0% found this document useful (0 votes)
18 views150 pages

uPD720201 202

The document is a user's manual for the USB3.0 Host Controller, specifically the PD720201/PD720202 models, detailing hardware capabilities and specifications. It includes information on device handling precautions, pin functions, register information, and power management. The manual is intended for engineers familiar with electronics and microcomputers, providing guidance on developing application systems based on the controller.

Uploaded by

dinhdtd
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
18 views150 pages

uPD720201 202

The document is a user's manual for the USB3.0 Host Controller, specifically the PD720201/PD720202 models, detailing hardware capabilities and specifications. It includes information on device handling precautions, pin functions, register information, and power management. The manual is intended for engineers familiar with electronics and microcomputers, providing guidance on developing application systems based on the controller.

Uploaded by

dinhdtd
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 150

PD720201/PD720202

User’s Manual: Hardware

USB3.0 HOST CONTROLLER

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Rev.2.00 Mar 2012


NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected
wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH
(MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the
device when the input level is fixed, and also in the transition period when the input level passes through the
area between VIL (MAX) and VIH (MIN).
(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If
an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc.,
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS
devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be
connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling
related to unused pins must be judged separately for each device and according to related specifications
governing the device.
(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction
of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of
static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control
must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators
that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static
container, static shielding bag or conductive material. All test and measurement tools including work benches
and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor
devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with
mounted semiconductor devices.
(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device.
Immediately after the power source is turned ON, devices with reset functions have not yet been initialized.
Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not
initialized until the reset signal is received. A reset operation must be executed immediately after power-on
for devices with reset functions.
(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal
operation and external interface, as a rule, switch on the external power supply after switching on the internal
power supply. When switching the power supply off, as a rule, switch off the external power supply and then
the internal power supply. Use of the reverse power on/off sequences may result in the application of an
overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements
due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for
each device and according to related specifications governing the device.
(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while
the device is not powered. The current injection that results from input of such a signal or I/O pull-up power
supply may cause malfunction and the abnormal current that passes in the device at this time may cause
degradation of internal elements. Input of signals during the power off state must be judged separately for
each device and according to related specifications governing the device.
USB logo is a trademark of USB Implementers Forum, Inc.
Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States
and/or other countries.
PREFACE

Readers This manual is intended for engineers who need to be familiar with the capability
of the PD720201/PD720202 in order to develop application systems based on
it.

Purpose The purpose of this manual is to help users understand the hardware capabilities
(listed below) of the PD720201/PD720202.

Configuration This manual consists of the following chapters:

 Overview
 Pin function
 Register information
 Power management
 How to connect to external elements
 How to access external ROM
 FW download interface
 Battery charging function

Guidance Readers of this manual should already have a general knowledge of electronics,
logic circuits, and microcomputers.

Notation This manual uses the following conventions:


Data bit significance: High-order bits on the left side;
low-order bits on the right side
Active low: XXXXB (Pin and signal names are suffixed with B.)
Note: Explanation of an indicated part of text
Caution: Information requiring the user’s special attention
Remark: Supplementary information
Numerical value: Binary ... xxxx or xxxxb
Decimal ... xxxx
Hexadecimal ... xxxxh

Related Document Use this manual in combination with the following document.
The related documents indicated in this publication may include preliminary
versions. However, preliminary versions are not marked as such.

 PD720201/PD720202 Data Sheet: ISG-NK1-1100028


CONTENTS

1. Overview..............................................................................................................................................1
1.1 Features....................................................................................................................................1
1.2 Applications .............................................................................................................................2
1.3 Ordering Information...............................................................................................................2
1.4 Block Diagram .........................................................................................................................2
1.5 Pin Configuration (TOP VIEW) ...............................................................................................4

2. Pin Function ........................................................................................................................................6


2.1 Power supply ...........................................................................................................................6
2.2 Analog Signal...........................................................................................................................6
2.3 System clock............................................................................................................................6
2.3.1 System Interface signal ........................................................................................................... 7
2.3.2 PCI express Interface.............................................................................................................. 7
2.3.3 USB Interface .......................................................................................................................... 8
2.3.4 SPI Interface.......................................................................................................................... 10

3. Register Information ........................................................................................................................11


3.1 Register Attributes ................................................................................................................11
3.2 PCI Configuration Space ......................................................................................................12
3.2.1 PCI Type 0 Configuration Space Header .............................................................................. 12
3.2.1.1 Vendor ID Register .......................................................................................... 14
3.2.1.2 Device ID Register ........................................................................................... 14
3.2.1.3 Command Register .......................................................................................... 14
3.2.1.4 Status Register ................................................................................................ 15
3.2.1.5 Revision ID Register ........................................................................................ 16
3.2.1.6 Class Code Register ........................................................................................ 16
3.2.1.7 Cache Line Size Register ................................................................................ 16
3.2.1.8 Latency Timer Register.................................................................................... 17
3.2.1.9 Header Type Register...................................................................................... 17
3.2.1.10 BIST Register................................................................................................... 17
3.2.1.11 Base Address Register #0 ............................................................................... 17
3.2.1.12 Base Address Register #1 ............................................................................... 18
3.2.1.13 Subsystem Vendor ID Register........................................................................ 18
3.2.1.14 Subsystem ID Register .................................................................................... 18
3.2.1.15 Capabilities Pointer Register............................................................................ 18
3.2.1.16 Interrupt Line Register ..................................................................................... 19
3.2.1.17 Interrupt Pin Register ....................................................................................... 19
3.2.1.18 Min_Gnt Register ............................................................................................. 19
3.2.1.19 Max_LAT Register ........................................................................................... 19
3.2.1.20 Serial Bus Release Number Register (SBRN) ................................................. 19
3.2.1.21 Frame Length Adjustment Register (FLADJ) ................................................... 20
3.2.2 PCI Power Management Capabilities.................................................................................... 21
3.2.2.1 Capabilities List Register ................................................................................. 21
3.2.2.2 Power Management Capabilities Register (PMC)............................................ 21
3.2.2.3 Power Management Status / Control Register (PMSC) ................................... 22
3.2.3 MSI Capabilities .................................................................................................................... 24
3.2.3.1 Capabilities List Register for MSI ..................................................................... 24
3.2.3.2 Message Control for MSI ................................................................................. 24
3.2.3.3 Message Address for MSI................................................................................ 24
3.2.3.4 Message Upper Address for MSI ..................................................................... 24
3.2.3.5 Message Data for MSI ..................................................................................... 25
3.2.3.6 Mask Bits for MSI............................................................................................. 25
3.2.3.7 Pending Bits for MSI ........................................................................................ 25
3.2.4 MSI-X Capabilities................................................................................................................. 26
3.2.4.1 Capabilities List Register for MSI-X ................................................................. 26
3.2.4.2 Message Control for MSI-X.............................................................................. 26
3.2.4.3 Table Offset / Table BIR for MSI-X .................................................................. 26
3.2.4.4 PBA Offset for MSI-X ....................................................................................... 27
3.2.5 PCI Express Extended Capabilities....................................................................................... 28
3.2.5.1 PCI Express Capabilities List Register............................................................. 28
3.2.5.2 PCI Express Capabilities Register ................................................................... 28
3.2.5.3 Device Capabilities Register ............................................................................ 28
3.2.5.4 Device Control Register ................................................................................... 29
3.2.5.5 Device Status Register .................................................................................... 30
3.2.5.6 Link Capabilities Register ................................................................................ 31
3.2.5.7 Link Control Register ....................................................................................... 31
3.2.5.8 Link Status Register......................................................................................... 33
3.2.5.9 Device Capabilities 2 Register ......................................................................... 33
3.2.5.10 Device Control 2 Register ................................................................................ 33
3.2.5.11 Device Status 2 Register ................................................................................. 34
3.2.5.12 Link Capabilities 2 Register ............................................................................. 34
3.2.5.13 Link Control 2 Register .................................................................................... 34
3.2.5.14 Link Status 2 Register...................................................................................... 35
3.2.6 RENESAS Specific Registers................................................................................................ 36
3.2.6.1 FW Version Register........................................................................................ 36
3.2.6.2 PHY Control 0 Register.................................................................................... 36
3.2.6.3 PHY Control 1 Register.................................................................................... 36
3.2.6.4 PHY Control 2 Register.................................................................................... 36
3.2.6.5 Host Controller Configuration (HCConfiguration) Register............................... 38
3.2.6.6 External ROM Information Register ................................................................. 40
3.2.6.7 External ROM Configuration Register.............................................................. 40
3.2.6.8 FW Download Control and Status Register ..................................................... 40
3.2.6.9 External ROM Access Control and Status Register ......................................... 41
3.2.6.10 DATA0 Register ............................................................................................... 42
3.2.6.11 DATA1 Register ............................................................................................... 43
3.2.7 Advanced Error Reporting Capabilities ................................................................................. 44
3.2.7.1 Advanced Error Reporting Enhanced Capability Header Register................... 44
3.2.7.2 Uncorrectable Error Status Register ................................................................ 44
3.2.7.3 Uncorrectable Error Mask Register.................................................................. 45
3.2.7.4 Uncorrectable Error Severity Register ............................................................. 45
3.2.7.5 Correctable Error Status Register .................................................................... 46
3.2.7.6 Correctable Error Mask Register...................................................................... 46
3.2.7.7 Advanced Error Capabilities and Control Register........................................... 47
3.2.7.8 Header Log Register........................................................................................ 47
3.2.8 Device Serial Number Enhanced Capability.......................................................................... 48
3.2.8.1 Device Serial Number Enhanced Capability Header Register ......................... 48
3.2.8.2 Serial Number Register.................................................................................... 48
3.2.9 Latency Tolerance Reporting (LTR) Capability...................................................................... 49
3.2.9.1 LTR Extended Capability Header Register ...................................................... 49
3.2.9.2 Max Snoop Latency Register........................................................................... 49
3.2.9.3 Max No-Snoop Latency Register ..................................................................... 49
3.3 Host Controller Capability Register.....................................................................................50
3.3.1 Capability Registers Length (CAPLENGTH) ......................................................................... 50
3.3.2 Host Controller Interface Version Number (HCIVERSION) ................................................... 50
3.3.3 Structural Parameters 1 (HCSPARAMS1)............................................................................. 51
3.3.4 Structural Parameters 2 (HCSPARAMS2)............................................................................. 51
3.3.5 Structural Parameters 3 (HCSPARAMS3)............................................................................. 52
3.3.6 Capability Parameters (HCCPARAMS) ................................................................................. 52
3.3.7 Doorbell Offset (DBOFF)....................................................................................................... 54
3.3.8 Runtime Register Space Offset (RTSOFF) ........................................................................... 54
3.4 Host Controller Operational Registers................................................................................55
3.4.1 USB Command Register (USBCMD) .................................................................................... 56
3.4.2 USB Status Register (USBSTS)............................................................................................ 58
3.4.3 Page Size Register (PAGESIZE) .......................................................................................... 59
3.4.4 Device Notification Control Register (DNCTRL) .................................................................... 60
3.4.5 Command Ring Control Register (CRCR) ............................................................................. 61
3.4.6 Device Context Base Address Array Pointer Register (DCBAAP)......................................... 63
3.4.7 Configure Register (CONFIG) ............................................................................................... 63
3.4.8 Host Controller Port Register Set .......................................................................................... 64
3.4.8.1 Port Status and Control Register (PORTSC) ................................................... 65
3.4.8.2 Port PM Status and Control Register (PORTPMSC) ....................................... 70
3.4.8.3 USB3 Protocol PORTPMSC definition............................................................. 71
3.4.8.4 USB2 Protocol PORTPMSC definition............................................................. 72
3.4.8.5 Port Link Info Register (PORTLI) ..................................................................... 74
3.5 Host Controller Runtime Registers .....................................................................................75
3.5.1 Microframe Index Register (MFINDEX) ................................................................................. 75
3.5.2 Interrupter Register Set ......................................................................................................... 76
3.5.2.1 Interrupter Management Register (IMAN) ........................................................ 76
3.5.2.2 Interrupter Moderation Register (IMOD) .......................................................... 77
3.5.2.3 Event Ring Segment Table Size Register (ERSTSZ) ...................................... 78
3.5.2.4 Event Ring Segment Table Base Address Register (ERSTBA) ....................... 78
3.5.2.5 Event Ring Dequeue Pointer Register (ERDP) ................................................ 79
3.6 Doorbell Registers.................................................................................................................80
3.7 xHCI Extended Capabilities..................................................................................................81
3.7.1 USB Legacy Support Capability ............................................................................................ 81
3.7.1.1 USB Legacy Support Capability (USBLEGSUP).............................................. 81
3.7.1.2 USB Legacy Support Control / Status (USBLEGCTLSTS) .............................. 82
3.7.2 xHCI Supported Protocol Capability ...................................................................................... 84
3.7.2.1 USB 3.0 Supported Protocol Capability ........................................................... 84
3.7.2.2 USB 2.0 Supported Protocol Capability ........................................................... 85
3.7.3 Debug Capability ................................................................................................................... 87
3.7.3.1 Debug Capability ID Register........................................................................... 87
3.7.3.2 Debug Capability Doorbell Register ................................................................. 88
3.7.3.3 Debug Capability Event Ring Segment Table Size Register............................ 88
3.7.3.4 Debug Capability Event Ring Segment Table Base Address Register ............ 88
3.7.3.5 Debug Capability Event Ring Dequeue Pointer Register ................................. 89
3.7.3.6 Debug Capability Event Ring Dequeue Pointer Register ................................. 89
3.7.3.7 Debug Capability Status Register .................................................................... 91
3.7.3.8 Debug Capability Port Status and Control Register ......................................... 92
3.7.3.9 Debug Capability Context Pointer Register...................................................... 94
3.7.3.10 Debug Capability Device Descriptor Info Register 1 ........................................ 94
3.7.3.11 Debug Capability Device Descriptor Info Register 2 ........................................ 94
3.8 MSI-X / PBA Table..................................................................................................................96
3.8.1 Message Address for MSI-X Table........................................................................................ 96
3.8.2 Message Upper Address for MSI-X Table ............................................................................. 96
3.8.3 Message Data for MSI-X ....................................................................................................... 96
3.8.4 Vector Control for MSI-X ....................................................................................................... 97
3.8.5 Pending Bits for MSI-X PBA Entries...................................................................................... 97

4. Power Management ..........................................................................................................................98


4.1 Power Management States...................................................................................................98
4.1.1 PCI Express Link State Power Management (L-States)........................................................ 98
4.1.2 PCI Express Device Power Management States (D-States) ................................................. 99
4.1.3 CLKREQ# Signal................................................................................................................... 99
4.1.4 Summary of PCI Express Power Management States ........................................................ 100
4.2 Power Management Event (PME) Mechanism..................................................................101
4.2.1 PME support........................................................................................................................ 101
4.2.2 Pin configuration for supporting PME generation from D3cold ............................................ 101
4.2.3 Timing Diagram for PME ..................................................................................................... 102
4.2.4 Wakeup Events ................................................................................................................... 104
4.3 Control for System Clock Operation .................................................................................105
4.3.1 Clock system ....................................................................................................................... 105

5. How to Connect to External Elements .........................................................................................106


5.1 Handling Unused Pins ........................................................................................................106
5.2 USB Port Connection ..........................................................................................................107
5.3 Analog Circuit Connection .................................................................................................111
5.4 Crystal Connection..............................................................................................................112
5.5 External Serial ROM Connection .......................................................................................113
5.6 PCI Express Interface Connection.....................................................................................115
5.7 SMIB/SMI Interface Connection .........................................................................................116

6. How to Access External ROM .......................................................................................................118


6.1 Access External ROM Registers........................................................................................118
6.2 Access External ROM .........................................................................................................120
6.2.1 How to write FW to External ROM....................................................................................... 120
6.2.1.1 Outline ........................................................................................................... 120
6.2.1.2 Sequence to write the FW (External ROM data) of PD720201 and
PD720202 .................................................................................................................... 120
6.2.2 How to read ROM Data from External ROM........................................................................ 121
6.2.2.1 Outline ........................................................................................................... 121
6.2.2.2 Sequence to read External ROM data from External ROM............................ 121
6.2.3 How to erase the data of the whole chip to be “1b” (Chip Erase) ........................................ 121
6.2.3.1 Outline ........................................................................................................... 121
6.2.3.2 Sequence for Chip Erase............................................................................... 121
6.3 Data Format..........................................................................................................................122
6.3.1 Firmware ............................................................................................................................. 122
6.3.2 Vendor Specific Configuration Data Block........................................................................... 123
6.3.2.1 Data Format ................................................................................................... 123
6.3.2.2 Address map for Vendor Specific Configuration Block................................... 123
6.3.2.3 External ROM Data........................................................................................ 125
6.3.3 CRC16 calculation............................................................................................................... 126
6.3.4 External ROM Data format .................................................................................................. 127
6.3.4.1 First External ROM Image Data Block of Figure 6-4 ...................................... 127
6.3.4.2 Second External ROM Image Data Block of Figure 6-4................................. 127
6.3.4.3 Loading the FW from the External ROM ........................................................ 127

7. FW Download Interface ..................................................................................................................129


7.1 How to Download a Firmware into PD720201/PD720202 ............................................129
7.1.1 FW download registers........................................................................................................ 129
7.1.2 Outline of FW download sequences.................................................................................... 129
7.1.3 FW download sequences .................................................................................................... 129

8. Battery Charging Function ............................................................................................................131


8.1 Features................................................................................................................................131
8.2 Battery Charging Mode.......................................................................................................131
8.3 How to Set Up ......................................................................................................................132
8.3.1 HW configuration requirement............................................................................................. 132
8.3.2 Force disabling Battery charging function ........................................................................... 132
LIST OF FIGURES

Figure No. Title Page


4-1 Link Power Management State Flow Diagram .............................................................................................. 98
4-2 Wake Up State Transition from D3cold (AUXDET bit = ‘1’)......................................................................... 102
4-3 Wake Up State Transition only from D3hot ................................................................................................. 103
4-4 PD720201/202’s Clock System................................................................................................................. 105

5-1 Root Hub Port to USB Connector Mapping of PD720201 ......................................................................... 107
5-2 Root Hub Port to USB Connector Mapping of PD720202 ......................................................................... 108
5-3 USB Downstream Port Connection ............................................................................................................. 109
5-4 Prohibited USB Downstream Port Connection ............................................................................................ 110
5-5 RREF Connection ....................................................................................................................................... 111
5-6 Crystal Connection...................................................................................................................................... 112
5-7 External Serial ROM Connection ................................................................................................................ 113
5-8 Unused Pins Connection When the External Serial ROM Is Not Mounted.................................................. 114
5-9 PCI Express Interface Connection .............................................................................................................. 115
5-10 SMIB Interface Connection ....................................................................................................................... 116

6-1 Firmware ..................................................................................................................................................... 122


6-2 Vendor Specific Configuration Data Block................................................................................................... 123
6-3 External ROM Data ..................................................................................................................................... 125
6-4 External ROM Data Format......................................................................................................................... 127

8-1 VBUS Control Configuration with Battery Charging Function...................................................................... 132


LIST OF TABLES (1/4)

