0% found this document useful (0 votes)
26 views7 pages

Ours Academy: Nda Math Test-16

Uploaded by

Ca Arun Singla
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
26 views7 pages

Ours Academy: Nda Math Test-16

Uploaded by

Ca Arun Singla
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

OURS ACADEMY

NDA MATH TEST-16


1. Equation of the parabola whose vertex is the 11. If A, B are symmetric matrices of the same order
origin, axis along the x axis and which passes then AB-BA is
through the point (-2, 4) is (a) symmetric matrix (b) skew symmetric matrix
(a) y 2  8 x (b) y 2  12 x (c) Diagonal matrix (d) identity matrix
12. A 3x3 is a non - singular matrix  A2 (Adj A) =
(c) y 2  8 x (d) x 2  y
2
2. When the eccentricity tends to zero, then the (a) A A (b) I (c) A I (d) A I
equation of ellipse becomes
 Cos Sin 
(a) a parabola (b) a circle 13. If A =  Sin 
Cos 
then A . A =

(c) an ellipse (d) a hyperbola
(a) A   (b) A (c) A  A (d)I
3. Equation of the ellipse with vertices (5,0) foci
(4,0) is a 0 0
0 a 0
x2 y2 x2 y2 14. If A =   then An =
(a)  1 (b)  1  0 0 a 
25 9 32 16
(a) an. A (b) an-1.A
x2 y2 x2 y2
(c)  7 (d)  1 (c) an+1.A (d) a3nI
25 7 25 12

4. The eccentricity of the ellipse


x2 y 2
 1 is
2 x  3 x  2
9 16  3 2 1 
5 15. If A=  is a symmetric matrix
7 7 7  4 1 5 
(a) (b) 4(c) (d)
16 4 2
5. Equation of the hyperbola with vertex (4,0) and then x=
focus (6,0) is (a) 0 (b) 3 (c) 6 (d) 8
x 2 y2 x 2 y2  o pq p  r
(a)  1 (b)  1 
16 20 20 16 q  r 
16. Det  q  p o
=
x 2
y 2
x y2 2  r  p r q o 
(c)  1 (d)  1
16 36 36 16 (a) (p-q) (q-r) (r-p) (b) 0
6. The vertices of the hyperbola are 2, 0 and (c) pqr (d) 4 pqr
the foci are 3, 0 then its equation is  0 c  b
2 2  c 0 a 
x 2 y2 x y If A =   then (a2+b2+c2) A =
(a)  1 (b)  1 17.
5 4 4 5  b  a 0 
x 2 y2 x 2 y2 (a) abc (b) a + b + c
(c)  1 (d)  1
5 2 2 5 (c) (a3 + b3+c3) (d) 0
7. cos[Sin-1 (2 cos2  - 1) + Cos-1 (1 - 2sin2  )] =
1
 18. The real part of is
(a) 0 (b) 1 (c) -1 (d) 1 – cos   i sin 
2
tan  1 1
3 (a) 2 (b) (c) (d)
8. Sin-1( ) - Tan-1(- 3) = 2 2 1 – cos 
2
19. The number of solutions of the equations
(a) -  /3 (b) 2  /3 (c)  /6 (d) 0
2x - 3y = 5, x + 2y=7 is ....
 (a) 1 (b) 2 (c) 4 (d) 0
9. If Sin-1 x - Cos-1 x = then x =
6
1  sin x  sin 2 x  1
20. L im =
3 3 x 0 x
(a) 1/2 (b) (c) - 1/2 (d) -
2 2 (a) 0 (b) 1 (c) 2 (d) 1/2

10.
  1  1 
cos  cos 1     sin 1      21. lim[ x  [ x]] 
  7  7  x 1

1 1 4 (a) 1 (b) -1 (c) 0 (d) does not exist


(a)  (b) 0 (c) (d)
3 3 9
OURS ACADEMY : Near Bus Stand, Rishi Nagar, Hisar. M. 9467134541, 9812130823
OURS ACADEMY
sin 1 ax  sin 1 bx d
22. L im  31. { xtanx } =
x 0 x dx
(a) 0 (b) 1 (c) a  b (d) a  b  tan x
x tan x 

