y2
dy
dx
3 xy