Table No. Title Page


3-1 Register and Register Bit-Field Types........................................................................................................... 11
3-2 PCI Type 0 Configuration Space Header ...................................................................................................... 12
3-3 Vendor ID Register (Offset Address: 00h)..................................................................................................... 14
3-4 Device ID Register (Offset Address: 02h) ..................................................................................................... 14
3-5 Command Register (Offset Address: 04h) .................................................................................................... 14
3-6 Status Register (Offset Address: 06h)........................................................................................................... 15
3-7 Revision ID Register (Offset Address: 08h)................................................................................................... 16
3-8 Class Code Register (Offset Address: 09h) .................................................................................................. 16
3-9 Cache Line Size Register (Offset Address: 0Ch) .......................................................................................... 16
3-10 Latency Timer Register (Offset Address: 0Dh)............................................................................................ 17
3-11 Header Type Register (Offset Address: 0Eh).............................................................................................. 17
3-12 BIST Register (Offset Address: 0Fh)........................................................................................................... 17
3-13 Base Address Register #0 (Offset Address: 10h)........................................................................................ 17
3-14 Base Address Register #1 (Offset Address: 14h)........................................................................................ 18
3-15 Subsystem Vendor ID Register (Offset Address: 2Ch) ............................................................................... 18
3-16 Subsystem ID Register (Offset Address: 2Eh) ............................................................................................ 18
3-17 Capabilities Pointer Register (Offset Address: 34h) .................................................................................... 18
3-18 Interrupt Line Register (Offset Address: 3Ch) ............................................................................................. 19
3-19 Interrupt Pin Register (Offset Address: 3Dh)............................................................................................... 19
3-20 Min_Gnt Register (Offset Address: 3Eh)..................................................................................................... 19
3-21 Max_Lat Register (Offset Address: 3Fh)..................................................................................................... 19
3-22 SBRN Register (Offset Address: 60h)......................................................................................................... 19
3-23 FLADJ Register (Offset Address: 61h)........................................................................................................ 20
3-24 Capabilities List Register (Offset Address: 50h).......................................................................................... 21
3-25 PMC Register (Offset Address: 52h)........................................................................................................... 21
3-26 PMSC Register (Offset Address: 54h) ........................................................................................................ 22
3-27 Capabilities List Register (Offset Address: 70h).......................................................................................... 24
3-28 Message Control Register (Offset Address: 72h)........................................................................................ 24
3-29 Message Address Register (Offset Address: 74h) ...................................................................................... 24
3-30 Message Upper Address Register (Offset Address: 78h) ........................................................................... 24
3-31 Message Data Register (Offset Address: 7Ch) ........................................................................................... 25
3-32 Mask Bits Register (Offset Address: 80h) ................................................................................................... 25
3-33 Pending Bits Register (Offset Address: 84h)............................................................................................... 25
3-34 Capabilities List Register (Offset Address: 90h).......................................................................................... 26
3-35 Message Control Register (Offset Address: 92h)........................................................................................ 26
3-36 Table Offset / Table BIR Register (Offset Address: 94h) ............................................................................ 26
3-37 Message Upper Address Register (Offset Address: 98h) ........................................................................... 27
3-38 PCI Express Capabilities List Register (Offset Address: A0h)..................................................................... 28
3-39 PCI Express Capabilities Capability Register (Offset Address: A2h) .......................................................... 28
3-40 Device Capabilities Register (Offset Address: A4h) .................................................................................... 28
3-41 Device Control Register (Offset Address: A8h) ........................................................................................... 29
3-42 Device Status Register (Offset Address: AAh) ............................................................................................ 30
3-43 Link Capabilities Register (Offset Address: ACh)........................................................................................ 31
3-44 Link Control Register (Offset Address: B0h) ............................................................................................... 31
3-45 Link Status Register (Offset Address: B2h)................................................................................................. 33
3-46 Device Capabilities 2 Register (Offset Address: C4h)................................................................................. 33
3-47 Device Control 2 Register (Offset Address: C8h)........................................................................................ 33
LIST OF TABLES (2/4)

Table No. Title Page


3-48 Device Status 2 Register (Offset Address: CAh)......................................................................................... 34
3-49 Link Capabilities 2 Register (Offset Address: CCh)..................................................................................... 34
3-50 Link Control 2 Register (Offset Address: D0h) ............................................................................................ 34
3-51 Link Status 2 Register (Offset Address: D2h).............................................................................................. 35
3-52 FW Register (Offset Address: 6Ch)............................................................................................................. 36
3-53 PHY Control 0 Register (Offset Address: DCh)........................................................................................... 36
3-54 PHY Control 1 Register (Offset Address: E0h)............................................................................................ 36
3-55 PHY Control 2 Register (Offset Address: E4h)............................................................................................ 36
3-56 HCConfiguration Register (Offset Address: E8h) ........................................................................................ 38
3-57 External ROM Information Register (Offset Address: ECh)......................................................................... 40
3-58 External ROM Configuration Register (Offset Address: F0h)...................................................................... 40
3-59 FW Download Control and Status Register (Offset Address: F4h).............................................................. 40
3-60 FW Control and Status Register (Offset Address: F6h) .............................................................................. 41
3-61 DATA0 Register (Offset Address: F8h) ....................................................................................................... 42
3-62 DATA1 Register (Offset Address: FCh)....................................................................................................... 43
3-63 Advanced Error Reporting Enhanced Capability Header Register (Offset Address: 100h) ......................... 44
3-64 Uncorrectable Error Status Register (Offset Address: 104h)....................................................................... 44
3-65 Uncorrectable Error Status Register (Offset Address: 108h)....................................................................... 45
3-66 Uncorrectable Error Severity Register (Offset Address: 10Ch) ................................................................... 45
3-67 Correctable Error Status Register (Offset Address: 110h) .......................................................................... 46
3-68 Correctable Error Mask Register (Offset Address: 114h)............................................................................ 46
3-69 Advanced Error Capabilities and Control Register (Offset Address: 118h) ................................................. 47
3-70 Header Log Register (Offset Address: 11Ch).............................................................................................. 47
3-71 Device Serial Number Enhanced Capability Header Register (Offset Address: 140h)................................ 48
3-72 Serial Number Register (Offset Address: 144h) .......................................................................................... 48
3-73 LTR Extended Capability Header Register (Offset Address: 150h)............................................................. 49
3-74 Max Snoop Latency Register (Offset Address: 154h) ................................................................................. 49
3-75 Max No-Snoop Latency Register (Offset Address: 156h) ........................................................................... 49
3-76 eXtensible Host Controller Capability.......................................................................................................... 50
3-77 CAPLENGTH (Offset Address: Base + 00h) ............................................................................................... 50
3-78 HCIVERSION (Offset Address: Base + 02h)............................................................................................... 50
3-79 HCSPARAMS1 (Offset Address: Base + 04h) ............................................................................................ 51
3-80 HCSPARAMS2 (Offset Address: Base + 08h) ............................................................................................ 51
3-81 HCSPARAMS3 (Offset Address: Base + 0Ch)............................................................................................ 52
3-82 HCCPARAMS (Offset Address: Base + 10h) .............................................................................................. 52
3-83 DBOFF (Offset Address: Base + 14h)......................................................................................................... 54
3-84 RTSOFF Offset (Offset Address: Base + 18h) ............................................................................................ 54
3-85 Host Controller Operational Registers......................................................................................................... 55
3-86 USBCMD Register (Offset Address: Operational Base (20h) + 00h) .......................................................... 56
3-87 USBSTS Register (Offset Address: Operational Base (20h) + 04h) ........................................................... 58
3-88 PAGESIZE Register (Offset Address: Operational Base (20h) + 08h) ........................................................ 59
3-89 DNCTRL Register (Offset Address: Operational Base (20h) + 14h) ........................................................... 60
3-90 CRCR Register (Offset Address: Operational Base (20h) + 18h) ............................................................... 61
3-91 DCBAAP Register (Offset Address: Operational Base (20h) + 30h) ........................................................... 63
3-92 CONFIG Register (Offset Address: Operational Base (20h) + 38h)............................................................ 63
3-93 Host Controller Port Register Set (Offset shows from Base)....................................................................... 64
3-94 PORTSC Register (Offset Address: Operational Base (20h) + (400h + (10h *(n-1))) ................................. 65
LIST OF TABLES (3/4)

Table No. Title Page


3-95 PLS Write Value.......................................................................................................................................... 69
3-96 PLS Read Value.......................................................................................................................................... 70
3-97 PLS transitions ............................................................................................................................................ 70
3-98 USB3 PORTPMSC Register (Offset Address: Operational Base (20h) + (404h + (10h*(n-1)))................... 71
3-99 USB2 PORTPMSC Register (Offset Address: Operational Base (20h) +(404h + (10h*(n-1))).................... 72
3-100 USB3 PORTLI Register (Offset Address: Operational Base (20h) + (408h + (10h * (n-1))) ...................... 74
3-101 Host Controller Runtime Registers............................................................................................................ 75
3-102 MFINDEX Register (Offset Address: Runtime Base (600h) + 00h)........................................................... 75
3-103 Interrupter Register Set ............................................................................................................................. 76
3-104 IMAN Register (Offset Address: Runtime Base (600h) + 020h + (20h*Interrupter)).................................. 76
3-105 IMOD Register (Offset Address: Runtime Base (600h) + 024h + (20h*Interrupter)) ................................. 77
3-106 ERSTSZ Register (Offset Address: Runtime Base (600h) + 028h + (20h*Interrupter))............................. 78
3-107 ERSTBA Register (Offset Address: Runtime Base (600h) + 30h + (20h*Interrupter)) .............................. 78
3-108 ERDP Register (Offset Address: Runtime Base (600h) + 038h + (20h*Interrupter))................................. 79
3-109 Doorbell Registers..................................................................................................................................... 80
3-110 Doorbell Register ...................................................................................................................................... 80
3-111 HC Extended Capability Registers ............................................................................................................ 81
3-112 USBLEGSUP (Offset Address: xECP (500h) + 00h)................................................................................. 81
3-113 USBLEGCTLSTS (Offset Address: xECP (500h) + 04h) .......................................................................... 82
3-114 xHCI Supported Protocol Capability Register............................................................................................ 84
3-115 Offset 00h - xHCI Supported Protocol Capability Field (Offset Address: xECP + 10h (510h)) .................. 84
3-116 Offset 04h - xHCI Supported Protocol Capability Field (Offset Address: xECP + 14h (514h)) .................. 84
3-117 Offset 08h - xHCI Supported Protocol Capability Field (Offset Address: xECP + 18h (518h)) .................. 84
3-118 Offset 0Ch - xHCI Supported Protocol Capability Field (Offset Address: xECP + 1Ch (51Ch)) ................ 85
3-119 Offset 00h - xHCI Supported Protocol Capability Field (Offset Address: xECP + 24h (524h)) .................. 85
3-120 Offset 04h - xHCI Supported Protocol Capability Field (Offset Address: xECP + 28h (528h)) .................. 85
3-121 Offset 08h - xHCI Supported Protocol Capability Field (Offset Address: xECP + 2Ch (52Ch))................. 86
3-122 Offset 0Ch - xHCI Supported Protocol Capability Field (Offset Address: xECP + 30h (530h)) ................. 86
3-123 Debug Capability Register Layout............................................................................................................. 87
3-124 Offset 00h – Debug Capability Field (Offset Address: xECP + 50h (550h)) .............................................. 87
3-125 Offset 04h – Debug Capability Field (Offset Address: xECP + 54h (554h)) .............................................. 88
3-126 Offset 08h – Debug Capability Field (Offset Address: xECP + 58h (558h)) .............................................. 88
3-127 Offset 0Ch – Debug Capability Field (Offset Address: xECP + 60h (560h)).............................................. 88
3-128 Offset 18h – Debug Capability Field (Offset Address: xECP + 68h (568h)) .............................................. 89
3-129 Offset 20h – Debug Capability Field (Offset Address: xECP + 70h (570h)) .............................................. 89
3-130 Offset 24h – Debug Capability Field (Offset Address: xECP + 74h (574h)) .............................................. 91
3-131 Offset 28h – Debug Capability Field (Offset Address: xECP + 78h (578h)) .............................................. 92
3-132 Offset 30h – Debug Capability Field (Offset Address: xECP + 80h (580h)) .............................................. 94
3-133 Offset 38h – Debug Capability Field (Offset Address: xECP + 88h (588h)) .............................................. 94
3-134 Offset 3Ch – Debug Capability Field (Offset Address: xECP + 8Ch (58Ch)) ............................................ 94
3-135 MSI-X Table Registers .............................................................................................................................. 96
3-136 PBA Table Registers................................................................................................................................. 96
3-137 Message Address (Offset Address: Base + 1000h + (10h*Interrupter)) .................................................... 96
3-138 Message Upper Address (Offset Address: Base + 1004h + (10h*Interrupter)) ......................................... 96
3-139 Message Data (Offset Address: Base + 1008h + (10h*Interrupter)).......................................................... 96
3-140 Message Data (Offset Address: Base + 100Ch + (10h*Interrupter)) ......................................................... 97
3-141 Message Data (Offset Address: Base + 1080h)........................................................................................ 97
LIST OF TABLES (4/4)

Table No. Title Page


4-1 PCI Express Link States ............................................................................................................................... 98
4-2 PCI Express Device Power Management States .......................................................................................... 99
4-3 Operation of CLKREQ# Signal...................................................................................................................... 99
4-4 Summary of PCI Express Power Management States................................................................................ 100
4-5 Wakeup Events ........................................................................................................................................... 104

5-1 Unused Pin Connection .............................................................................................................................. 106


5-2 Port configuration for PD720201 ............................................................................................................... 106
5-3 Port configuration for PD720202 ............................................................................................................... 106
5-4 Supported External Serial ROM List ........................................................................................................... 113

6-1 External ROM Information & Parameter...................................................................................................... 119


6-2 Firmware Block Description......................................................................................................................... 122
6-3 Vendor Specific Configuration Data Block Description................................................................................ 123
6-4 Address Map for Vendor Specific Configuration Block................................................................................ 123

8-1 Battery Charging Mode ............................................................................................................................... 131


User’s Manual

PD720201/PD720202 ISG-NK1-110027
March 2, 2012
ASSP (USB3.0 HOST CONTROLLER) Rev 2.00

1. Overview
The PD720201 and PD720202 are Renesas‟ third generation Universal Serial Bus 3.0 host controllers,
which comply with Universal Serial Bus 3.0 Specification, and Intel‟s eXtensible Host Controller Interface
(xHCI). These devices reduce power consumption and offer a smaller package footprint making them ideal for
designers who wish to add the USB3.0 interface to mobile computing devices such as laptops and notebook
computers.

The PD720201 supports up to four USB3.0 SuperSpeed ports and the PD720202 supports up to two
USB3.0 SuperSpeed ports. The PD720201 and PD720202 use a PCI Express® Gen 2 system interface
bus allowing system designers to easily add up to four (PD720201) or two (PD720202) USB3.0
SuperSpeed ports to systems containing the PCI Express bus interface. When connected to USB 3.0-
compliant peripherals, the PD720201 and PD720202 can transfer information at clock speeds of up to 5
Gbps. The PD720201 and PD720202 and USB 3.0 standard are fully compliant and backward compatible
with the previous USB2.0 standard. The new USB 3.0 standard supports data transfer speeds of up to ten
times faster than those of the previous-generation USB2.0 standard, enabling quick and efficient transfers of
large amounts of information.

1.1 Features
 Compliant with Universal Serial Bus 3.0 Specification Revision 1.0, which is released by USB
Implementers Forum, Inc
- Supports the following speed data rates: Low-speed (1.5Mbps) / Full-speed (12Mbps) /
High-speed (480Mbps) / Super-speed (5Gbps)
- PD720201 supports up to 4 downstream ports for all speeds
- PD720202 supports up to 2 downstream ports for all speeds
- Supports all USB compliant data transfer types as follows; Control / Bulk / Interrupt /
Isochronous transfer
 Compliant with Intel‟s eXtensible Host Controller Interface (xHCI) Specification Revision 1.0
- Supports USB debugging capability on all super-speed ports.
 Supports USB legacy function
 Compliant with PCI Express Base Specification Revision 2.0
 Supports ExpressCardTM Standard Release1.0
 Supports PCI Express Card Electromechanical Specification Revision 2.0
 Supports PCI Bus Power Management Interface Specification Revision 1.2
 Supports USB Battery Charging Specification Revision 1.2
 Operational registers are direct-mapped to PCI memory space
 Supports Serial Peripheral Interface (SPI) type ROM for Firmware
 Supports Firmware Download Interface from system BIOS or system software
 System clock: 24 MHz crystal
 Small and low count pin package with improved signal pin assignment for efficient PCB layout
- PD720201 adopts 68pin QFN (8 x 8)
- PD720202 adopts 48pin QFN (7 x 7)
 3.3 V and 1.05 V power supply

ISG-NK1-110027 Rev. 2.00 Page 1 of 132


March.2, 2012
PD720201/PD720202 1. Overview

1.2 Applications
Desktop and Laptop computers, Tablet, Server, PCI Express Card / Express Card, Digital TV, Set-Top-Box,
BD Player/Recorder, Media Player, Digital Audio systems, Projector, Multi Function Printer, Storage, Router,
NAS, etc

1.3 Ordering Information


Part Number Package Remark
PD720201K8-701-BAC-A 68-pin QFN (8  8) Lead-free product
PD720202K8-701-BAA-A 48-pin QFN (7 x 7) Lead-free product

1.4 Block Diagram

Figure 1-1. PD720201 Block Diagram

SS PHY USB
HS/FS/LS PHY Connector 1
Power SW I/F

SS PHY USB
HS/FS/LS PHY Connector 2
PCI Express
Power SW I/F
Gen2 xHCI Root
PCI Express
Interface Controller Hub
Port SS PHY USB
(x 1)
HS/FS/LS PHY Connector 3
Power SW I/F

SS PHY USB
HS/FS/LS PHY Connector 4
Power SW I/F

SPI
OSC/PLL
Interface

Option
3.3V 1.05V External
24MHz Xtal
Serial ROM

Figure 1-2. PD720202 Block Diagram

SS PHY USB
HS/FS/LS PHY Connector 1
Power SW I/F

SS PHY USB
HS/FS/LS PHY Connector 2
PCI Express
Power SW I/F
Gen2 xHCI Root
PCI Express
Interface Controller Hub
Port
(x 1)

SPI
OSC/PLL
Interface

Option
3.3V 1.05V External
24MHz Xtal
Serial ROM

ISG-NK1-110027 Rev.2.00 Page 2 of 132


March.2, 2012
PD720201/PD720202 1. Overview

PCI Express Complies with PCI Express Gen2 interface, with 1 lane. This block includes both
Gen2 Interface the link and PHY layers.
xHCI Controller Handles all support required for USB 3.0, super-/high-/full-/low-speed. This
block includes the register interface from the system.
Root hub Hub function in host controller.
SS PHY For super-speed Tx/Rx
HS/FS/LS PHY For high-/full-/low-speed Tx/Rx
Power SW I/F Connected to external power switch for port power control and over current
detection.
SPI Interface Connected to external serial ROM. When system BIOS or system software does
not support FW download function, the external serial ROM is required.
OSC Internal oscillator block.