 sec2 x. log x 
(a)
 x 
Lim
2n  1  tan x 
23. = (b) x tan x   sec 2 x. log x 
n 
2n  1  x 
 x 
1 (c) x tan x   sec 2 x.log x 
(a) 1 (b) (c)-1 (d) 0  tan x 
2  x 
(d) x tan x   sec 2 x. log x 
f  x  3  tan x 
If f  9   9, f  9   4, L im 
1
24.
x 9 x 3 32.    is increasing in
1 1 1 (a) (-5, 0) (b) (0, 5)
(a) 4 (b) (c) (d) 
4 2 2
(c)   ,  5  5,   (d) (-5, 5)
25. A lin e passes through (2,2) and is
perpendicular to the line 3x + y = 3 its y 33. If z 1 ,z 2 ,z 3 represent the vertices of a n
intercept is equilateral triangle such that |z1| = |z2| = |z3|,
then
(a) 4/3 (b) 1
(a) z1+z2 = z3 (b) z1+z2+z3 = 0
(c) 2/3 (d) 1/3
(c) z1z2 = 1/z3 (d) z1–z2 = z3–z2
d  3x  5  34. The slope of the tangent at (1, 6) on the curve
26.  =
dx  2 x  3 
2x 2  3y 2  5 is
19 14
(a) 2 (b) 1 1
( 2 x  3) ( 2 x  3) 2 (a) –9 (b) (c) (d) 9
9 9
 19 1 35. If the displacement in time t of a particle is
(c) 2 (d) 2 given by s = ae t + be-t, then the acceleration
( 2 x  3) ( 2 x  3)
is equal to
1    dy (a) velocity (b) displacement
27. If y= Tan  cot 2  x   then =
   dx (c) initial velocity (d) aet
1  x 2 x3 
(a) 1 (b) -1 (c) 0 (d)
2 36.  
 1  x    .........dx 
2! 3! 
dy (a) ex +c (b) -ex + c
28. If x = at2, y = 2at then 
dx ex ex
(a) 1/t (b) t (c) t 2
(d) 1 (c) c (d)  c
2 2
d
29 [log{log(logx)}]= 1
dx 37.  Cos 2 x  sin 2
x
dx 
1 1
(a) x log x log(log x) (b) x log x log(log x) (a) tan x + c (b) cot x + c
2
tan x cot 2 x
x 1 (c) c (d) c
(c) log x log(log x) (d) log x log(log x) 2 2

0 cos
3
38. x dx 
 5 
d  3 log 3 ( 2 x 1) 
30. 3 = (a) –1 (b) 0 (c) 1 (d) 
dx  
 1
 10 10
39.  (1  e x
)(1  e  x )
dx 

(a) 8 (b) 8
1
3( 2 x  1) 3
3( 2 x  1) 3
(a)
1
c (b)  c
1 ex 1  ex
1 1
(c) (d) 1 1
(2 x  1)
8
3
(2 x  1)
8
3 (c)  c (d) c
1 ex 1  ex

OURS ACADEMY : Near Bus Stand, Rishi Nagar, Hisar. M. 9467134541, 9812130823
OURS ACADEMY
49. If k is the diameter of a circle and A is the
x2 1
 x  12 dx = area of a sector of the circle whose vertical
x
40. e
angle is q then dA/dt =
k 2  d   k 2   d 
 x 1 
x  x 1
x (a)   (b)   
(a) e  + c (b) e   +c 8  dt   4   dt 
 x 1  x 1  d  d 
(c) (d) k 
x x 1 x 1 dt  dt 
(c) e c (d) e
x
+c
(x 1)2 ( x  1) 2 50. A line makes an angle  ,  ,  with the X,Y,Z
axes Then sin 2   sin 2   sin 2  =
tan 1 x
1

41. 0 1  x 2 dx = (a) 1 (b) 2 (c) 3/2 (d) 4


2
–2 ( a x
3
2 2 2 2 51. The value of  bx  c )dx 
(a) (b) (c) (d) 1
4 18 32 8 dpends on
 (a) b (b) c
2 (c) a (d) a and b
1
42.  1  Cotx dx = 52. If a = 2i+j+2k and b = 5i-3j+k, then the projection
0 of b on a is
(a) 1 (b) 2 (c) 3 (d) 4

(a)  (b)  2 (c)  4 (d) 53. The angle between any two diagonals of a cube
6 is equal to

  x  2  x  5  dx (a) Cos 1 (1 / 2) (b) Cos 1 (1 / 4)