ISG-NK1-110027 Rev.2.00 Page 3 of 132


March.2, 2012
PD720201/PD720202 1. Overview

1.5 Pin Configuration (TOP VIEW)

 68-pin QFN (8  8)
PD720201K8-701-BAC-A

Figure 1-3. Pin Configuration of PD720201

U3RXDN4

U3RXDN3
U3RXDP4

U3RXDP3
U3TXDN4

U3TXDN3
U3TXDP4

U3TXDP3
U2DM3
U2DM4

U2DP4

VDD33

VDD10

VDD10

U2DP3

VDD33

VDD10
68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52

SMIB 1 51 U2DM2

PERSTB 2 50 U2DP2

PEWAKEB 3 49 VDD33

PECLKP 4 48 U3RXDN2

PECLKN 5 47 U3RXDP2

AVDD33 6 46 VDD10

PETXP 7 45 U3TXDN2

PETXN 8 44 U3TXDP2

VDD10 9 GND 43 VDD10

PERXP 10 42 U2DM1

PERXN 11 41 U2DP1

VDD10 12 40 VDD33

PECREQB 13 39 U3RXDN1

PONRSTB 14 38 U3RXDP1

VDD33 15 37 VDD10

SPISO 16 36 U3TXDN1

SPICSB 17 35 U3TXDP1

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
XT2

XT1
SPISI

PPON4

PPON3

PPON2

PPON1

VDD10

VDD33

AVDD33

RREF

IC(L)
SPISCK

OCI4B

OCI3B

OCI2B

OCI1B

ISG-NK1-110027 Rev.2.00 Page 4 of 132


March.2, 2012
PD720201/PD720202 1. Overview

 48-pin QFN (7 x 7)
PD720202K8-701-BAA-A

Figure 1-4. Pin Configuration of PD720202

PEWAKEB

U3RXDN2

U3RXDP2

U3TXDN2

U3TXDP2
PERSTB

U2DM2

U2DP2

VDD33

VDD10

VDD10
SMIB
48 47 46 45 44 43 42 41 40 39 38 37

PECLKP 1 36 U2DM1

PECLKN 2 35 U2DP1

AVDD33 3 34 VDD33

PETXP 4 33 VDD10

PETXN 5 32 U3RXDN1

VDD10 6 31 U3RXDP1
GND
PERXP 7 30 VDD10

PERXN 8 29 U3TXDN1

VDD10 9 28 U3TXDP1

PECREQB 10 27 IC(L)

PONRSTB 11 26 RREF

VDD33 12 25 AVDD33

13 14 15 16 17 18 19 20 21 22 23 24
XT2

XT1
PPON2

PPON1

VDD10

VDD33
SPISI
SPICSB

SPISCK

OCI2B

OCI1B
SPISO

ISG-NK1-110027 Rev.2.00 Page 5 of 132


March.2, 2012
PD720201/PD720202 2. Pin Function

2. Pin Function
This section describes each pin functions.

2.1 Power supply

Table 2-1. Power Supply

Pin 720201 720202 I/O Function


Name Pin No. Pin No. Type
VDD33 15, 29, 40, 49, 12, 22, 34, 43 Power +3.3 V power supply
57, 66
VDD10 9, 12, 28, 37, 6, 9, 21, 30, 33, Power +1.05 V power supply.
43, 46, 54, 60, 39, 42
63
AVDD33 6, 32 3, 25 Power +3.3 V power supply for analog circuit.
GND GND PAD GND PAD Power Connect to ground.
IC(L) 34 27 I Test pin. Connect to ground.

2.2 Analog Signal

Table 2-2. Analog Signal

Pin 720201 720202 I/O Active Function


Name Pin No. Pin No. Type Level
RREF 33 26 USB2  Reference resistor connection.

2.3 System clock

Table 2-3. System Clock

Pin 720201 720202 Type Active Function


Name Pin No. Pin No. Level
XT1 31 24 I  Oscillator in
(OSC) Connect to 24 MHz crystal. *
XT2 30 23 O  Oscillator out
(OSC) Connect to 24 MHz crystal. *
Note 1: An external modular oscillator cannot be used instead of a crystal, due to aggressive clock
management in reduced power states.

ISG-NK1-110027 Rev.2.00 Page 6 of 132


March.2, 2012
PD720201/PD720202 2. Pin Function

2.3.1 System Interface signal

Table 2-4. System Interface Signal

Pin Name 720201 720202 I/O Active Function


Pin No. Pin No. Type Level
PONRSTB 14 11 I Low Power on reset signal. When supporting wakeup
(3.3 V from D3cold, this signal should be pulled high
Schmitt with system auxiliary power supply.
Input)
SMIB 1 46 O Low System management Interrupt signal. This is
(3.3 V controlled with the USB Legacy Support
Output) Control/Status register.

2.3.2 PCI express Interface

Table 2-5. PCI Express Interface

Pin Name 720201 720202 I/O Active Function


Pin No. Pin No. Type Level
PECLKP 4 1 I  PCI Express 100 MHz Reference Clock.
(PCIE)
PECLKN 5 2 I  PCI Express 100 MHz Reference Clock.
(PCIE)
PETXP 7 4 O  PCI Express Transmit Data+.
(PCIE)
PETXN 8 5 O  PCI Express Transmit Data-.
(PCIE)
PERXP 10 7 I  PCI Express Receive Data+.
(PCIE)
PERXN 11 8 I  PCI Express Receive Data-.
(PCIE)
PERSTB 2 47 I Low PCI Express “PERST#” signal.
(3.3 V
Input)
PEWAKEB 3 48 O Low PCI Express “WAKE#” signal. This signal is used
(Open for remote wakeup mechanism, and requests the
Drain) recovery of power and reference clock input.
PECREQB 13 10 O Low PCI Express “CLKREQ#” signal. This signal is
(Open used to request run/stop of reference clock.
Drain)

ISG-NK1-110027 Rev.2.00 Page 7 of 132


March.2, 2012
PD720201/PD720202 2. Pin Function

2.3.3 USB Interface

Table 2-6. USB Interface

Pin Name 720201 720202 I/O Active Function


Pin No. Pin No. Type Level
U3TXDP1 35 28 O  USB3.0 Transmit data D+ signal for super-speed
(USB3)
U3TXDN1 36 29 O  USB3.0 Transmit data D- signal for super-speed
(USB3)
U3RXDP1 38 31 I  USB3.0 Receive data D+ signal for super-speed
(USB3)
U3RXDN1 39 32 I  USB3.0 Receive data D- signal for super-speed
(USB3)
U2DP1 41 35 I/O  USB2.0 D signal for high-/full-/low-speed
(USB2)
U2DM1 42 36 I/O  USB2.0 D signal for high-/full-/low-speed
(USB2)
OCI1B 26 19 I Low Over-current status input signal.
(3.3 V 0: Over-current condition is detected
Input)
1: No over-current condition is detected
PPON1 27 20 O High USB port power supply control signal.
(3.3 V 0: Power supply OFF
Output)
1: Power supply ON
U3TXDP2 44 37 O  USB3.0 Transmit data D+ signal for super-speed
(USB3)
U3TXDN2 45 38 O  USB3.0 Transmit data D- signal for super-speed
(USB3)
U3RXDP2 47 40 I  USB3.0 Receive data D+ signal for super-speed
(USB3)
U3RXDN2 48 41 I  USB3.0 Receive data D- signal for super-speed
(USB3)
U2DP2 50 44 I/O  USB2.0 D signal for high-/full-/low-speed
(USB2)
U2DM2 51 45 I/O  USB2.0 D signal for high-/full-/low-speed
(USB2)
OCI2B 24 17 I Low Over-current status input signal.
(3.3 V 0: Over-current condition is detected
Input)
1: No over-current condition is detected
PPON2 25 18 O High USB port power supply control signal.
(3.3 V 0: Power supply OFF
Output)
1: Power supply ON

ISG-NK1-110027 Rev.2.00 Page 8 of 132


March.2, 2012
PD720201/PD720202 2. Pin Function

Pin Name 720201 720202 I/O Active Function


Pin No. Pin No. Type Level
U3TXDP3 52  O  USB3.0 Transmit data D+ signal for super-speed
(USB3)
U3TXDN3 53  O  USB3.0 Transmit data D- signal for super-speed
(USB3)
U3RXDP3 55  I  USB3.0 Receive data D+ signal for super-speed
(USB3)
U3RXDN3 56  I  USB3.0 Receive data D- signal for super-speed
(USB3)
U2DP3 58  I/O  USB2.0 D signal for high-/full-/low-speed
(USB2)
U2DM3 59  I/O  USB2.0 D signal for high-/full-/low-speed
(USB2)
OCI3B 22  I Low Over-current status input signal.
(3.3 V 0: Over-current condition is detected
Input)
1: No over-current condition is detected
PPON3 23  O High USB port power supply control signal.
(3.3 V 0: Power supply OFF
Output)
1: Power supply ON
U3TXDP4 61  O  USB3.0 Transmit data D+ signal for super-speed
(USB3)
U3TXDN4 62  O  USB3.0 Transmit data D- signal for super-speed
(USB3)
U3RXDP4 64  I  USB3.0 Receive data D+ signal for super-speed
(USB3)
U3RXDN4 65  I  USB3.0 Receive data D- signal for super-speed
(USB3)
U2DP4 67  I/O  USB2.0 D signal for high-/full-/low-speed
(USB2)
U2DM4 68  I/O  USB2.0 D signal for high-/full-/low-speed
(USB2)
OCI4B 20  I Low Over-current status input signal.
(3.3V 0: Over-current condition is detected
Input)
1: No over-current condition is detected
PPON4 21  O High USB port power supply control signal.
(3.3V 0: Power supply OFF
Output)
1: Power supply ON
Note 1: The super-speed signals (U3TXDPx, U3TXDNx, U3RXDPx, U3RXDNx) and high-/full-/low-signals
(U2DPx, U2DMx) of PD720201 and PD720202 shall be connected to the same USB connecter.

Note 2: The Timing of PPONx assertion is changed from PD720200. The PPONx of PD720200A,
PD720201 and PD720202 are asserted after the software sets Max Device Slots
Enable(MaxSlotsEn) field in Configure (CONFIG) register or Host Controller Reset(HCRST) flag in
USBCMD register. On PD720200, the PPON(2:1) are asserted immediately after the PCIe Reset.

ISG-NK1-110027 Rev.2.00 Page 9 of 132


March.2, 2012
PD720201/PD720202 2. Pin Function

2.3.4 SPI Interface

★ Table 2-7. SPI Interface

Pin Name 720201 720202 Type Active Function


Pin No. Pin No. Level
SPISCK 18 15 O  SPI serial flash ROM clock signal.
(3.3 V When the external serial ROM is not mounted, this
output) signal should be pulled down through a pull-down
resistor.
SPICSB 17 14 O  SPI serial flash ROM chip select signal.
(3.3 V When the external serial ROM is not mounted, this
output) signal should be pulled down through a pull-down
resistor.
SPISI 19 16 O  SPI serial flash ROM slave input signal.
(3.3 V When the external serial ROM is not mounted, this
output) signal should be pulled down through a pull-down
resistor.
SPISO 16 13 I  SPI serial flash ROM slave output signal.
(3.3 V This signal should be pulled up through a pull-up
Input) resistor in all cases.

ISG-NK1-110027 Rev.2.00 Page 10 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3. Register Information
The PD720201 and PD720202 are implemented with the eXtensible Host Controller (xHCI) core that handles all
speeds required for USB 3.0, super-/high-/full-/low-speed. The following sections show PCI configuration space and
Memory Mapped I/O register information for the xHCI host controller. The number of valid ports is specified by
“HCSPARAMS1” register in the Host Controller Capability Registers.

3.1 Register Attributes

The following notation is used to describe register access attributes.

Table 3-1. Register and Register Bit-Field Types

Register
Description
Attribute

HwInit Hardware Initialized: Register bits are initialized by firmware or hardware mechanisms such as pin strapping or
serial external ROM. Bits are read-only after initialization and may only be reset with a HCRST.

RO Read-only: Register bits are read-only and cannot be altered by software. Register bits are permitted to be
initialized by hardware and firmware mechanisms such as pin strapping or serial external ROM.

RWO Read-Write-once: Register bits can be written only once after power up. After the first write, the bits become
read only.

RW Read-Write: Register bits are read-write and are permitted to be either Set or Cleared by software to the desired
state. Note that individual bits in some read/write registers may be Read-Only.

RW1C Write-1-to-clear status: Register bits indicate status when read. A set bit indicating a status event may be
cleared by writing a „1‟. Writing a „0‟ to RW1C bits has no effect.

RW1S Write-1-to-set status: Register bits indicate status when read. A clear bit may be set by writing a „1‟. Writing a
„0‟ to RW1S bits has no effect.

RWS Sticky-Read-Write: Register bits are read-write and are Set or Cleared by software to the desired state. Bits are
only initialized or modified by hot reset. Where noted, registers that consume AUX power shall preserve sticky
register values when AUX power consumption is enabled. In these cases, registers are not initialized or modified
by hot, warm, or cold reset.

RW1CS Sticky-Write-1-to clear status: Register bits indicate status when read. A set bit indicating a status event may
be cleared by writing „1‟. Writing a „0‟ to RW1CS bits has no effect. Bits are not initialized or modified by hot reset.
Where noted, registers that consume AUX power shall preserve sticky register values when AUX power
consumption is enabled. In these cases, registers are not initialized or modified by hot, warm, or cold reset.

Rsvd Reserved: Reserved for future implementation. Rsvd registers or memory shall be treated as read-only by
system software. Rsvd registers shall return „0‟ when read. Software shall ignore the value read from these bits.

ISG-NK1-110027 Rev.2.00 Page 11 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2 PCI Configuration Space

The configuration registers are accessed in order to set up hardware resources, device characteristics or operations,
etc. in PCI Express. The following sections describe the PCI Configuration Space, which is the address space for the
configuration registers. For more detailed description, see the PCI Express Base Specification Revision 2.0.

3.2.1 PCI Type 0 Configuration Space Header

★ Table 3-2. PCI Type 0 Configuration Space Header


31 23 15 7 Offset
24 16 8 0
Device ID Vendor ID 00h
Status Command 04h
Class Code Revision ID 08h
BIST Header Type Latency Timer Cache Line Size 0Ch
Base Address Register #0 10h
Base Address Register #1 14h
Reserved 18h~28h
Subsystem ID Subsystem Vendor ID 2Ch
Reserved 30h
Reserved Cap_Ptr 34h
Reserved 38h
Max_Lat Min_Gnt Interrupt Pin Interrupt Line 3Ch
Reserved 40h~4Ch
PMC Next_Ptr Cap_ID 50h
Reserved PMSC 54h
Reserved 58h~5Ch
Reserved FLADJ SBRN 60h
Reserved 64h~6Ch
Reserved FW Version Reserved 6Ch
Message Control Next_Ptr Cap_ID 70h
MSI Address 74h
MSI Upper Address 78h
Reserved MSI Data 7Ch
MSI Mask Bits 80h
MSI Pending Bits 84h
Reserved 88h~8Ch
Message Control Next_Ptr Cap_ID 90h
Table Offset , Table BIR 94h
PBA Offset , PBA BIR 98h
Reserved 9Ch
PCI Express Capability Next_Ptr Cap_ID A0h

ISG-NK1-110027 Rev.2.00 Page 12 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Device Capability A4h


Device Status Device Control A8h
Link Capability ACh
Link Status Link Control B0h
Reserved B4h~C3h
Device Capability 2 C4h
Device Status 2 Device Control 2 C8h
Link Capability 2 CCh
Link Status 2 Link Control 2 D0h
Reserved D4h~DBh
PHY Control 0 DCh
PHY Control 1 E0h
PHY Control 2 E4h
Host Controller Configuration E8h
External ROM Information ECh
External ROM Configuration F0h
External ROM Write Control & Status FW Download Control & Status F4h
DATA 0 F8h
DATA 1 FCh
Advanced Error Reporting Enhanced Capability Header 100h
Uncorrectable Error Status Register 104h
Uncorrectable Error Mask Register 108h
Uncorrectable Error Severity Register 10Ch
Correctable Error Status Register 110h
Correctable Error Mask Register 114h
Advanced Error Capabilities and Control Register 118h
Header Log 1 11Ch
Header Log2 120h
Header Log3 124h
Header Log4 128h
Device Serial Number Enhanced Capability Header 140h
Serial Number Register (Lower DW) 144h
Serial Number Register (Upper DW) 148h
LTR Extended Capability Header 150h
Max No-Snoop Latency Register Max Snoop Latency Register 154h

ISG-NK1-110027 Rev.2.00 Page 13 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.1.1 Vendor ID Register

Table 3-3. Vendor ID Register (Offset Address: 00h)

Bits Field Read/ Value (Default) Comment


Write

15 : 0 Vendor ID RO 1912h This is a 16-bit value.

3.2.1.2 Device ID Register

Table 3-4. Device ID Register (Offset Address: 02h)

Bits Field Read/ Value (Default) Comment


Write

15 : 0 Device ID RO 0014h ( PD720201) This is a 16-bit value. 0014h is


0015h ( PD720202) assigned to  PD720201 and 0015h
is assigned to  PD720202.

3.2.1.3 Command Register

Table 3-5. Command Register (Offset Address: 04h)

Bits Field Read/ Value (Default) Comment


Write

0 I/O Space RO 0b No support I/O space

1 Memory Space RW 0b Controls response to memory


access

0: Memory access disable


1: Memory access enable

2 Bus Master RW 0b Controls the ability of a PCI Express


Endpoint to issue Memory
Read/Write Requests.

When Set, the PCI Express


Function is allowed to issue Memory
Requests.

3 Special Cycles RO 0b Does not apply to PCI Express.

4 Memory Write and RO 0b Does not apply to PCI Express.


Invalidate Enable

5 VGA palette snoop RO 0b Does not apply to PCI Express.

6 Parity Error response RW 0b This bit controls the logging of


poisoned TLPs in the Master Data
Parity Error bit in the Status register.

7 Wait cycle control RO 0b Does not apply to PCI Express.

8 SERR# enable RW 0b When Set, this bit enables reporting


of Non-fatal and Fatal errors
detected by the Function to the Root
Complex.

ISG-NK1-110027 Rev.2.00 Page 14 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

9 Fast back-to-back RO 0b Does not apply to PCI Express.


enable

10 Interrupt Disable RW 0b Controls the ability of a PCI Express


Function to generate INTx
interrupts. When Set, Functions are
prevented from asserting INTx
interrupts.

15 : 11 Rsvd - - Reserved.

3.2.1.4 Status Register

Table 3-6. Status Register (Offset Address: 06h)

Bits Field Read/ Value (Default) Comment


Write

2:0 Rsvd - - Reserved.

3 Interrupt Status RO 0b Shows Interrupt Status. When


“Interrupt Disable” bit in PCI
Command Register is set to 0b, the
register shows the Interrupt Status.
When “Interrupt Disable” is set to
1b; the register is invalid.

4 Capabilities List RO 1b Indicates the presence of an


Extended Capability list item.

5 66 MHz capable RO 0b Does not apply to PCI Express.

6 Rsvd - - Reserved.

7 Fast back-to-back RO 0b Does not apply to PCI Express.


capable

8 Master Data Parity Error RW1C 0b This bit is set if the Parity Error
Response bit in the Command
register is 1b and either of the
following two conditions occurs:

- Receive a Completion marked


poisoned

- Poison a write Request.

If the Parity Error Response bit is


0b, this bit is never set.

10 : 9 DEVSEL timing RO 00b Does not apply to PCI Express.

11 Signaled target abort RW1C 0b This bit is set when a function


completes a posted or non-posted
request as a completer abort error.

12 Received target abort RW1C 0b This bit is set when a requester


receives a completion with
completer abort completion status.

ISG-NK1-110027 Rev.2.00 Page 15 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

13 Received master abort RW1C 0b This bit is set when a requester


receives a completion with
unsupported request completion
status.

14 Signaled system error RW1C 0b This bit is set when a function sends
an ERR_FATAL or
ERR_NONFATAL Message, and
the SERR# Enable bit in the
Command register is 1b.

15 Detected parity error RW1C 0b This bit is set by a function


whenever it receives a Poisoned
TLP, regardless of the state the
Parity Error Response bit in the
Command register.

3.2.1.5 Revision ID Register

★ Table 3-7. Revision ID Register (Offset Address: 08h)

Bits Field Read/ Value (Default) Comment


Write

7:0 Revision ID RO 03h(PD720201) Revision ID.


02h(PD720202)

3.2.1.6 Class Code Register

Table 3-8. Class Code Register (Offset Address: 09h)

Bits Field Read/ Value (Default) Comment


Write

7:0 Programming Interface RO 30h USB3.0 host controller.

15 : 8 Sub Class RO 03h Universal Serial Bus.

23 : 16 Base Class RO 0Ch Serial Bus Controllers.

3.2.1.7 Cache Line Size Register

Table 3-9. Cache Line Size Register (Offset Address: 0Ch)

Bits Field Read/ Value (Default) Comment


Write

7:0 Cache Line Size RW 0h Cache Line Size.

This field is implemented as a read-


write field for legacy compatibility
purposes but has no effect on this
device behavior.

ISG-NK1-110027 Rev.2.00 Page 16 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.1.8 Latency Timer Register

Table 3-10. Latency Timer Register (Offset Address: 0Dh)

Bits Field Read/ Value (Default) Comment


Write

7:0 Latency Timer RO 0h Does not apply to PCI Express.

3.2.1.9 Header Type Register

Table 3-11. Header Type Register (Offset Address: 0Eh)

Bits Field Read/ Value (Default) Comment


Write

7:0 Header Type RO 0h Header Type 0.

3.2.1.10 BIST Register

Table 3-12. BIST Register (Offset Address: 0Fh)

Bits Field Read/ Value (Default) Comment


Write

7:0 BIST RO 0h BIST is not supported.

3.2.1.11 Base Address Register #0

Table 3-13. Base Address Register #0 (Offset Address: 10h)

Bits Field Read/ Value (Default) Comment


Write

0 Memory space Indicator RO 0b Operational registers are mapped to


main memory space.

2:1 Type RO 10b Base register is 64bits wide and can


be mapped anywhere in the 64-bit
address space.

3 Prefetchable RO 0b Prefetch is disabled.

12 : 4 Base address (LSB) RO 0h Operational registers require 8Kbyte


address space.

31 : 13 Base address (MSB) RW 0h Indicates the high-order 19 bits of


the base address in the Operational
registers.

ISG-NK1-110027 Rev.2.00 Page 17 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.1.12 Base Address Register #1

Table 3-14. Base Address Register #1 (Offset Address: 14h)

Bits Field Read/ Value (Default) Comment


Write

31 : 0 Base address RW 0h Indicates the high-order 32 bits of


the base address in the Operational
registers.

3.2.1.13 Subsystem Vendor ID Register

Table 3-15. Subsystem Vendor ID Register (Offset Address: 2Ch)

Bits Field Read/ Value (Default) Comment


Write

15 : 0 Subsystem Vendor ID RWO 0000h This is written by BIOS or loaded


from an External Serial Rom. After
the first write, this register bits
become read only.

This register is initialized to default


value by the assertion of
PONRSTB.

3.2.1.14 Subsystem ID Register

Table 3-16. Subsystem ID Register (Offset Address: 2Eh)

Bits Field Read/ Value (Default) Comment


Write

15 : 0 Subsystem ID RWO 0000h This is written by BIOS or loaded


from an External Serial ROM. After
the first write, this register bits
become read only.

This register is initialized to default


value by the assertion of
PONRSTB.

3.2.1.15 Capabilities Pointer Register

Table 3-17. Capabilities Pointer Register (Offset Address: 34h)

Bits Field Read/ Value (Default) Comment


Write

7:0 Capabilities Pointer RO 50h Capability Pointer.

ISG-NK1-110027 Rev.2.00 Page 18 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.1.16 Interrupt Line Register

Table 3-18. Interrupt Line Register (Offset Address: 3Ch)

Bits Field Read/ Value (Default) Comment


Write

7:0 Interrupt Line RW 0h Interrupt line‟s route

3.2.1.17 Interrupt Pin Register

Table 3-19. Interrupt Pin Register (Offset Address: 3Dh)

Bits Field Read/ Value (Default) Comment


Write

7:0 Interrupt Pin RO 01h Routing to INTA#

3.2.1.18 Min_Gnt Register

Table 3-20. Min_Gnt Register (Offset Address: 3Eh)

Bits Field Read/ Value (Default) Comment


Write

7:0 Min_Gnt RO 0h Does not apply PCI Express.

3.2.1.19 Max_LAT Register

Table 3-21. Max_Lat Register (Offset Address: 3Fh)

Bits Field Read/ Value (Default) Comment


Write

7:0 Max_Lat RO 0h Does not apply PCI Express.

3.2.1.20 Serial Bus Release Number Register (SBRN)


This register contains the release of the Universal Serial Bus Specification with which this Universal Serial Bus Host
Controller module is compliant.

Table 3-22. SBRN Register (Offset Address: 60h)

Bits Field Read/ Value (Default) Comment


Write

7:0 Serial Bus Specification RO 30h Serial Bus Release Number


Release Number Register. This register indicates the
release number of the USB with
which this controller is compliant.

ISG-NK1-110027 Rev.2.00 Page 19 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.1.21 Frame Length Adjustment Register (FLADJ)


This register is the Auxiliary Power well. This feature is used to adjust any offset from the clock source that generates
the clock that drives the SOF counter. When a new value is written into these six bits, the length of the frame is adjusted
for all USB buses implemented by an xHC. Its initial programmed value is system dependent based on the accuracy of
hardware USB clock and is initialized by system software (typically the BIOS). This register should only be modified when
the HCHalted (HCH) bit in the USBSTS register is „1‟. Changing the value of this register while the host controller is
operating yield undefined results.

Table 3-23. FLADJ Register (Offset Address: 61h)

Bits Field Read/ Value (Default) Comment


Write

5:0 Frame Length Timing RWS 20h Each decimal value change to this
Value register corresponds to 16 high-
speed bit times. The SOF cycle time
(number of SOF counter clock
periods to generate a SOF
microframe length) is equal to
59488 + value in this field. The
default vale is decimal 32 (20h),
which gives an SOF cycle time of
60000.

Frame FLADJ
Length Value

59488 0

59984 31

60000 32

60496 63

7:6 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 20 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.2 PCI Power Management Capabilities

3.2.2.1 Capabilities List Register

Table 3-24. Capabilities List Register (Offset Address: 50h)

Bits Field Read/ Value (Default) Comment


Write

7:0 Cap_ID RO 01h ID for PCI Power Management reg.

15 : 0 Next_Ptr RO 70h Next Capability Pointer.

3.2.2.2 Power Management Capabilities Register (PMC)

★ Table 3-25. PMC Register (Offset Address: 52h)

Bits Field Read/ Value (Default) Comment


Write

2:0 Version RO 11b Supports PCI Power Management


Interface Specification release 1.2

3 PME Clock RO 0b Does not apply to PCI Express.

4 Rsvd - - Reserved.

5 DSI RO 0b Does not required Specific


Initialization before the generic class
device driver is able to use it.

8:6 Aux_Current HwInit 7b Indicates current requirement.

If the AUXDET in HCConfigration


register is „0b‟, this field returns a
value of “000b” when read.

If the AUXDET in HCConfiguration


register is „1b‟, following
assignments apply:

Bit 3.3Vaux

8 7 6 Max. Current Required


1 1 1 375 mA
1 1 0 320 mA
1 0 1 270 mA
1 0 0 220 mA
0 1 1 160 mA
0 1 0 100 mA
0 0 1 55 mA
0 0 0 0 (self powerd)

9 D1_support RO 0b No Support.

10 D2_support RO 0b No Support.

ISG-NK1-110027 Rev.2.00 Page 21 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

15 : 11 PME_support HwInit X1001b If the AUXDET in HCConfiguration


register is set to „1b‟, bit 15 is set to
„1‟.

This 5-bit field indicates the power


states in which the function may
send PME Message. A value of 0b
for any bit indicates that the function
is not capable of sending the PME
Message while in that power state.

PME Message can be sent from


D0 and D3hot.

3.2.2.3 Power Management Status / Control Register (PMSC)

Table 3-26. PMSC Register (Offset Address: 54h)

Bits Field Read/ Value (Default) Comment


Write

1:0 Power State RW 0b This 2-bit field is used both to


determine the current power state of
a function and to set the function
into a new power state. The
definition of the field values is given
below.

00b : D0

11b : D3

In case of transitioning from D0 to


D3, Run/Stop in USBCMD register
should be 0b, and HCHalted in
USBSTS register is 1b.

If Run/Stop is 1b and HCHalted is


0b and Power State is set from D0
to D3, the behavior of
PD720201/PD720202 is
undefined.

2 Rsvd - - Reserved.

3 No_Soft_Reset RO 1b This bit indicates that devices


transitioning from D3hot to D0 do
not perform an internal reset.
Configuration Context is preserved.
Upon transition from D3hot to the
D0 Initialized state, no additional
operating system intervention is
required to preserve Configuration
Context beyond writing the Power
State bits.

7:4 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 22 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

8 PME Enable RWS 0b A „1„ enables the function to send


PME Message. When „0„, PME
Message is disabled.

12 : 9 Data Select RO 0b No support.

14 : 13 Data Scale RO 0b No support.

15 PME Status RW1CS 0b This bit is set when the function


would send the PME message if
enabled to do so. This bit is
independent of the state of PME
Enable bit.

Writing a „1‟ to this bit will clear it


and cause the function to stop
sending PME message. Writing a „0‟
has no effect.

ISG-NK1-110027 Rev.2.00 Page 23 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.3 MSI Capabilities

3.2.3.1 Capabilities List Register for MSI

Table 3-27. Capabilities List Register (Offset Address: 70h)

Bits Field Read/ Value (Default) Comment


Write

7:0 Cap_ID RO 05h ID for MSI Capability reg.

15 : 8 Next_Ptr RO 90h Pointer to the next capabilities list.

3.2.3.2 Message Control for MSI

Table 3-28. Message Control Register (Offset Address: 72h)

Bits Field Read/ Value (Default) Comment


Write

0 MSI Enable RW 0b If 1 and MSI-X Enable bit is 0, the


function is permitted to use MSI.

3:1 Multiple Message RO 11b Supports 8 request vectors.


Capable

6:4 Multiple Message RW 0b System software writes to this field


Enable to indicate the number of allocated
vectors.

7 64bit address capable RO 1b This is capable of sending 64bit


message address.

8 Per-vector masking RO 0b Does not support MSI per-vector


capable masking.

15 : 9 Rsvd - - Reserved.

3.2.3.3 Message Address for MSI

Table 3-29. Message Address Register (Offset Address: 74h)

Bits Field Read/ Value (Default) Comment


Write

1:0 Rsvd - - Reserved.

31 : 2 MSI Address RW 0h System-specified message address.

3.2.3.4 Message Upper Address for MSI

Table 3-30. Message Upper Address Register (Offset Address: 78h)

Bits Field Read/ Value (Default) Comment


Write

31 : 0 MSI Upper Address RW 0h System-specified message address.

ISG-NK1-110027 Rev.2.00 Page 24 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.3.5 Message Data for MSI

Table 3-31. Message Data Register (Offset Address: 7Ch)

Bits Field Read/ Value (Default) Comment


Write

15 : 0 MSI Data RW 0h System-specified message data.

3.2.3.6 Mask Bits for MSI

Table 3-32. Mask Bits Register (Offset Address: 80h)

Bits Field Read/ Value (Default) Comment


Write

31 : 0 MSI Mask bits RW 0h For each Mask bit that is set, the
function is prohibited from sending
the associated message.

3.2.3.7 Pending Bits for MSI

Table 3-33. Pending Bits Register (Offset Address: 84h)

Bits Field Read/ Value (Default) Comment


Write

31 : 0 MSI Pending bits RO 0h Does not support MSI Pending bits.

ISG-NK1-110027 Rev.2.00 Page 25 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.4 MSI-X Capabilities

3.2.4.1 Capabilities List Register for MSI-X

Table 3-34. Capabilities List Register (Offset Address: 90h)

Bits Field Read/ Value (Default) Comment


Write

7:0 Cap_ID RO 11h ID for MSI-X Capability reg.

15 : 8 Next_Ptr RO A0h Pointer to the next capabilities list.

3.2.4.2 Message Control for MSI-X

Table 3-35. Message Control Register (Offset Address: 92h)

Bits Field Read/ Value (Default) Comment


Write

10 : 0 Table Size RO 111b MSI-X Table Size. This controller


supports 8 entries.

13 : 11 Rsvd - - Reserved.

14 Function Mask RW 0b If 1, all of the vectors associated


with the function are masked,
regardless of their per-vector Mask
bit states.

If 0, each vector‟s mask bit


determines whether the vector is
masked or not.

15 MSI-X Enable RW 0b If 1 and the MSI Enable bit in the


MSI Message Control register is 0,
the function is permitted to use MSI-
X.

3.2.4.3 Table Offset / Table BIR for MSI-X

Table 3-36. Table Offset / Table BIR Register (Offset Address: 94h)

Bits Field Read/ Value (Default) Comment


Write

31 : 0 Table Offset RO 1000h Indicates that MSI-X table is located


at BaseAddress + 1000h.

ISG-NK1-110027 Rev.2.00 Page 26 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.4.4 PBA Offset for MSI-X

Table 3-37. Message Upper Address Register (Offset Address: 98h)

Bits Field Read/ Value (Default) Comment


Write

31 : 0 PBA Offset RO 1080h Indicates that MSI-X table is located


at BaseAddress + 1080h .

ISG-NK1-110027 Rev.2.00 Page 27 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.5 PCI Express Extended Capabilities

3.2.5.1 PCI Express Capabilities List Register

Table 3-38. PCI Express Capabilities List Register (Offset Address: A0h)

Bits Field Read/ Value (Default) Comment


Write

7:0 Cap_ID RO 10h ID for PCI Express Capability reg.

15 : 8 Next_Ptr RO 0h Pointer to the next capabilities list.

3.2.5.2 PCI Express Capabilities Register

Table 3-39. PCI Express Capabilities Capability Register (Offset Address: A2h)

Bits Field Read/ Value (Default) Comment


Write

3:0 Capability Version RO 10b Indicates PCI-SIG defined PCI


Express Capability structure version
number.

7:4 Device / Port Type RO 0b Indicates PCI Express Endpoint.

8 Slot Implemented RO 0b This field is invalid for PCI Express


Endpoint.

13 : 9 Interrupt Message RO 0b Indicates which MSI/MSI-X vector is


Number used for the interrupt message
generated in association with any of
the status bits of this capability
structure.

15 : 14 Rsvd - - Reserved.

3.2.5.3 Device Capabilities Register

Table 3-40. Device Capabilities Register (Offset Address: A4h)

Bits Field Read/ Value (Default) Comment


Write

2:0 Max_Payload_Size RO 0b Indicates the maximum payload size


Supported that the Function can support for
TLPs.  PD720201/ PD720202
support 128bytes max payload size.

4:3 Phantom Functions RO 0b Does not support Phantom


Supported Functions.

5 Extended Tag Field RO 0b Indicates the maximum supported


Supported size of Tag field as a
Requester. PD720201/ PD720202
support 5-bit Tag field.

ISG-NK1-110027 Rev.2.00 Page 28 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

8:6 Endpoint L0s RO 111b Indicates the acceptable total


Acceptable Latency latency that an Endpoint can
withstand due to the transition from
L0s state to the L0 state. 111b is no
limit.

11 : 9 Endpoint L1 Acceptable RO 111b Indicates the acceptable total


Latency latency that an Endpoint can
withstand due to the transition from
L1 state to the L0 state. 111b is no
limit.

14 : 12 Rsvd - - Reserved.

15 Role-Based Error RO 1b Supports Error Reporting


Reporting functionality.

17 : 16 Rsvd - - Reserved.

25 : 18 Captured Slot Power RO 0b In combination with the Slot Power


Limit Value Limit Scale value, specifies the
upper limit on power supplied by
slot.

27 : 26 Captured Slot Power RO 0b Specifies the scale used for the Slot
Limit Scale Power Limit Value.

28 Function Level Reset RO 0b Optional Function Level Reset


Capability mechanism is not supported.

31 : 29 Rsvd - - Reserved.

3.2.5.4 Device Control Register

Table 3-41. Device Control Register (Offset Address: A8h)

Bits Field Read/ Value (Default) Comment


Write

0 Correctable Error RW 0b This bit, in conjunction with other


Reporting Enable bits, controls sending ERR_COR
Message.

1 Non-Fatal Error RW 0b This bit, in conjunction with other


Reporting Enable bits, controls sending
ERR_NONFATAL Messages.

2 Fatal Error Reporting RW 0b This bit, in conjunction with other


Enable bits, controls sending ERR_FATAL
Messages.

3 Unsupported Request RW 0b This bit, in conjunction with other


Reporting Enable bits, controls the signaling of
Unsupported Requests by sending
Error Messages.

4 Enable Relaxed RW 1b PD720201/PD720202 are


Ordering permitted to set the Relaxed
Ordering bit in the Attributes field of
transactions it initiates that do not
require strong write ordering.

ISG-NK1-110027 Rev.2.00 Page 29 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

7:5 Max_Payload_Size RW 0b This field sets maximum TLP


payload seize for
PD720201/PD720202.
8 Extended Tag Field RO 0b Does not support this capability.
Enable

9 Phantom Function RO 0b Does not support this capability.


Enable

10 Auxiliary (AUX) Power RWS 0b When set this bit, enables a


PM Enable Function to draw AUX power
independent of PME AUX power.

11 Enable No Snoop RW 1b If this bit is Set,


PD720201/PD720202 are
permitted to Set the No snoop bit in
the Requester Attributes of
transactions it initiates that do not
require hardware enforced cache
coherency.

14 : 12 Max_Read_Request_Si RW 010b This field sets the maximum Read


ze Request size for the Function as a
Requester.

15 Initiate Function Level RW 0b A write of 1b initiates Function Level


Reset Reset to the Function. The value
read by software from this bit is
always 0b.

3.2.5.5 Device Status Register

Table 3-42. Device Status Register (Offset Address: AAh)

Bits Field Read/ Value (Default) Comment


Write

0 Correctable Error RW1C 0b This bit indicates status of


Detected correctable errors detected.

1 Non-Fatal Error RW1C 0b This bit indicates status of Non-Fatal


Detected errors detected.

2 Fatal Error Detected RW1C 0b This bit indicates status of Fatal


errors detected.

3 Unsupported Request RW1C 0b This bit indicates that


Detected PD720201/PD720202 received
an Unsupported Request.

4 AUX Power Detected RO HwInit If the AUXDET bit in


HCConfiguration register is set to
1b, this bit is set to1.

5 Transactions Pending RO 0b When set, this bit indicates that


PD720201/PD720202 has issued
Non-Posted Requests that have not
been completed.

15 : 6 Rsvd - - Reserved

ISG-NK1-110027 Rev.2.00 Page 30 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.5.6 Link Capabilities Register

Table 3-43. Link Capabilities Register (Offset Address: ACh)

Bits Field Read/ Value (Default) Comment


Write

3:0 Supported Link Speeds RO 10b This field indicates the supported
Link speeds of the associated Port.
PD720201/PD720202 supports
5.0GT/s and 2.5GT/s Link speeds.

9:4 Maximum Link Width RO 1b This field indicates the maximum


Link width.  PD720201/ PD720201
supports 1Lane.