5
43.
2
(a) 0 (b) 3 (c) 9/2 (d) 9 (c) Cos 1 (1 / 3) (d) Cos 1 (1 / 5)
44. The area bounded by the curve y  cos x , x- 54. The distance between the points
axis between the ordinates x  0, x  2 is (sin  , cos  ) and (cos  , -sin  ) is
(a) 1 sq. unit (b) 4 sq. units (a) 1 (b) 2 (c) 2 (d) 6
2 55. If the extremities of a diagonal of a square are
(c) sq, units (d) 2 sq. units
3 (1, -2, 3) and (2, -3, 5) then the length of its
45. The area bounded by the two parabolas side is
y 2  8 x and x 2  8 y is (a) 6 (b) 3 (c) 5 (d) 7
64 56. A card is drawn at random from a pack of 52
(a) 64 sq. units (b) sq, units cards. What is the probability that the card drawn
3 is red or queen?
32 1 (a) 1/13 (b) 1/26 (c) 7/13 (d) 1/2.
(c) sq. units (d) sq. units 57. What is the probability that on ordinary year has
3 3
53 sunday?
46. The type of D.E 1  y 2  dx   tan 1 y  x  dy is (a) 53/365 (b) 1/7
(a) Linear in x (b) Bernoulli (c) 2/7 (d) 48/53.
(c) Linear in y (d) Homogenious 58. Average of six numbers is 4 but when we divides
every number by two, then new mean is :
47. The D.E whose solution is y  ax 2  bx  c is (a) 2 (b) 4 (c) 6 (d) 8.
(a) y3  y (b) y3  x 59. What is average of 1 , 2 , 3 , ..., 203?
3 3 3

(a) 2215 (b) 2205 (c) 2202 (d) 2212


(c) y3  0 (d) y2  0 60. The mean of first n odd natural numbers is
dy (a) 2n - 1 (b) n
48.  e 2 y , x  5  y  0, then y  3  2 x  (c) 1/n (d) None of these.
dx
(a) e5  9 (b) e 6  9 x2  x
61. L im 
(c) e8  9 (d) e 4  9 x 1 x 1
(a) 1 (b) 2 (c) 3 (d) 4

OURS ACADEMY : Near Bus Stand, Rishi Nagar, Hisar. M. 9467134541, 9812130823
OURS ACADEMY
1  x  x2  1 72. If f  2   4 and f '  2   1, then
62. L im 
x
xf  x   2 f  x 
x 0

lim 
(a) 1 (b) 1/2 (c) 1/3 (d) 0 x 2 x2
(a) 2 (b) 1
x If x2 (c) 4 (d) 3

f  x  x  5 If 2 x3 L im f  x   d  2 2 
63.
x  7 x 3 73 log( x  a  x )  =
 If x3 dx  
1 x
(a) -2 (b) -4 (c) 0 (d) 1 (a) (b)
(x  a2  x2 ) a2  x2
tan x  sin x 1
64. L im  1
x 0 x3 (c) 2 2 (d)
x( x  a  x ) a  x2
2

1 1 1 74. If s = e t (sint - cost), then the acceleration is


(a) 1 (b) (c) (d)  (a) 2et (Cost - sint) (b) 2et (cost + sint)
2 4 3
(c) e t (cost + sint) (d) e t (cost-sint)
75. The equation of the normal to the curve y 2  4ax
log 1  ax   log 1  bx 
65. L im  at the origin is
x 0 x
(a) x = 0 (b) x = 2 (c) y = 0 (d) y = 2
If the curves ay  x 2  7 and x 3  y cut
(a) a  b (b) a  b (c)   a  b  (d) ab 76.
orthogonally at (1, 1) then a =

d  log 1 cot 2 x 
1
66. e = (a) 1 (b) – 6 (c) 6 (d)
dx   6
(a) cosecx cotx (b) -cosecx.cotx
77. 42  42  42  ... 
(c) cosec2x.cotx (d) 0
x x dy
67. If y= a .e then = (a) 7 (b)-6 (c) 5 (d)4
dx
(a) y(1+loga) (b) y2(1+loga)  1 4  2  1  4 7
78. If A =   B  then  3 4 is
(c) -y(1+loga) (d) y(1-loga)  1 1  1 2   
1 x2 1 dy (a) 2A + B (b) A - B (c) AB (d) A - 2B
68. If y= Tan 1 then =
x dx 0 1
79. If A   , then A4 =
(a)
1
(b)
1
(c)
1
(d)
2 1 0
1 x2 1 x2 2(1  x 2 ) 1  x2 (a) I (b) 0 (c) A (d) 4 I
dy  cos  sin  
69. If x = at2, y = 2at then  80. If A ()    then A ( ) A () =
dx   sin  cos  
(a) 1/t (b) t
(c) t2 (d) 1
70. The derivative of ax w.r.t. sin-1x is (a) A ( )  A () (b) A ( )  A ()
(c) A (  ) (d) A (  )
a x . log e a
(a) a x . log a 1  x 2 (b) 1 1 1
e 1  x2 x y z
81. =
ax  ax x3 y3 z3
(c) (d)
1 x2 1 x2 (a) (x+y+z) (x+y) (y+z)(z+x)
dy (b) (x+y+z)(x-y)(y-z) (z-x)
71. If ax2 + 2hxy + by2 = 0 then =
dx (c) (x-y) (y - z) (z -x)
 ax  hy   ax  hy  (d) (x+y) (y+z) (z+x)
(a) -  hx  by  (b)  hx  by  82. If 15Pr = 32760, then r =
   