11 : 10 Active State Power RO 11b This field indicates the level of


Management(ASPM) ASPM supported on the given PCI
Support Express Link.

14 : 12 L0s Exit Latency RO 110b This field indicates the L0s exit
latency for the given PCI Express
Link. 110b indicates 2us-4us.

17 : 15 L1 Exit Latency RO 111b This field indicates the L1 exit


latency for the given PCI Express
Link. 111b indicates more than
64us.

18 Clock Power RO 1b 1b indicates that the component


Management tolerates the removal of any
reference clock via the “ clock
request”(CLKREQ#) mechanism
when the Link is in the L1 states.

21 : 19 Rsvd - - Reserved.

31 : 24 Port Number RO 0b This field indicates the PCI Express


Port number for the given PCI
Express Link.

3.2.5.7 Link Control Register

Table 3-44. Link Control Register (Offset Address: B0h)

Bits Field Read/ Value (Default) Comment


Write

1:0 Active State Power RW HwInit This field controls the level of ASPM
Management(ASPM) supported on the given PCI Express
Control Link. If the PSEL bit in
HCConfiguration register is set to
0b, default value is 11b.

00b : Disabled

01b : L0s Entry Enabled

10b : L1 Entry Enabled

11b : L0s and L1 Entry enabled

2 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 31 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

3 Read Completion RO 0b Read Completion Boundary is


Boundary (RCB) 64byte.

4 Link Disable RO 0b This bit disables the Link by


directing the LTSSM to the Disable
state when Set. This bit is reserved
on Endpoints, PCI Express to
PCI/PCI-X bridges, and Upstream
Ports of Switches.

5 Retrain Link RO 0b This bit is not applicable and is


reserved for Endpoints, PCI Express
to PCI/PCI-X bridges, and Upstream
Ports of Switches. This bit always
returns 0b when read.

6 Common Clock RW 0b When Set, this bit indicates that this


Configuration component and the component at
the opposite end of this Link are
operating with a distributed common
reference clock.

7 Extended Sync RW 0b When Set, this bit forces the


transmission of additional Ordered
Sets when exiting the L0s state and
when in the Recovery state.

8 Enable Clock Power RW 1b 0b: Clock power management is


Management disabled and
PD720201/PD720202 hold
CLKREQ# signal low.

1b: When this bit is Set,


PD720201/PD720202 are
permitted to use CLKREQ# signal to
power manage Link clock according
to protocol defined in appropriate
form factor specification.

If the CLKREQFORCE bit in


HCConfiguration register is „1‟,
CLKREQ# signal always is held low
although Enable Clock Power
Management bit is „1‟.

9 Hardware Autonomous RO 0b Disables hardware from changing


Width Disable the Link width.

15 : 10 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 32 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.5.8 Link Status Register

Table 3-45. Link Status Register (Offset Address: B2h)

Bits Field Read/ Value (Default) Comment


Write

3:0 Current Link Speed RO 1b This field indicates the negotiated


Link speed of the given PCI Express
Link.

0001b : 2.5GT/s PCI Express Link


0010b : 5.0GT/s PCI Express Link

9:4 Negotiated Link Width RO 1b This field indicates the negotiated


width of the given PCI Express Link.

11 : 10 Rsvd - - Reserved.

12 Slot Clock Configuration RO 1b This bit indicates that the


component uses the same physical
reference clock that the platform
provides on the connector.

13 Data Link Layer Link RO 0b This bit indicates the status of the
Active Data Link Control and Management
State Machine. It returns a „1‟b to
indicate the DL_Active state, „0‟b
otherwise.

15 : 14 Rsvd - - Reserved.

3.2.5.9 Device Capabilities 2 Register

Table 3-46. Device Capabilities 2 Register (Offset Address: C4h)

Bits Field Read/ Value (Default) Comment


Write

3:0 Completion Timeout RO 0b Completion Timeout programming


Ranges Supported not supported.

4 Completion Timeout RO 1b Indicates support for the Completion


Disable Supported Timeout Disable mechanism.

10 : 5 Rsvd - - Reserved.

11 LTR Mechanism RO 1b Indicates support for the Latency


Supported Tolerance Reporting (LTR)
mechanism capability.

31 : 12 Rsvd - - Reserved.

3.2.5.10 Device Control 2 Register

Table 3-47. Device Control 2 Register (Offset Address: C8h)

Bits Field Read/ Value (Default) Comment


Write

3:0 Completion Timeout RW 0b Default range : 50us to 50ms.


Value

ISG-NK1-110027 Rev.2.00 Page 33 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

4 Completion Timeout RW 0b When Set, this bit disables the


Disable Completion Timeout mechanism.

9:5 Rsvd - - Reserved.

10 LTR Mechanism Enable RW 0b When Set to 1b, this bit enables the
Latency Tolerance Reporting (LTR)
mechanism.

15 : 11 Rsvd - - Reserved.

3.2.5.11 Device Status 2 Register

Table 3-48. Device Status 2 Register (Offset Address: CAh)

Bits Field Read/ Value (Default) Comment


Write

15 : 0 Rsvd - - Reserved.

3.2.5.12 Link Capabilities 2 Register

Table 3-49. Link Capabilities 2 Register (Offset Address: CCh)

Bits Field Read/ Value (Default) Comment


Write

31 : 0 Rsvd - - Reserved.

3.2.5.13 Link Control 2 Register

Table 3-50. Link Control 2 Register (Offset Address: D0h)

Bits Field Read/ Value (Default) Comment


Write

3:0 Target Link Speed RWS 10b This field is used to set the target
compliance mode speed when
software is using the Enter
Compliance bit to force a Link into
compliance mode.
0010b : 5.0GT/s Target Link Speed

4 Enter Compliance RWS 0b Software is permitted to force a Link


to enter Compliance mode at the
Target Link Speed by setting this bit
to 1b in both components on a Link
and then initiating a hot reset on the
Link.

ISG-NK1-110027 Rev.2.00 Page 34 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

5 Hardware Autonomous RWS 0b When Set, this bit disables


Speed Disable hardware from changing the Link
speed for device-specific reasons
other than attempting to correct
unreliable Link operation by
reducing Link speed.

6 Rsvd - - Reserved.

9:7 Transmit Margin RWS 0b This field controls the value of the
non-deemphasized voltage level at
the Transmitter pins. This register is
intended for debug, compliance
testing purposes only.

10 Enter Modified RWS 0b When this bit is set to 1b, the device
Compliance transmits Modified Compliance
Pattern if the LTSSM enters
Polling.Compliance substate.

11 Compliance SOS RWS 0b When set to 1b, the LTSSM is


required to send SKP Ordered Sets
periodically in between the
(modified) compliance patterns,.

12 Compliance De- RWS 0b This bit sets the de-emphasis level


emphasis in Polling.Compliance state if the
entry occurred due to the Enter
Compliance bit being 1b.

3.2.5.14 Link Status 2 Register

Table 3-51. Link Status 2 Register (Offset Address: D2h)

Bits Field Read/ Value (Default) Comment


Write

0 Current De-emphasis RO 1b When the Link is operating at 5GT/s


Level speed, this bit reflects the level of
de-emphasis.
1b : -3.5dB

0b : -6dB

15 : 1 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 35 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.6 RENESAS Specific Registers

3.2.6.1 FW Version Register

★ Table 3-52. FW Register (Offset Address: 6Ch)

Bits Field Read/ Value (Default) Comment


Write

7:0 Rsvd. RO HwInit Reserved

15 : 8 FW Version Low RO HwInit FW Version Low.

23 : 16 FW Version High RO HwInit FW Version High.

31 : 24 Rsvd RO HwInit Reserved

3.2.6.2 PHY Control 0 Register

★ Table 3-53. PHY Control 0 Register (Offset Address: DCh)

Bits Field Read/ Value (Default) Comment


Write

31 : 0 Rsvd. RW HwInit Reserved

3.2.6.3 PHY Control 1 Register

★ Table 3-54. PHY Control 1 Register (Offset Address: E0h)

Bits Field Read/ Value (Default) Comment


Write

31 : 0 Rsvd RW (PD720201) HwInit Reserved

Rsvd (PD720202)

3.2.6.4 PHY Control 2 Register

★ Table 3-55. PHY Control 2 Register (Offset Address: E4h)

Bits Field Read/ Value (Default) Comment


Write

PD720201

3:0 BC_MODE_P1 RW 0000b Battery charging port type for


PORT1. Can be set to one of the
following:.

0000b : SDP only

0001b : CDP only

0010b : SDP – DCP

0011b : CDP – DCP

1111b – 0100b : Reserved

ISG-NK1-110027 Rev.2.00 Page 36 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

7:4 BC_MODE_P2 RW 0000b Battery charging port type for


PORT2. Can be set to one of the
values listed for bits 3:0 above.

11 : 8 BC_MODE_P3 RW 0000b Battery charging port type for


PORT3. Can be set to one of the
values listed for bits 3:0 above.

15 : 12 BC_MODE_P4 RW 0000b Battery charging port type for


PORT4. Can be set to one of the
values listed for bits 3:0 above.

17 : 16 TRTFCTL_P1 RW 01b High Speed Eye Tr/Tf fine control


for PORT1.
00b : -1 (make low pitch)

01b : 0 (default)

10b : +1
11b : +2 (make steep pitch) 

19 : 18 TRTFCTL_P2 RW 01b High Speed Eye Tr/Tf fine control


for PORT2.
00b : -1 (make low pitch)

01b : 0 (default)

10b : +1

11b : +2 (make steep pitch) 

21 : 20 TRTFCTL_P3 RW 01b High Speed Eye Tr/Tf fine control


for PORT3.

00b : -1 (make low pitch)

01b : 0 (default)

10b : +1

11b : +2 (make steep pitch) 

23 : 22 TRTFCTL_P4 RW 01b High Speed Eye Tr/Tf fine control


for PORT4.

00b : -1 (make low pitch)

01b : 0 (default)
10b : +1

11b : +2 (make steep pitch) 

31 : 24 Rsvd Rsvd HwInit Reserved

PD720202

3:0 BC_MODE_P1 RW 0000b Battery charging port type for


PORT1. Can be set to one of the
following:

0000b : SDP only


0001b : CDP only

0010b : SDP – DCP

0011b : CDP – DCP


1111b – 0100b : Reserved 

ISG-NK1-110027 Rev.2.00 Page 37 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

7:4 BC_MODE_P2 RW 0000b Battery charging port type for


PORT2. Can be set to one of the
values listed for bits 3:0 above.

15 : 8 Rsvd Rsvd 0b Reserved

19 : 16 TRTFCTL_P1P2 RW 0011b High Speed Eye Tr/Tf fine control


for PORT1.

X0X0b : -1 (make low pitch)

X0X1b : 0 (default)

X1X0b : +1

X1X1b : +2 (make steep pitch)

High Speed Eye Tr/Tf fine control


for PORT2.

0X0Xb : -1 (make low pitch)

0X1Xb : 0 (default)
1X0Xb : +1

1X1Xb : +2 (make steep pitch)

Note.“X” means “don‟t care”

31 : 20 Rsvd Rsvd 0b Reserved

3.2.6.5 Host Controller Configuration (HCConfiguration) Register

★ Table 3-56. HCConfiguration Register (Offset Address: E8h)

Bits Field Read/ Value (Default) Comment


Write

7:0 Rsvd RW 0b Reserved.

8 DeviceNonRemoval1 RW 0b When set to‟1b‟, the  PD720201


Enable forces the Device Removal(DR) bit
to „1b‟ in both the PORT1 PORTSC
and PORT5 PORTSC. The
PD720202 forces the DR bit to „1b‟
in both the PORT1 PORTSC and
PORT3 PORTSC.

9 DeviceNonRemoval2 RW 0b When set to‟1b‟, the  PD720201


Enable forces the Device Removal(DR) bit
to „1b‟ in both the PORT2 PORTSC
and PORT6 PORTSC. The
PD720202 forces the DR bit to „1b‟
in both the PORT2 PORTSC and
PORT4 PORTSC.

10 DeviceNonRemoval3 RW 0b When set to‟1b‟, the  PD720201


Enable forces the Device Removal(DR) bit
to „1b‟ in both the PORT3 PORTSC
and PORT7 PORTSC.

ISG-NK1-110027 Rev.2.00 Page 38 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

11 DeviceNonRemoval4 RW 0b When set to‟1b‟, the  PD720201


Enable forces the Device Removal(DR) bit
to „1b‟ in both the PORT4 PORTSC
and PORT8 PORTSC.

15 : 12 Reserved RW 0000b Reserved.

16 UsePPON RW 1b When set to „0b‟, the  PD720201


and  PD720202 force the Port
Power Control (PPC) bit to „0b‟ in
the HCCPARAMS register. When
VBUS is not controlled by the PPON
pin, this bit should be set to „0b‟.

18 : 17 DisablePortCount RW 00b PD720201


00b :All ports are enabled.
01b : Port 4 and Port 8 are disabled.
10b : Port 3,4,7 and 8 are disabled.
11b : Port 2,3,4,6,7 and 8 are
disabled.

PD720202
00b : All ports are enabled.
01b : Port 2 and 4 are disabled.
23 : 19 Reserved RW 00000b Reserved.

24 PSEL RW 1b When set to „1b‟, the default value of


the Active State Power
Management Control fields in the
PCI Express Link Control Register is
00b. When this bit is „0b‟, the default
value is 11b.

25 Reserved RW 0b Reserved.

26 AUXDET RW 1b Auxiliary Power Detect. When the


system supports remote wakeup
from D3cold, this bit should be set to
„1b‟.

27 CLKREQ Force Disable RW 0b When set to „1b‟,  PD720201 and


PD720202 force the CLKREQ#
disabled.

28 SerialNumber Capability RW 0b When set to „1b‟, Serial Number


Enable Capability area is enabled.

31 : 29 Reserved RW 0b Reserved.

ISG-NK1-110027 Rev.2.00 Page 39 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.6.6 External ROM Information Register

★ Table 3-57. External ROM Information Register (Offset Address: ECh)

Bits Field Read/ Value (Default) Comment


Write

31 : 0 ROM Information RO 0000h When system has mounted the


External ROM, HW will set the
External ROM ID.

3.2.6.7 External ROM Configuration Register

★ Table 3-58. External ROM Configuration Register (Offset Address: F0h)

Bits Field Read/ Value (Default) Comment


Write

31 : 0 ROM Parameter RW 0000h To access the External ROM, the


software must set the ROM
Parameter.

Refer to section 6.2.

3.2.6.8 FW Download Control and Status Register

★ Table 3-59. FW Download Control and Status Register (Offset Address: F4h)

Bits Field Read/ Value (Default) Comment


Write

0 FW Download Enable RW 0b When set to „1b‟, DATA0 and


DATA1 register are enabled for FW
download by BIOS. When FW
download is completed, this bit must
be set to „0b‟. After setting „0b‟,
Result Code field is updated.

1 FW Download Lock RW1S 0b When set to „1b‟, FW Download


process never operates even if FW
Download Enable is „1b‟. Once set,
this bit remains „1b‟ until PONRSTB
is asserted.

3:2 Reserved RO 00b Reserved

6:4 Result Code RO 0b This field shows the result of FW


Download.

000b : Invalid (no result yet)


001b : Success
010b : Error
111b ~ 011b : Reserved.
7 Reserved RO 0b Reserved.

ISG-NK1-110027 Rev.2.00 Page 40 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

8 Set DATA0 RW1S 0b When set to „1b‟, a download


request is initiated to the
PD720201/PD720202. Before set
to „1b‟, FW data shall be written in
the Data0 Register. When Data0
download is completed, this bit is
automatically cleared to „0b‟.

9 Set DATA1 RW1S 0b When set to „1b‟, a download


request is initiated to the
PD720201/PD720202. Before set
to „1b‟, FW data shall be written in
the Data1 Register. When Data1
download is completed, this bit is
automatically cleared to „0b‟.

15 : 10 Reserved RO 000000b Reserved.

3.2.6.9 External ROM Access Control and Status Register

Table 3-60. FW Control and Status Register (Offset Address: F6h)

Bits Field Read/ Value (Default) Comment


Write

0 External ROM Access RW 0b When set to „1b‟, accessing an


Enable external ROM is enabled. It is
prohibited to set both this bit and
FW Download Enable to „1b‟ at the
same time. Before writing „1b‟ to this
bit, the DATA0 register must be set
to 53524F4Dh to enable FW writing.

1 External ROM Erase RW 0b When this bit is set to „1b‟, External


ROM Data is erased. When this
operation is complete, this bit is
cleared to „0b‟ automatically. Before
writing „1b‟ to this bit, the DATA0
register must be set to 5A65726Fh.

2 Reload RW 0b When this bit is set to „1b‟, External


ROM Data is reloaded. This function
is used when immediate reload is
required after External ROM is
updated. At the completion of reload
process, this bit is cleared to „0b‟
automatically.

3 Reserved RO 0b Reserved

6:4 Result Code RO 000b This field shows the result of


External ROM update process.

000b : Invalid (no result yet)


001b : Success
010b : Error
111b~011b : Reserved.
7 Reserved RO 0b Reserved.

ISG-NK1-110027 Rev.2.00 Page 41 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

8 Set DATA0 RW1S 0b When set to‟1b‟, External ROM


Write Request is initiated. Before
setting to „1b‟, FW data shall be
written in the DATA0 register. When
the data0 download is completed,
this bit is automatically cleared to
„0b‟. Setting Get Data0 or Get
DATA1 while Set DATA0 is „1b‟
results in undefined behavior.

9 Set DATA1 RW1S 0b When set to‟1b‟, External ROM


Write Request is initiated. Before
setting to „1b‟, FW data shall be
written in the DATA1 register. When
the data1 download is completed,
this bit is automatically cleared to
„0b‟. Setting Get Data0 or Get
DATA1 while Set DATA1 is „1b‟
results in undefined behavior.

10 Get DATA0 RW1S 0b When set to‟1b‟, External ROM


Read Request is initiated. This bit is
automatically cleared to „0b‟ when
valid data is available in the Data0
register. Setting Set Data0 or Set
DATA1 while Get DATA0 is „1b‟
results in undefined behavior.

11 Get DATA1 RW1S 0b When set to‟1b‟, External ROM


Read Request is initiated. This bit is
automatically cleared to „0b‟ when
valid data is available in the Data1
register. Setting Set Data0 or Set
DATA1 while Get DATA1 is „1b‟
results in undefined behavior.

14 : 12 Reserved RO 000b Reserved

15 External ROM Exists RO HwInit Indicates that the External ROM is


connected. Even if the external
ROM exists, FW can be
downloaded from External ROM . In
this case, FW in the xHC is
overwritten by FW download data.

1 : External ROM Exists


0 : No External ROM Exists

3.2.6.10 DATA0 Register

Table 3-61. DATA0 Register (Offset Address: F8h)

Bits Field Read/ Value (Default) Comment


Write

31 : 0 DATA0 RW 0000h This register is a window to write


and read FW data.

ISG-NK1-110027 Rev.2.00 Page 42 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.6.11 DATA1 Register

Table 3-62. DATA1 Register (Offset Address: FCh)

Bits Field Read/ Value (Default) Comment


Write

31 : 0 DATA1 RW 0000h This register is a window to write


and read FW data.

ISG-NK1-110027 Rev.2.00 Page 43 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.7 Advanced Error Reporting Capabilities

3.2.7.1 Advanced Error Reporting Enhanced Capability Header Register

Table 3-63. Advanced Error Reporting Enhanced Capability Header Register (Offset Address: 100h)

Bits Field Read/ Value (Default) Comment


Write

15 : 0 PCI Express Extended RO 1h ID for the Advanced Error Reporting


Capability ID Capability is 0001h.