(c) -(ax+hy)(hx+by) (d) (ax+hy)(hx+by) (a) 4 (b) 5
(c) 6 (d) 7

OURS ACADEMY : Near Bus Stand, Rishi Nagar, Hisar. M. 9467134541, 9812130823
OURS ACADEMY
83. For a binomial distribution n = 20, q = 0.75. The  1  Sin x 
 e  1  Cos x  dx =
x
mean of the distribution is 92.
(a) 10 (b) 15 (c) 5 (d) 20
84. If a random variable x has the following probability
x x
distribution X  xi :0 1 2 3 , (a) ex Tan +c (b) - ex Cot +c
2 2
P X  xi  : 2 K 2 3K 2 5 K 2 6 K 2
x x
then the value of K is (c) ex csc2 + c (d) e-x cot + c
2 2
1 1 1 1
(a) (b) (c)  (d)
e cos x dx 
log x
4 4 4 2 93.

85.  (sin-1x + Cos-1x)2 dx =


(a) x Sinx  Cosx  c
x
Sinx  Cos2 x  c
(b)
x x 2
 2x
(a) 0 (b) +c (c) c (d) c (c) x Sin x  Cos x  c (d) x Sin x  Sin x  c
4 4 2
 x.e dx 
x
1  Sin x 94.
86.  1 Sin x dx 
. x c
(a) xe (b) e x ( x  1)  c
(a) 2 tan x - 2 Sec x - x + c
(b) 2 tan x - Secx - x + c (c) e x ( x  1)  c (d) e x ( x  2)  c
(c) tan x + 2 Sec x + x + c  x4 
 e  x  6  dx =
x
(d) tan x - 2 Sec x + x + c 95. 3

 e5 log x  e 4 log x  ex 1
87.   e3log x  e 2 log x dx = (a)
(x6)2
c (b)ex
(x4)2
c
(a) x + c (b) 3x2+c x 4
(c) ex c (d) ex +c
x3
x 3 x6 ( x  6) 2
(c) c (d) c
3 2 e x (1  x)
96.  Cos 2 ( xe x ) dx =
x2
88.  1  x6
dx =
(a) Tan (xex) + c (b) Sec 2 (ex x )  c
(c) Cos(xe ) + c x
(d) Cot(xex) + c
1 1
(a) Sin-1 (x(c) + c (b) Cos-1 (x(c) + c
 x cos
3
3 3 97. x 2 . sin x 2 dx =

1 1 1 4 2 1
(c) - Sin-1 (x(c) + c (d) Cos-1 (x(c) + c (a) sin x  c (b) cos 4 x 2  c
3 4 8 8
1 1 1 4 2
89.  (1  e x
)(1  e  x )
dx 
(c)  cos x  c
4 2
(d) - sin x  c
8 8
1 1
c (b)  c dx
(a)
1 ex 1  ex 98. 1 e x =
1 1
(c)  c (d) c (a) 1  e x  c (b) 1 / 2  (1  e x )  c
1 ex 1  e x
 1  x
1
(c) log (1  e x )  c (d) 1 / 2 log (1  e x )  c
90.  1  x 2 .e x dx 
1 1
99.  cos 7 x. cos 3x dx =
(b) 1  2  c
x
(a) e x
c Sin10 x Sin8 x
x (a)  c
4 6
1 1
(d) 1  2  c
x
(c) e x
c 1
x (b) [2 Sin10 x  5Sin 4 x ]  c
40
e (Cot x  Cot 2 x ) dx 
x
91.
1
(a) ex(cot x) + c (b) ex (1-cot2 x) + c (c) [2Cos10 x  5Cos 4 x]  c
40
(c) ex cot2 x + c (d) ex (cot x + (a) + c
(d) [ 2Cos10 x  5Cos 4 x ]  c