19 : 16 Capability Version RO 1h Indicates the version of the


Capability structure present.

31 : 20 Next Capability Offset RO HwInit This field contains the offset to the
next PCI Express Capability
structure.

When SerialNumber Capability


Enable bit is set to „1b‟, this field is
140h. When SerialNumber
Capability Enable bit is set to „0b‟,
this field is 150h.

3.2.7.2 Uncorrectable Error Status Register

Table 3-64. Uncorrectable Error Status Register (Offset Address: 104h)

Bits Field Read/ Value (Default) Comment


Write

3:0 Rsvd - - Reserved

4 Data Link Protocol Error RW1CS 0b Data Link Protocol Error Status.
Status

5 Surprise Down Error RO 0b PD720201/PD720202 does not


Status support this status.

11 : 6 Rsvd - - Reserved.

12 Poisoned TLP Status RW1CS 0b Poisoned TLP Status.

13 Flow Control Protocol RO 0b PD720201/PD720202 does not


Error Status support this status.

14 Completion Timeout RW1CS 0b Completion Timeout Status.


Status

15 Completer Abort Status RW1CS 0b Completer Abort Status.

16 Unexpected Completion RW1CS 0b Unexpected Completion Status.


Status

17 Receiver Overflow RW1CS 0b Receiver Overflow Status.


Status

18 Malformed TLP Status RW1CS 0b Malformed TLP Status.

19 ECRC Error Status RO 0b PD720201/PD720202 does not


support this status.

20 Unsupported Request RW1CS 0b Unsupported Request Error Status.


Error Status

ISG-NK1-110027 Rev.2.00 Page 44 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

31 : 21 Rsvd - - Reserved.

3.2.7.3 Uncorrectable Error Mask Register

Table 3-65. Uncorrectable Error Status Register (Offset Address: 108h)

Bits Field Read/ Value (Default) Comment


Write

3:0 Rsvd - - Reserved.

4 Data Link Protocol Error RWS 0b Data Link Protocol Error Mask.
Mask

5 Surprise Down Error RO 0b PD720201/PD720202 does not


Mask support this status.

11 : 6 Rsvd - - Reserved.

12 Poisoned TLP Mask RWS 0b Poisoned TLP Mask.

13 Flow Control Protocol RO 0b PD720201/PD720202 does not


Error Mask support this status.

14 Completion Timeout RWS 0b Completion Timeout Mask.


Mask

15 Completer Abort Mask RWS 0b Completer Abort Mask.

16 Unexpected Completion RWS 0b Unexpected Completion Mask.


Mask

17 Receiver Overflow Mask RWS 0b Receiver Overflow Mask.

18 Malformed TLP Mask RWS 0b Malformed TLP Mask.

19 ECRC Error Mask RO 0b PD720201/PD720202 does not


support this status.

20 Unsupported Request RWS 0b Unsupported Request Error Mask.


Error Mask

31 : 21 Rsvd - - Reserved.

3.2.7.4 Uncorrectable Error Severity Register

Table 3-66. Uncorrectable Error Severity Register (Offset Address: 10Ch)

Bits Field Read/ Value (Default) Comment


Write

3:0 Rsvd - - Reserved.

4 Data Link Protocol Error RWS 1b Data Link Protocol Error Severity.
Severity

5 Surprise Down Error RO 1b PD720201/PD720202 does not


Severity support this status.

11 : 6 Rsvd - - Reserved.

12 Poisoned TLP Severity RWS 0b Poisoned TLP Severity.

ISG-NK1-110027 Rev.2.00 Page 45 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

13 Flow Control Protocol RO 1b PD720201/PD720202 does not


Error Severity support this status.

14 Completion Timeout RWS 0b Completion Timeout Severity.


Severity

15 Completer Abort RWS 0b Completer Abort Severity.


Severity

16 Unexpected Completion RWS 0b Unexpected Completion Severity.


Severity

17 Receiver Overflow RWS 1b Receiver Overflow Severity.


Severity

18 Malformed TLP Severity RWS 1b Malformed TLP Severity.

19 ECRC Error Severity RO 0b PD720201/PD720202 does not


support this status.

20 Unsupported Request RWS 0b Unsupported Request Error


Error Severity Severity.

31 : 21 Rsvd - - Reserved.

3.2.7.5 Correctable Error Status Register

Table 3-67. Correctable Error Status Register (Offset Address: 110h)

Bits Field Read/ Value (Default) Comment


Write

0 Receiver Error Status RO 0b Receiver Error Status.

5:1 Rsvd - - Reserved.

6 Bad TLP Status RW1CS 0b Bad TLP Status.

7 Bad DLLP Status RW1CS 0b Bad DLLP Status.

8 REPLAY_NUM Rollover RW1CS 0b REPLAY_NUM Rollover Status.


Status

11 : 9 Rsvd - - Reserved.

12 Replay Timer Timeout RW1CS 0b Replay Timer Timeout Status.


Status

13 Advisory Non-Fatal RW1CS 0b Advisory Non-Fatal Error Status.


Error Status

31 : 14 Rsvd - - Reserved.

3.2.7.6 Correctable Error Mask Register

Table 3-68. Correctable Error Mask Register (Offset Address: 114h)

Bits Field Read/ Value (Default) Comment


Write

0 Receiver Error Mask RO 0b Receiver Error Mask.

5:1 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 46 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

6 Bad TLP Mask RWS 0b Bad TLP Mask.

7 Bad DLLP Mask RWS 0b Bad DLLP Mask.

8 REPLAY_NUM Rollover RWS 0b REPLAY_NUM Rollover Mask.


Mask

11 : 9 Rsvd - - Reserved.

12 Replay Timer Timeout RWS 0b Replay Timer Timeout Mask.


Mask

13 Advisory Non-Fatal RWS 1b Advisory Non-Fatal Error Mask.


Error Mask

15 : 14 Rsvd - - Reserved.

3.2.7.7 Advanced Error Capabilities and Control Register

Table 3-69. Advanced Error Capabilities and Control Register (Offset Address: 118h)

Bits Field Read/ Value (Default) Comment


Write

4:0 First Error Pointer RO 0b The first Error Pointer is a field that
identifies the bit position of the first
error reported in the Uncorrectable
Error Status register.

5 ECRC Generation RO 0b No support.


Capable

6 ECRC Generation RO 0b No support.


Enable

7 ECRC Check Capable RO 0b No support.

8 ECRC Check Enable RO 0b No support.

31 : 9 Rsvd - - Reserved.

3.2.7.8 Header Log Register

Table 3-70. Header Log Register (Offset Address: 11Ch)

Bits Field Read/ Value (Default) Comment


Write

127 : 0 Header of TLP RO 0h The Header Log register captures


associated with error the header for the TLP
corresponding to a detected error.

ISG-NK1-110027 Rev.2.00 Page 47 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.8 Device Serial Number Enhanced Capability

3.2.8.1 Device Serial Number Enhanced Capability Header Register

Table 3-71. Device Serial Number Enhanced Capability Header Register (Offset Address: 140h)

Bits Field Read/ Value (Default) Comment


Write

15 : 0 PCI Express Extended RO 3h ID for the Device Serial Number


Capability ID Capability is 0003h.

19 : 16 Capability Version RO 1h Indicates the version of the


Capability structure present.

31 : 20 Next Capability Offset RO 150h This field contains the offset to the
next PCI Express Capability
structure.

3.2.8.2 Serial Number Register

★ Table 3-72. Serial Number Register (Offset Address: 144h)

Bits Field Read/ Value (Default) Comment


Write

63 : 0 PCI Express Device RWO HwInit This field contains the IEEE defined
Serial Number 64-bit extended unique identifier
(EUI-64 TM) loaded from External
Serial ROM. This identifier includes
a 24-bit company id value assigned
by IEEE registration authority and a
40-bit extension identifier assigned
by the manufacturer.

ISG-NK1-110027 Rev.2.00 Page 48 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.2.9 Latency Tolerance Reporting (LTR) Capability

3.2.9.1 LTR Extended Capability Header Register

Table 3-73. LTR Extended Capability Header Register (Offset Address: 150h)

Bits Field Read/ Value (Default) Comment


Write

15 : 0 PCI Express Extended RO 18h ID for the LTR Extended Capability


Capability ID is 0018h.

19 : 16 Capability Version RO 1h Indicates the version of the


Capability structure present.

31 : 20 Next Capability Offset RO 0h This field contains the offset to the


next PCI Express Capability
structure.

3.2.9.2 Max Snoop Latency Register

Table 3-74. Max Snoop Latency Register (Offset Address: 154h)

Bits Field Read/ Value (Default) Comment


Write

9:0 Max Snoop RW 0h Along with the Max Snoop Latency


LatencyValue Scale field, this register specifies the
maximum no-snoop latency that a
device is permitted to request.
Software should set this to the
platform‟s maximum supported
latency or less.

12 : 10 Max Snoop RW 0h This register provides a scale for the


latencyScale value contained within the Maximum
Snoop Latency Value field.

15 : 13 Rsvd - - Reserved.

3.2.9.3 Max No-Snoop Latency Register

Table 3-75. Max No-Snoop Latency Register (Offset Address: 156h)

Bits Field Read/ Value (Default) Comment


Write

9:0 Max No-Snoop RW 0h Along with the Max-No-Snoop


LatencyValue Latency Scale field, this register
specifies the maximum no-snoop
latency that a device is permitted to
request.

12 : 10 Max No-Snoop Latency RW 0h This register provides a scale for the


Scale value contained within the max No-
Snoop LatencyValue field.

15 : 13 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 49 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.3 Host Controller Capability Register

These registers specify the limits and capabilities of the host controller implementation.
All Capability Registers are Read-Only (RO) or hardware Initialized (HwInit attribute). The offsets for these registers are
all relative to the beginning of the host controller‟s MMIO address space. The beginning of the host controller‟s MMIO
address space is referred to as “Base” throughout this document.

Table 3-76. eXtensible Host Controller Capability


31 23 15 7 Offset
24 16 8 0
HCIVERSION (Interface Version Number) Reserved CAPLENGTH 00h
HCSPARAMS1 (Structural Parameters 1) 04h
HCSPARAMS2 (Structural Parameters 2) 08h
HCSPARAMS3 (Structural Parameters 3) 0Ch
HCCPARAMS (Capability Parameters) 10h
DBOFF (Doorbell Offset) 14h
RTSOFF (Runtime Register Space Offset ) 18h
Reserved 1Ch

3.3.1 Capability Registers Length (CAPLENGTH)

Table 3-77. CAPLENGTH (Offset Address: Base + 00h)

Bits Field Read/ Value (Default) Comment


Write

7:0 CAPLENGTH RO 20h This register is used as an offset to


add to register base to find the
beginning of the Operational
Register Space. This value is
referred to as “Operational Base”
throughout this document.

3.3.2 Host Controller Interface Version Number (HCIVERSION)

Table 3-78. HCIVERSION (Offset Address: Base + 02h)

Bits Field Read/ Value (Default) Comment


Write

15 : 0 HCIVERSION RO 0100h This is a two-byte register


containing a BCD encoding of the
xHCI specification revision number
supported by this host controller.
The most significant byte of this
register represents a major revision
and the least significant byte is the
minor revision. e.g. 0100h
corresponds to xHCI version 1.0

ISG-NK1-110027 Rev.2.00 Page 50 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.3.3 Structural Parameters 1 (HCSPARAMS1)

Table 3-79. HCSPARAMS1 (Offset Address: Base + 04h)

Bits Field Read/ Value (Default) Comment


Write

7:0 Number of Device Slots RO 20h This field specifies the maximum
(MaxSlots) number of Device Context
Structures and Doorbell Array
entries this host controller can
support.

18 : 8 Number of Interrupters RO 008h This field specifies the number of


(MaxIntrs) Interrupters implemented on this
host controller. Each Interrupter is
allocated to a vector of MSI-X and
controls its generation and
moderation.

The value of this field determines


how many Interrupter Register Sets
are addressable in the Runtime
Register Space.

23 : 19 Rsvd - - Reserved.

31 : 24 Number of Ports RO 08h ( PD720201) This field specifies the number of


(MaxPorts) 04h ( PD720202) physical downstream ports
implemented on this host controller.
The value of this field determines
how many port registers are
addressable in the Operational
Register Space. Refer to section
3.4.8 and 5.2 for more information.

3.3.4 Structural Parameters 2 (HCSPARAMS2)

Table 3-80. HCSPARAMS2 (Offset Address: Base + 08h)

Bits Field Read/ Value (Default) Comment


Write

3:0 Isochronous Scheduling RO 1h The value in this field indicates to


Threshold system software the minimum
distance (in time) that it is required
to stay ahead of the host controller
while adding TRBs, in order to have
the host controller process them at
the correct time. The value shall be
specified in terms of number of
microframes.

7:4 Event Ring Segment RO 1h This field determines the maximum


Table Max (ERST Max) value supported the Event Ring
Segment Table entries.

The maximum number of Event


Ring Segment Table entries
ERST Max
=2

ISG-NK1-110027 Rev.2.00 Page 51 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

25 : 8 Rsvd - - Reserved.

26 Scratchpad Restore RO 1b A value of „0‟ indicates that the


Scratchpad Buffer space may be
freed and reallocated between
power events.

31 : 27 Max Scratchpad Buffers RO 00100b This field indicates the number of


Scratchpad Buffers system software
shall reserve for the xHC.

3.3.5 Structural Parameters 3 (HCSPARAMS3)

Table 3-81. HCSPARAMS3 (Offset Address: Base + 0Ch)

Bits Field Read/ Value (Default) Comment


Write

7:0 U1 Device Exit Latency RO 0h Worst case latency to transition a


root hub Port Link State from U1 to
U0. Applies to all root hub ports. A
value of „0‟ indicates 0 us.

15 : 8 Rsvd - - Reserved.

31 : 16 U2 Device Exit Latency RO 0h Worst case latency to transition a


root hub Port Link State from U2 to
U0. Applies to all root hub ports. A
value of „0‟ indicates 0us.

3.3.6 Capability Parameters (HCCPARAMS)

★ Table 3-82. HCCPARAMS (Offset Address: Base + 10h)

Bits Field Read/ Value (Default) Comment


Write

0 64-bit Addressing RO 1b This flag documents the addressing


Capability range capability of this
implementation. The value of this
flag determines whether the xHC
has implemented the high order 32
bits of 64bits register and data
structure pointer fields. A value of „1‟
indicates 64-bit address memory
pointers implemented.

1 BW Negotiation RO 1b This flag identifies whether the xHC


Capability has implemented the Bandwidth
Negotiation. A value of „1‟ indicates
BW Negotiation implemented.

2 Context Size RO 1b A value of „0‟ indicates the xHC


uses 32-byte Context data
structures, and „1‟ indicates 64-byte
Context data structures.

ISG-NK1-110027 Rev.2.00 Page 52 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

3 Port Power Control RO HwInit This flag indicates whether the host
controller implementation includes
port power control. A „1‟ in this bit
indicates the ports have port power
switches. The value of this flag
affects the functionality of the PP
flag in each port status and control
register.

This bit is initialized by the


UsePPON bit in the PCI
Configuratin Space HCConfiguration
Register. Refer to Section 3.2.6.5
for more information on the use of
this flag.

4 Port Indicators RO 0b This bit indicates whether the xHC


root hub ports support port indicator
control. A value of „0‟ indicates that
the port status and control registers
does not include a read/writeable
field for controlling the state of the
port indicator.

5 Light HC Reset RO 0b This flag indicates whether the host


Capability controller implementation supports a
Light Host Controller Reset. A ‟0‟ in
this bit indicates that Light Host
Controller Reset is not supported.

6 Latency Tolerance RO 1b This flag indicates whether the host


Messaging Capability controller implementation supports
Latency Tolerance Messaging
(LTM). A ‟1‟ in this bit indicates that
LTM is supported.

7 No Secondary SID RO 1b This flag indicates whether the host


Support controller implementation supports
Secondary Stream IDs. A „1‟ in this
bit indicates that Secondary Stream
ID decoding is not supported.

8 Parse All Event Data RO 1b This flag indicates whether the host
(PAE) controller implementation Parses all
Event Data TRBs while advancing
to the next TD after a short packet,
or it skips all but the first Event Data
TRB. A „0‟ in this bit indicates that
only the first Event Data TRB is
parsed.

11 : 9 Rsvd - - Reserved.

15 : 12 Maximum Primary RO 5h This field identifies the maximum


Stream Array Size size Primary Stream Array that that
(MaxPSASize) the xHC supports. The Primary
MaxPSASize+1
Stream Array size = 2

ISG-NK1-110027 Rev.2.00 Page 53 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

31 : 16 xHCI Extended RO 140h This field indicates the existence of


Capabilities Pointer a capabilities list. The value of this
field indicates a relative offset , in
32-bit words, from Base to the
beginning of the first extended
capability.

First extended capability : Base +


( 0140h << 2 ) = Base + 500h

3.3.7 Doorbell Offset (DBOFF)

Table 3-83. DBOFF (Offset Address: Base + 14h)

Bits Field Read/ Value (Default) Comment


Write

31 : 0 Doorbell Array Offset RO 800h This field defines the DWORD offset
of the Doorbell Array base address
from the Base.

3.3.8 Runtime Register Space Offset (RTSOFF)

Table 3-84. RTSOFF Offset (Offset Address: Base + 18h)

Bits Field Read/ Value (Default) Comment


Write

31 : 0 Runtime Register Space RO 600h This field defines the 32-byte offset
Offset of the xHC Runtime Registers from
Base.

ISG-NK1-110027 Rev.2.00 Page 54 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.4 Host Controller Operational Registers

This section defines the xHCI Operational Registers.


The base address of this register space is referred to as Operational Base (Refer to section 3.3.1). The Operational
Base shall be DWORD aligned and is calculated by adding the value of the Capability Registers Length (CAPLENGTH)
register to the Capability Base address. All registers are multiples of 32 bits in length.
Unless otherwise stated, all registers should be accessed as a 32-bit width on reads with an appropriate software mask,
if needed. A software read/modify/write mechanism should be invoked for partial writes.
These registers are located at a positive offset from the Capabilities Registers.

Table 3-85. Host Controller Operational Registers


31 23 15 7 Offset
24 16 8 0
USBCMD (USB Command) 20h
USBSTS (USB Status) 24h
PAGESIZE (Page Size) 28h
Reserved 2C~33h
DNCTRL (Device Notification Control) 34h
CRCR (Command Ring Control) 38h
Reserved 40~4Fh
DCBAAP (Device Context Base Address Array Pointer) 50h
CONFIG (Configure) 58h
Reserved 5C~3FFh
Host Controller Port Register Set 1 – 4 420~49Fh

ISG-NK1-110027 Rev.2.00 Page 55 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.4.1 USB Command Register (USBCMD)


The Command Register indicates the command to be executed by the serial bus host controller. Writing to the register
causes a command to be executed.

Table 3-86. USBCMD Register (Offset Address: Operational Base (20h) + 00h)

Bits Field Read/ Value (Default) Comment


Write

0 Run/Stop RW 0b „1‟ = Run, „0‟ = Stop. When set to „1‟,


the xHC proceeds with execution of
the schedule. The xHC continues
execution as long as this bit is set to
a „1‟. When this bit is cleared to „0‟,
the xHC completes the current and
any actively pipelined transactions
on the USB and then halts.