OURS ACADEMY : Near Bus Stand, Rishi Nagar, Hisar. M. 9467134541, 9812130823
OURS ACADEMY

 x2 x3  110. In a throw of a coin, the probability of getting tail


100.  
1  x    .........dx 
2! 3! 
is :
(a) ex +c (b) -ex + c (a) 1/2 (b) 1/4 (c) 1 (d) none
111. What is the probability that on ordinary year has
ex ex
(c) c (d)  c 53 sunday?
2 2
(a) 53/365 (b) 1/7
101. If  is an acute angle between the lines
(c) 2/7 (d) 48/53.
y=2x+3, y=x+1 then the value of tan  =
112. In a simultanous throws of two dice, what is the
2 1 3 1 probability of getting a doublet?
(a) (b) (c) (d)
3 3 4 2 (a) 1/6 (b) 1/4
 2 x  3  x 1  (c) 3/4 (d) 2/3.
102. L im 113. In a simultaneous throw of two dice, what is the
x 1 2x  x  3
2
probability of getting a total of 10 or 11?
1 1 2 2 (a) 7/12 (b) 5/36
(a) (b)  (c) (d) 
10 10 5 5 (c) 1/6 (d) 1/4.
5 5
114. The probability that a leap year selected at
x8  a8
103. L im 1 1
 random will contain 53 sunday is :
xa
x a3 3
(a) 1/7 (b) 2/7
15 247 15 247 (c) 2/366 (d) 3/366.
(a) a (b) a 115. If E and F are independent events such that P(E)
8 4
= 0.7 and P(F) = 0.3, then P(E  F) is :
15 247 15  247
(c)  a (d) a (a) 0.4 (b) 1 (c) 0.21 (d) none
8 4
116. A bag contains 5 blue and 4 black balls. Three
3 5 x balls are drawn at random. What is the probability
104. L im 
x4 x4 that 2 is blue and 1 is black?
1 1 1 1 (a) 1/3 (b) 2/5 (c) 1/6 (d) none.
(a)  (b) (c) (d)  117. The mean or average number of heads when
5 6 5 6
we toss 10 unbiased coins is
sin x (a) 20 (b) 10 (c) 5 (d) 15
105. Lx 
im
0 | x|
=
118. A random variable x has the following probability
(a) 0 (b) – 1
distribution X  x : 1 2 3 4 then
(c) 1 (d) does not exist
P X  x  k 2k 3k 4k
tan x  sin x the value of K is
106. L im 
x 0 x3 1 1 1
(a) 10 (b) (c) (d)
1 1 1 10 5 15
(a) 1 (b) (c) (d)  119. If x is a random variable with the following probability
2 4 3
distribution X  x : 3 6 9 then E(x) =
107. A coin is tossed two times, then the probability
1 1 1
of getting atleast one times head. P  X  xi  :
6 2 3
(a) 3/4 (b) 1/4 (c) 1/2 (d) 2/3.
11 11 11
108. A card is drawn at random from a pack of 52 (a) 11 (b) (c) (d)
2 3 4
cards. What is the probability that the card drawn
120. If a random variable x has the following probability
is red or queen?
distribution X  xi :0 1 2 3 , then the
(a) 1/13 (b) 1/26 (c) 7/13 (d) 1/2.
P X  xi  : 2K 2 3K 2 5K 2 6K 2
109. A bag contains 5 red and 3 yellow ball, two balls value of K is
are drown at a time, the probability of both red
1 1 1 1
balls. (a) (b) (c)  (d)
4 4 4 2
(a) 5/8 (b) 3/28 (c) 1/14 (d) 5/14.

OURS ACADEMY : Near Bus Stand, Rishi Nagar, Hisar. M. 9467134541, 9812130823
NDA MATH TEST-16 ANSWER KEY
1 D 26 A 51 D 76 B 101 B
2 B 27 A 52 C 77 A 102 B
3 A 28 A 53 C 78 A 103 A
4 C 29 A 54 B 79 A 104 D
5 A 30 A 55 B 80 D 105 D
6 B 31 A 56 C 81 B 106 B
7 A 32 C 57 B 82 A 107 A
8 B 33 B 58 A 83 C 108 C
9 B 34 B 59 B 84 C 109 D
10 B 35 B 60 B 85 B 110 A
11 B 36 A 61 C 86 A 111 B
12 A 37 A 62 B 87 C 112 A
13 A 38 B 63 B 88 A 113 B
14 B 39 C 64 B 89 C 114 B
15 C 40 A 65 B 90 A 115 C
16 B 41 C 66 B 91 D 116 D
17 D 42 C 67 A 92 B 117 C
18 C 43 D 68 C 93 C 118 B
19 A 44 B 69 A 94 B 119 B
20 D 45 B 70 A 95 A 120 C
21 C 46 A 71 A 96 A
22 C 47 C 72 C 97 C
23 A 48 B 73 D 98 C
24 A 49 A 74 B 99 B
25 A 50 B 75 C 100 A

You might also like