1 Host Controller Reset RW 0b This control bit is used by software


(HCRST) to reset the host controller. The
effects of this bit on the xHC and the
Root Hub registers are similar to a
Chip Hardware Reset.

When software writes a „1‟ to this


bit, Any transaction currently in
progress on USB is immediately
terminated. A USB reset is not
driven on downstream ports.

PCI Configuration registers are not


affected by this reset.

This bit is cleared to „0‟ by the Host


Controller when the reset process is
complete. Software cannot
terminate the reset process early by
writing a „0‟ to this bit and shall not
write any xHC Operational or
Runtime registers until while
HCRST is „1‟.

Software shall not set this bit to „1‟


when the HCHalted bit in the
USBSTS register is a „0‟.

2 Interrupter Enable RW 0b This bit provides system software


with a means of enabling or
disabling the host system interrupts
generated by Interrupters. When
this bit is a „1‟, then Interrupter host
system interrupt generation is
allowed.

3 Host System Error RW 0b When this bit is a „1‟, and the HSE
Enable bit in the USBSTS register is a „1‟,
the xHC shall assert out-of-band
error signaling to the host. The
signaling is acknowledged by
software clearing the HSE bit.

6:4 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 56 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

7 Light Host Controller RO 0b Not implemented.


Reset

8 Controller Save State RW 0b When written by software with „1‟


and HCHalted = „1‟, then the xHC
shall save any internal state that will
be restored by a subsequent
Restore State operation. When
written by software with „1‟ and
HCHalted = „0‟, or written with ‟0‟, no
Save State operation shall be
performed. This flag always returns
„0‟ when read. Note that undefined
behavior may occur if a Save State
operation is initiated while Restore
State Status (RSS) = „1‟

9 Controller Restore State RW 0b When set to „1‟, and HCHalted = „1‟,


then the xHC shall perform a
Restore State operation and restore
its internal state. When set to „1‟ and
Run/Stop = „1‟ or HCHalted(HCH) =
„0‟, or when cleared to „0‟, no
Restore State operation shall be
performed. This flag always returns
„0‟ when read. Note that undefined
behavior may occur if a Restore
State operation is initiated while
Save State Status (SSS) = „1‟

10 Enable Wrap Event RW 0b When set to „1‟, the xHC shall


generate a MFINDEX Wrap Event
every time the MFINDEX register
transitions from 03FFFh to 0. When
cleared to „0‟ no MFINDEX Wrap
Events are generated.

11 Enable U3 MFINDEX RW 0b When set to „1‟, the xHC may stop


Stop the MFINDEX counting action if all
Root Hub ports are in the U3,
Disconnected, Disabled, or
Powered-off state. When cleared to
„0‟, the xHC may stop the MFINDEX
counting action if all Root Hub ports
are in the Disconnected, Disabled,
or Powered-off state.

31 : 12 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 57 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.4.2 USB Status Register (USBSTS)


This register indicates pending interrupts and various states of the Host Controller. The status resulting from a
transaction on the serial bus is not indicated in this register. Software sets a bit to „0‟ in this register by writing a „1‟ to it
(RW1C).

Table 3-87. USBSTS Register (Offset Address: Operational Base (20h) + 04h)

Bits Field Read/ Value (Default) Comment


Write

0 HCHalted RO 1b This bit is a „0‟ whenever the


Run/Stop bit is a „1‟. The xHC sets
this bit to „1‟ after it has stopped
executing as a result of the
Run/Stop bit being cleared to „0‟,
either by software or by the xHC
hardware(e.g. internal error).

If this bit is „1‟, then SOFs,


microSOFs, or Isochronous
Timestamp Packets (ITP) shall not
be generated by the xHC.

1 Rsvd - - Reserved.

2 Host System Error RW1C 0b The xHC sets this bit to „1‟ when a
(HSE) serious error is detected, either
internal to the xHC or during a host
system access involving the xHC
module. When this error occurs, the
xHC clears the Run/Stop bit in the
USBCMD register. If the HSEE bit in
the USBCMD register is a „1‟, the
xHC shall also assert out-of-band
error signaling to the host.

3 Event Interrupt (EINT) RW1C 0b The xHC sets this bit to „1‟ when the
Interrupt Pending (IP) bit of any
Interrupter transitions from „0‟ to „1‟.

The EINT flag does not generate an


interrupt, it is simply a logical OR of
the IMAN register IP flag „0‟ to „1‟
transitions. As such, it does not
need to be cleared to clear an xHC
interrupt.

4 Port Change Detect RW1C 0b The xHC sets this bit to a „1‟ when
any port has a change bit transition
from a „0‟ to a „1‟. This bit is loaded
with the OR of all PORTSC change
bits.

7:5 Rsvd - - Reserved.

8 Save State Status RO 0b When the Controller Save State flag


in the USBCMD register is written
with „1‟ , this bit shall be set to „1‟
and remain „1‟ while the xHC
saves its internal state. When the
Save State operation is complete,
this bit shall be cleared to „0‟.

ISG-NK1-110027 Rev.2.00 Page 58 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

9 Restore State Status RO 0b When the Controller Restore State


flag in the USBCMD register is
written with „1‟, this bit shall be set to
„1‟ and remain „1‟ while the xHC
restores its internal state. When the
Restore State operation is complete,
this bit shall be cleared to „0‟.

10 Save/Restore Error RW1C 0b If an error occurs during a Save or


Restore operation, this bit shall be
set to „1‟. This bit shall be cleared to
„0‟ when a Save or Restore
operation is initiated or when written
with „1‟.

11 Controller Not Ready RO 1b „0‟ = Ready and „1‟ = Not Ready.


(CNR) Software shall not write any
Doorbell or Operational register of
the xHC, other than the USBSTS
register, until CNR = „0‟. This flag is
set by the xHC after a Chip
hardware Reset and cleared when
the xHC is ready to begin accepting
register writes.

12 Host Controller Error RO 0b „0‟ = No internal xHC error


conditions exist and „1‟ = Internal
xHC error condition. If both
PD720201 and PD720202 detect
no correct firmware in Serial ROM,
this flag is set.

31 : 13 Rsvd - - Reserved.

3.4.3 Page Size Register (PAGESIZE)

Table 3-88. PAGESIZE Register (Offset Address: Operational Base (20h) + 08h)

Bits Field Read/ Value (Default) Comment


Write

15 : 0 Page Size RO 0001h This field defines the page size


supported by the xHC. This xHC
supports 4k byte page size .
(Page Size +12)
Page size = 2

31 : 16 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 59 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.4.4 Device Notification Control Register (DNCTRL)


This register is used by software to enable or disable the reporting of the reception of specific USB Device Notification
Transaction Packets. A Notification Enable (Nx, where x = 0 to 15) flag is defined for each of the 16 possible device
notification types. If a flag is set for a specific notification type, a Device Notification Event will be generated when the
respective notification packet is received. After reset all notifications are disabled.

Table 3-89. DNCTRL Register (Offset Address: Operational Base (20h) + 14h)

Bits Field Read/ Value (Default) Comment


Write

15 : 0 Notification Enable RW 0h When a Notification Enable bit is


(N0 –N15) set, a Device Notification Event will
be generated when a Device
Notification Transaction Packet is
received with the matching value in
the Notification Type field. For
example, setting N1(bit1) to „1‟
enables Device Notification Event
generation if a Device Notification
Transaction Packet is received with
its Notification Type field set to „1‟
(FUNCTION_WAKE).

31 : 16 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 60 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.4.5 Command Ring Control Register (CRCR)


The Command Ring Control Register provides Command Ring control and status capabilities, and identifies the
address and Cycle bit state of the Command Ring Dequeue Pointer. The Command Ring is 64 byte aligned, so the low
order 6bits of the Command Ring Pointer shall always be „0‟.

Table 3-90. CRCR Register (Offset Address: Operational Base (20h) + 18h)

Bits Field Read/ Value (Default) Comment


Write

0 Ring Cycle State (RCS) RW 0b This bit identifies the value of the
xHC Consumer Cycle State flag for
the TRB referenced by the
Command Ring Pointer.

Writes to this flag are ignored if


Command Ring Running is „1‟.

If the CRCR is written while the


Command Ring is stopped (CRR =
„0‟ ), then the value of this flag shall
be used to fetch the first Command
TRB the next time the Host
Controller Doorbell register is written
with the DB Reason field set to Host
Controller Command.

If the CRCR is not written while the


Command Ring is stopped (CRR =
„0‟), then the Command Ring will
begin fetching Command TRBs
using the current value of the
internal Command Ring CCS flag.

Reading this flag always returns „0‟.

1 Command Stop RW 0b Writing a „1‟ to this bit shall stop the


operation of the Command Ring
after the completion of the currently
executing command, and generate
a Command Completion Event with
the Completion Code set to
Command Ring Stopped and the
Command TRB Pointer set to the
current value of the Command Ring
Dequeue Pointer.

Next write to the Host Controller


Doorbell with DB Reason field set to
Host Controller Command shall
restart the Command Ring
operation.

Writes to this flag are ignored by the


xHC if Command Ring Running
(CRR) = „0‟. Reading this bit shall
always return „0‟.

ISG-NK1-110027 Rev.2.00 Page 61 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

2 Command Abort RW 0b Writing a „1‟ to this bit shall


immediately terminate the currently
executing command, stop the
Command Ring, and generate a
Command Completion Event with
the Completion Code set to
Command Ring Stopped.

The next write to the Host Controller


Doorbell with DB Reason field set to
Host Controller Command shall
restart the Command Ring
operation.

Writes to this flag are ignored by the


xHC if Command Ring Running
(CRR) = „0‟. Reading this bit always
returns „0‟.

3 Command Ring Running RO 0b This flag is set to „1‟ if the Run/Stop


(CRR) bit is „1‟ and the Host Controller
Doorbell register is written with the
DB Reason field set to Host
Controller Command. It is cleared to
„0‟ when the Command Ring is
“stopped” after writing a „1‟ to the
Command Stop (CS) or Command
Abort(CA) flags, or if the Run/Stop
bit is cleared to „0‟.

5:4 Rsvd - - Reserved.

64 : 6 Command Ring Pointer RW 0h This field defined high order bits of


the initial value of the 64-bit
Command Ring Dequeue Pointer.

Writes to this field are ignored when


Command Ring Running (CRR) =‟1‟.

If the CRCR is written while the


Command Ring is stopped (CRR
=‟0‟), the value of this field shall be
used to fetch the first Command
TRB the next time the Host
Controller Doorbell register is written
with the DB Reason field set to Host
Controller Command.

If the CRCR is not written while the


Command Ring is stopped (CRR =
„0‟) then the Command Ring shall
begin fetching Command TRBs at
the current value of the internal xHC
Command Ring Dequeue Pointer.
Reading this field always returns „0‟.

ISG-NK1-110027 Rev.2.00 Page 62 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.4.6 Device Context Base Address Array Pointer Register (DCBAAP)


The Device Context Base Address Array Pointer Register identifies the base address of the Device Context Base
Address Array. The memory structure referenced by this physical memory pointer is assumed to be physically contiguous
and 64-byte aligned.

Table 3-91. DCBAAP Register (Offset Address: Operational Base (20h) + 30h)

Bits Field Read/ Value (Default) Comment


Write

5:0 Rsvd - - Reserved.

63 : 6 Device Context Base RW 0h This field defines high order bits of


Address Array Pointer the 64-bit base address of the
Device Context Pointer Array table.
A table of address pointers that
reference Device Context structures
for the devices attached to the host.

3.4.7 Configure Register (CONFIG)


This register defines runtime xHC configuration parameters.

Table 3-92. CONFIG Register (Offset Address: Operational Base (20h) + 38h)

Bits Field Read/ Value (Default) Comment


Write

7:0 Max Device Slots RW 0h This field specifies the maximum


Enabled (MaxSlotsEn) number of enabled Device Slots.
Valid values are in the range of 0 to
MaxSlots. Enabled Devices Slots
are allocated contiguously. e.g. A
value of 16 specifies that Device
Slots 1 to 16 are active. A value of
„0‟ disables all Device Slots. A
disabled Device Slot shall not
respond to Doorbell Register
references.

This field shall not be modified if the


xHC is running.

31 : 8 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 63 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.4.8 Host Controller Port Register Set


PD720201 implements 8 root hub ports: 4 SuperSpeed ports and 4 High-Speed ports. A root Hub port that supports
the USB3 protocol is comprised of a PORTSC, a USB3 PORTPMSC and PORTLI register. A root Hub port that supports
the USB2 protocol is comprised of a PORTSC and PORTPMSC register. Ports are numbered from 1 to MaxPorts.
MaxPorts is defined in the HCSPARAMS1 register. On thePD720201, Port1 (P1), Port2 (P2), Port3 (P3) and Port4 (P4)
are SuperSpeed ports, while Port5 (P5), Port6 (P6), Port7 (P7) and Port8 (P8) are High-Speed ports. These assignments
are defined in the xHCI Supported Protocol Extended Capability (defined in section 3.7.2). The mapping of Root Hub Ports
to the physical USB3 compatible connectors (C1, C2, C3 and C4) of a system are shown below. Refer to section 5.2 for
more information. Note that the Port Power Pin, PPONx(x:1 to 4) of PD720201, is ORed with both Port Power flag of the
PORTSC of Porty(y:1 to 4) and that of Portz(z:5 to 8).

USB3 Comatible Port Offset = 1 USB2 Comatible Port Offset = 5

USB3 Ports USB2 Ports


USB3 Compatible USB2 Compatible
Port Count = 4 Port Count = 4

P1 P2 P3 P4 P5 P6 P7 P8 Root Hub Ports

Physical USB
C1 C2 C3 C4
SS Connectors

LS/FS/HS
USB Cables

USB3 compatible connectors

Table 3-93. Host Controller Port Register Set (Offset shows from Base)
31 23 15 7 720201 720202
24 16 8 0 Offset Offset
Port1(SS) PORTSC (Port Status and Control) 420h 420h
Port1(SS) PORTPMSC (Port Power Management Status and Control) 424h 424h
Port1 PORTLI (Port Link Info) 428h 428h
Reserved 42Ch 42Ch
Port2(SS) PORTSC (Port Status and Control) 430h 430h
Port2(SS) PORTPMSC (Port Power Management Status and Control) 434h 434h
Port2 PORTLI (Port Link Info) 438h 438h
Reserved 43Ch 43Ch
Port3(SS) PORTSC (Port Status and Control) 440h -
Port3(SS) PORTPMSC (Port Power Management Status and Control) 444h -
Port3 PORTLI (Port Link Info) 448h -
Reserved 44Ch -
Port4(SS) PORTSC (Port Status and Control) 450h -
Port4(SS) PORTPMSC (Port Power Management Status and Control) 454h -
Port3 PORTLI (Port Link Info) 458h -

ISG-NK1-110027 Rev.2.00 Page 64 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Reserved 45Ch -
Port5(LS/FS/HS) PORTSC (Port Status and Control) 460h 440h
Port5(LS/FS/HS) PORTPMSC (Port Power Management Status and Control) 464h 444h
Reserved 468h 448h
Reserved 46Ch 44Ch
Port6(LS/FS/HS) PORTSC (Port Status and Control) 470h 450h
Port6(LS/FS/HS) PORTPMSC (Port Power Management Status and Control) 474h 454h
Reserved 478h 458h
Reserved 47Ch 45Ch
Port7(LS/FS/HS) PORTSC (Port Status and Control) 480h -
Port7(LS/FS/HS) PORTPMSC (Port Power Management Status and Control) 484h -
Reserved 488h -
Reserved 48Ch -
Port8(LS/FS/HS) PORTSC (Port Status and Control) 490h -
Port8(LS/FS/HS) PORTPMSC (Port Power Management Status and Control) 494h -
Reserved 498h -
Reserved 49Ch -

3.4.8.1 Port Status and Control Register (PORTSC)


This register is only reset by platform hardware during a cold reset or in response to a Host Controller Reset (HCRST).
Software cannot change the state of the port unless Port Power (PP) is asserted („1‟), regardless of the Port Power
Control (PPC) capability. The host is required to have power stable to the port within 20 milliseconds of the „0‟ to „1‟
transition of PP. If PPC =‟1‟ software is responsible for waiting 20ms after asserting PP, before attempting to change the
state of the port.

Table 3-94. PORTSC Register (Offset Address: Operational Base (20h) + (400h + (10h *(n-1)))

Bits Field Read/ Value (Default) Comment


Write

0 Current Connect Status RO 0b „1‟ = Device is present on port. „0‟ =


(CCS) No device is present. This value
reflects the current state of the port,
and may not correspond directly to
the event that caused the Connect
Status Change (CSC) bit to be set
to „1‟. This flag is „0‟ if PP is „0‟.

ISG-NK1-110027 Rev.2.00 Page 65 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

1 Port Enable/Disable RW1CS 0b Ports may only be enabled by the


(PED) xHC. Software cannot enable a port
by writing a „1‟ to this flag. A port
may be disabled by software writing
a „1‟ to this flag. This flag shall
automatically be cleared to „0‟ by a
disconnect event or other fault
condition.

PED shall automatically be cleared


to „0‟ when PR is set to „1‟, and set
to „1‟ when PR transitions from „1‟ to
„0‟ after a successful reset.

2 Rsvd. - - Reserved.

3 Over-current Active RO 0b This port currently has an over-


(OCA) current condition. „0‟ = This port
does not have an over-current
condition. This bit shall
automatically transition from a „1‟ to
a‟0‟ when the over-current condition
is removed.

4 Port Reset (PR) RW1S 0b „1‟ = Port Reset signaling is


asserted. „0‟ = Port is not in Reset.
When software writes a „1‟ to this bit
(from a „0‟) the bus reset sequence
is initiated; USB2 protocol ports
shall execute the bus reset
sequence as defined in the USB2
Spec. USB3 protocol ports shall
execute the Hot Reset sequence as
defined in the USB3 Spec. PR
remains set until reset signaling is
completed by the root hub. This flag
is „0‟ if PP is „0‟.

8:5 Port Link State (PLS) RWS 100b This field is used to power manage
the port and reflects its current link
state.

When the port is in the Enable state,


system software may set the link U
state by writing this field. System
software may also write this field to
force a Disabled to Disconnected
state transition o the port.

This field is undefined if PP= „0‟.

Write and Read value is shown in


table3-91 and table 3-92.

Note: The Port Link State Write


Strobe (LWS) shall be set tot „1‟ to
write this field.

ISG-NK1-110027 Rev.2.00 Page 66 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

9 Port Power (PP) RWS 0b This flag reflects a port‟s logical,


power control state. When PP
equals a „0‟, the port is
nonfunctional and shall not report
attaches, detaches, or Port Link
State (PLS) changes. However, the
port shall report over-current
conditions when PP = „0‟ if PPC =
„0‟.

0 = This port is in the Powered-off


state.

1 = This port is not in the Powered-


off state.

When an over-current condition is


detected on a powered port, the
xHC shall transition the PP bit in
each affected port from a „1‟ to „0‟.

This bit is set after the software sets


Max Device Slots Enable
(MaxSlotsEn) field in Configure
(CONFIG) register or Host
Controller Reset (HCRST) flag in
USBCMD register.

13 : 10 Port Speed RO 0b This field identifies the speed of the


attached USB Device. This field is
only relevant if a device is attached
(CCS = „1‟). In all other cases this
field shall indicate Undefined Speed.

Value Meaning
0 Undefined
Speed

1 Full-speed

2 Low-speed
3 High-speed

4 SuperSpeed

5-15 Reserved.

15 : 14 Port Indicator Control RWS 0b Writing to these bits has no effect .

16 Port Link State Write RW 0b When this bit is set to „1‟ on a write
Strobe (LWS) reference to this register, this flag
enables writes to the PLS field.
When „0‟, write data in PLS field is
ignored. Reads to this bit return „0‟.

ISG-NK1-110027 Rev.2.00 Page 67 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

17 Connect Status Change RW1CS 0b „1‟ = Change in CCS. „0‟ = No


(CSC) change. This flag indicates a
change has occurred in the port‟s
Current Connect Status (CCS) or
Cold Attach Status (CAS) bits. Note
that this flag shall not be set if the
CCS transition was due to software
setting PP to „0‟, or the CAS
transition was due to software
setting WPR to „1‟. The xHC sets
this bit to „1‟ for all changes to the
port device connect status, even if
system software has not cleared an
existing Connect Status Change.

18 Port Enabled/Disabled RW1CS 0b „1‟ = change in PED. „0‟ = No


Change (PEC) change. Note that this flag shall not
be set if the PED transition was due
to software setting PP to „0‟.
Software shall clear this bit by
writing a „1‟ to it.

19 Warm Port Reset RW1CS 0b Writing to this bit has no effect.


Change (WRC)

20 Over-current Change RW1CS 0b This bit shall be set to a „1‟ when


(OCC) there is a „0‟ to „1‟ or „1‟ to „0‟
transition of Over-current Active
(OCA). Software shall clear this bit
by writing a „1‟ to it.

21 Port Reset Change RW1CS 0b „0‟ = No change. „1‟ = Reset


(PRC) complete. This flag is set to „1‟ due a
„1‟ to „0‟ transition of Port Reset
(PR). Software shall clear this bit by
writing a „1‟ to it.

22 Port Link State Change RW1CS 0b „0‟ = No change. „1‟ = Link Status
(PLC) Changed. This flag is set to „1‟ due
to table 3-93.

Note that this flag shall not be set if


the PLS transition was due to
software setting PP to „0‟. Software
shall clear this bit by writing a „1‟ to
it.

23 Port Config Error RW1CS/ 0b „0‟ = No change. „1‟ = Port Config


Change (CES) Rsvd Error detected. This flag indicates
that the port failed to configure its
link partner. Software shall clear this
bit by writing a „1‟ to it.
Note: This flag is valid only for
USB3 protocol ports. For USB2
protocol ports this bit shall be
Reserved.

ISG-NK1-110027 Rev.2.00 Page 68 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

24 Cold Attach Status RO 0b „1‟ = Far-end Receiver Terminations


(CAS) were detected in the Disconnected
state and the Root Hub Port State
Machine was unable to advance to
the Enable state. Software shall
clear this bit by writing a „1‟ to WPR
or the xHC shall clear this bit if CCS
transitions to „1‟. This flag is „0‟ if PP
is „0‟ or for USB2 protocol ports.

25 Wake on Connect RWS 0b Writing this bit to a „1‟ enables the


Enable (WCE) port to be sensitive to device
connects as system wake-up
events.

26 Wake on Disconnect RWS 0b Writing this bit to a „1‟ enables the


Enable (WDE) port to be sensitive to device
disconnects as system wake-up
events

27 Wake on Over-current RWS 0b Writing this bit to a „1‟ enables the


Enable (WOE) port to be sensitive to over-current
conditions as system wake-up
events.

29 : 28 Rsvd - - Reserved.

30 Device Removable (DR) RO 0b This flag indicates if this port has a


removable device attached. „1‟ =
Device is non-removable. „0‟ =
Device is removable.

31 Warm Port Reset (WPR) RW1S 0b When software writes a „1‟ to this
/Rsvd bit, the Warm Reset sequence as
defined in the USB3 Specification is
initiated and the PR flag is set to „1‟.
Once initiated, the PR,PRC, and
WRC flags shall reflect the progress
of the Warm Reset sequence. This
flag shall always return „0‟ when
read. This flag only applies to USB3
protocol ports. For USB2 protocol
ports it shall be Reserved.

Note : n = Port Number 1, 2, 3, 4, 5, 6 ,7 and 8 for PD720201, n = Port Number 1,2,3 and 4 for PD720202.

Table 3-95. PLS Write Value

Write Value Description

0 The link shall transition to a U0 state from any of the U states.

2 USB2 protocol ports only. The link should transition to the U2 state.

3 The link shall transition to a U3 state from the U0 state. This action selectively suspends the
device connected to this port.

5 USB3 protocol ports only. If the port is in the Disabled state (PLS = Disabled, PP=1), then the
link shall transition to a RxDetect state and the port shall transition to the Disconnected state,
else ignored.

1,4,6-14 Ignored

ISG-NK1-110027 Rev.2.00 Page 69 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

15 USB2 protocol ports only. If the port is in the U3 state (PLS = U3), then the link shall remain in
the U3 state and the port shall transition to the U3Exit substate, else ignored.

Table 3-96. PLS Read Value

Read Value Description

0 Link is in the U0 State

1 Link is in the U1 State

2 Link is in the U2 State

3 Link is in the U3 State (Device Suspended)

4 Link is in the Disable State

5 Link is in the RxDetect State

6 Link is in the Inactive State

7 Link is in the Polling State

8 Link is in the Recovery State

9 Link is in the Hot Reset State

10 Link is in the Compliance Mode State

11 Link is in the Test Mode State

14 : 12 Reserved

15 Link is in the Resume State

Table 3-97. PLS transitions

Transition Condition

U3 -> Resume Wakeup signaling from a device

Resume -> Recovery -> U0 Device Resume complete (USB3 protocol ports only)

Resume -> U0 Device Resume complete (USB2 protocol ports only)

U3 -> Recovery -> U0 Software Resume complete (USB3 protocol ports only)

U3 -> U0 Software Resume complete (USB2 protocol ports only)

U2 -> U0 L1 Resume complete (USB2 protocol ports only)

U0 -> U0 L1 Entry Reject (USB2 protocol ports only)

Any state -> Inactive Error (USB3 protocol ports only)

3.4.8.2 Port PM Status and Control Register (PORTPMSC)


The definitions of the fields in the PORTPMSC register depend on the USB protocol supported by the port.
This register is only reset by platform hardware during a cold reset or in response to a Host Controller Reset (HCRST).

ISG-NK1-110027 Rev.2.00 Page 70 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.4.8.3 USB3 Protocol PORTPMSC definition

Table 3-98. USB3 PORTPMSC Register (Offset Address: Operational Base (20h) + (404h + (10h*(n-1)))

Bits Field Read/ Value (Default) Comment


Write

7:0 U1 Timeout RWS 0h Timeout value for U1 inactivity timer.


If equal to FFh, the port is disabled
from initiating U1 entry. This field
shall be set to „0‟ by the assertion of
PR to „1‟.

15 : 8 U2 Timeout RWS 0h Timeout value for U2 inactivity timer.


If equal to FFh, the port is disabled
from initiating U2 entry. This field
shall be set to „0‟ by the assertion of
PR to „1‟.

16 Force Link PM Accept RW 0b When this bit is set to „1‟, the port
(FLA) shall generate a Set Link Function
LMP with the Force_LinkPM_Accept
bit asserted. This flag shall be set to
„0‟ by the assertion of PR to „1‟ or
when CCS = transitions from „0‟
to ‟1‟. Writes to this flag have no
affect if PP =‟0‟. This flag is „0‟ if PP
is „0‟.

31 : 17 Rsvd - - Reserved.

Note: In the equation for Offset Address, n = Port Number 1,2,3 or 4 for PD720201. n = 1,2 for PD720202.

ISG-NK1-110027 Rev.2.00 Page 71 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.4.8.4 USB2 Protocol PORTPMSC definition

Table 3-99. USB2 PORTPMSC Register (Offset Address: Operational Base (20h) +(404h + (10h*(n-1)))

Bits Field Read/ Value (Default) Comment


Write

2:0 L1 Status (L1S) RO 000b This field is used by software to


determine whether an L1-based
suspend request (LMP transaction)
was successful, specifically:
Value Meaning

0 Invalid – This field


shall be ignored by
software.

1 Success – Port
successfully
transitioned to L1
(ACK)
2 Not Yet – Device is
unable to enter L1
at this time (NYET)

3 Not Supported –
Device does not
support L1
transitions (STALL)

4 Timeout/Error –
Device failed to
respond to the LPM
Transaction or an
error occurred.
5-7 Reserved

3 Remote Wake Enable RW 0b The host system sets this flag to


(RWE) enable or disable the device for
remote wake from L1.

7:4 Host Initiated Resume RW 0h System software sets this field to


Duration (HIRD) indicate to the recipient device how
long the xHC will drive resume if it
initiates an exit from L1. The value
of 0000b is interpreted as 50us.
Each incrementing value up adds
75us to the previous value.

15 : 8 L1 Device Slot RW 0h System software sets this field to


indicate the ID of the Device Slot
associated with the device directly
attached to the Root Hub port. A
value of „0‟ indicates no device is
present. The xHC uses this field to
lookup information necessary to
generate the LMP Token packet.

16 Hardware LPM Enable RW 0b If this bit is set to „1‟, then hardware


(HLE) controlled LPM shall be enabled for
this port..

ISG-NK1-110027 Rev.2.00 Page 72 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

27 : 15 Rsvd - - Reserved

31 : 28 Port Test Control RW 0h When this field is „0‟, the port is NOT
operating in a test mode. A non-zero
value indicates that it is operating in
test mode and the specific test
mode is indicated by the specific
value.

A non-zero Port Test Control value


is only valid to a port that is in the
Powered-off state (PLS = Disable).
If the port is not in this state, the
xHC shall respond with the Port
Test Control field set to Port Test
Control Error.

The encoding of the Test Mode bits


for a USB2 protocol port are:
Value Test Mode

0 Test mode not


enabled

1 Test J_STATE

2 Test K_STATE

3 Test SE0_NAK

4 Test Packet

5 Test
FORCE_ENABLE
6-14 Reserved

15 Port Test Control


Error

Note: In the equation for Offset Address, n = Port Number 5,6,7 or 8 for PD720201. n = 3 or 4 for PD720202.

ISG-NK1-110027 Rev.2.00 Page 73 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.4.8.5 Port Link Info Register (PORTLI)


The definitions of the fields in the PORTLI register depend on the USB protocol supported by the port. The USB3 Port
Link Info register reports the Link Error Count, while the USB2 Port Link Info register is reserved and shall be treated as
Reserved by software.

Table 3-100. USB3 PORTLI Register (Offset Address: Operational Base (20h) + (408h + (10h * (n-1)))

Bits Field Read/ Value (Default) Comment


Write

15 : 0 Link Error Count RO 0h This field returns the number of link


errors detected by the port. This
value shall be reset to „0‟ by the
assertion of a Chip hardware Reset,
HCRST, when PR transitions from
„1‟ to „0‟, or when CCS = transitions
from „0‟ to „1‟.

31 : 16 Rsvd - - Reserved.

Note: n = Port Number 1,2,3 or 4 for PD720201. n = 1 or 2 for PD720202.

ISG-NK1-110027 Rev.2.00 Page 74 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.5 Host Controller Runtime Registers

This section defines the xHCI Runtime Register space. The base address of this register space is referred to as
Runtime Base (Refer to section 3.3.8 ). The Runtime Base shall be 32-byte aligned and is calculated by adding the value
Runtime Register Space Offset register to the Capability Base address. All Runtime registers are multiples of 32 bits in
length.
Unless otherwise stated, all registers should be accessed with Dword references on reads, with an appropriate
software mask if needed. A software read/modify/write mechanism should be invoked for partial writes.
Software should write registers containing a Qword address field using only Qword references. If a system is incapable
of issuing Qword references, then writes to the Qword address fields shall be performed using 2 Dword references; low
Dword-first, high-Dword second.

Table 3-101. Host Controller Runtime Registers


31 23 15 7 Offset
24 16 8 0
MFINDEX (Microframe Index) 600h
Reserved 604~61Fh
IR0 (Interrupter Register Set 0) 620~63Fh
IR1 (Interrupter Register Set 1) 640~65Fh
IR2 (Interrupter Register Set 2) 660~67Fh
IR3 (Interrupter Register Set 3) 680~69Fh
IR4 (Interrupter Register Set 4) 6A0~6BFh
IR5 (Interrupter Register Set 5) 6C0~6DFh
IR6 (Interrupter Register Set 6) 6E0~6FFh
IR7 (Interrupter Register Set 7) 700~71Fh

3.5.1 Microframe Index Register (MFINDEX)


This register is used by the system software to determine the current periodic frame. The register value is incremented
every 125 microseconds (once each microframe).
This register is only incremented while Run/Stop (R/S) = „1‟.
The value of this register affects the SOF value generated by USB2 Bus Instances.

Table 3-102. MFINDEX Register (Offset Address: Runtime Base (600h) + 00h)

Bits Field Read/ Value (Default) Comment


Write

13 : 0 Microframe Index RO 0h The value in this register increment


at the end of each microframe. Bit
[13:3] may be used to determine the
current 1ms Frame Index.

31 14 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 75 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.5.2 Interrupter Register Set


The Interrupter logic consists of an Interrupter Management Register, an Interrupter Moderation Register, and the
Event Ring Registers. A one to one mapping is defined for Interrupter to MSI-X vector.

Table 3-103. Interrupter Register Set


31 23 15 7 Offset
24 16 8 0
Interrupter Management 00h
Interrupter Moderation Counter Interrupter Moderation Interval 04h
Reserved Event Ring Segment Table Size 08h
Reserved 0Ch
Event Ring Segment Table Base Address Lo Reserved 10h
Event Ring Segment Table Base Address Hi 14h
Event Ring Dequeue Pointer Lo Reserved 18h
Event Ring Dequeue Pointer Hi 1Ch

3.5.2.1 Interrupter Management Register (IMAN)


The Interrupter Management register allows system software to enable, disable, detect, and force xHC interrupts.

Table 3-104. IMAN Register (Offset Address: Runtime Base (600h) + 020h + (20h*Interrupter))

Bits Field Read/ Value (Default) Comment


Write

0 Interrupter Pending (IP) RW1C 0b This flag represents the current


state of the Interrupter. If IP=‟1‟, an
interrupt is pending for this
Interrupter. This flag is set to „1‟
when IE = „1‟, the IMODC Interrupt
Moderation Counter field = „0‟ the
Event Ring associated with the
Interrupter I not empty, and EHB =
„0‟. A „0‟ value indicates that no
interrupt is pending for the
Interrupter. If MSI interrupts are
enabled, this flag shall be cleared
automatically when the PCI Dword
write generated by the Interrupt
assertion is complete. If PCI Pin
Interrupts are enabled, this flag shall
be cleared by software.

1 Interrupt Enable (IE) RW 0b This flag specifies whether the


Interrupter is capable of generating
an interrupt. When this bit and the
IP bit are set „1‟, the Interrupter shall
generate an interrupt when the
Interrupter Moderation Counter
reaches „0‟. If this bit is „0‟, then the
Interrupter is prohibited from
generating interrupts.

31 : 2 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 76 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Note: Interrupter is 0, 1, 2, 3, 4, 5, 6 or 7.
3.5.2.2 Interrupter Moderation Register (IMOD)
The Interrupter Moderation Register controls the “interrupt moderation” feature of an interrupter, allowing system
software to throttle the interrupt rate generated by the xHC.

Table 3-105. IMOD Register (Offset Address: Runtime Base (600h) + 024h + (20h*Interrupter))

Bits Field Read/ Value (Default) Comment


Write

15 : 0 Interrupt Moderation RW FA0h Minimum inter-interrupt interval. The


Interval (IMODI) (~1ms) interval is specified in 250ns
increments. A value of „0‟ disables
interrupt throttling logic and
interrupts shall be generated
immediately if IP = „0‟, EHB = „0‟,
and the Event Ring is not empty.

31 : 16 Interrupt Moderation RW 0h Down counter. Loaded with Interval


Counter (IMODC) value whenever IP is cleared to „0‟,
counts down to „0‟, and stops. The
associated interrupt shall be
signaled whenever this counter is
„0‟, the Event Ring is not empty, the
IE and IP flags = „1‟, and EHB = „0‟.

This counter may be directly written


by software at any time to alter the
interrupt rate.

Note: Interrupter is 0, 1, 2, 3, 4, 5, 6 or 7.

ISG-NK1-110027 Rev.2.00 Page 77 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.5.2.3 Event Ring Segment Table Size Register (ERSTSZ)


The Event Ring Segment Table Size Register defines the number of segments supported by the Event Ring Segment
table.

Table 3-106. ERSTSZ Register (Offset Address: Runtime Base (600h) + 028h + (20h*Interrupter))

Bits Field Read/ Value (Default) Comment


Write

15 : 0 Event Ring Segment RW 0h This field identifies the number of


Table Size valid Event Ring Segment Table
entries in the Event Ring Segment
Table pointed to by the Event Ring
Segment Table Base Address
register. The maximum value
supported by an xHC
implementation for this register is
defined by the ERST Max field in
the HSCPARAMS2 register.

For Secondary Interrupters: Writing


a value of „0‟ to this field disables
the Event Ring. Any events targeted
at this Event Ring when it is
disabled shall result in undefined
behavior of the Event Ring.

For the Primary Interrupter: Writing


a value of „0‟ to this field shall result
in undefined behavior of the Event
Ring. The Primary Event Ring
cannot be disabled.

31 : 16 Rsvd - - Reserved.

Note: Interrupter is 0, 1, 2, 3, 4, 5, 6 or 7.

3.5.2.4 Event Ring Segment Table Base Address Register (ERSTBA)


The Event Ring Segment Table Base Address Register identifies the start address of the Evnet Ring Segment Table.

Table 3-107. ERSTBA Register (Offset Address: Runtime Base (600h) + 30h + (20h*Interrupter))

Bits Field Read/ Value (Default) Comment


Write

3:0 Rsvd - - Reserved.

63 : 4 Event Ring Segment RW 0h This field defines the high order bits
Table Base Address of the start address of the Event
Register Ring Segment Table.

Writing this register sets the Event


Ring State Machine : EREP
advancement to the Start state. This
field shall not be modified if
HCHalted (HCH) = „0‟.

Note: Interrupter is 0, 1, 2, 3, 4, 5, 6 or 7.

ISG-NK1-110027 Rev.2.00 Page 78 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.5.2.5 Event Ring Dequeue Pointer Register (ERDP)


The Event Ring Dequeue Pointer Register is written by software to define the Event Ring Dequeue Pointer location to
the xHC. Software updates this pointer when it is finished the evaluation of an Event(s) on the Event Ring.

Table 3-108. ERDP Register (Offset Address: Runtime Base (600h) + 038h + (20h*Interrupter))

Bits Field Read/ Value (Default) Comment


Write

2:0 Dequeue ERST RW 000b This field may be used by the xHC
Segment Index (DESI) to accelerate checking the Event
Ring full condition. This field is
written with the low order 3 bits of
the offset of the ERST entry which
defines the Event Ring segment that
Event Ring Dequeue Pointer resides
in.

3 Event Hander Busy RW1C 0b This flag shall be set to „1‟ when the
(EHB) IP bit is set to „1‟ and cleared to „0‟
by software when the Dequeue
Pointer register is written.

63 : 4 Event Ring Dequeue RW 0h This field defines the high order bits
Pointer of the 64-bit address of the current
Event Ring Dequeue Pointer.

ISG-NK1-110027 Rev.2.00 Page 79 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.6 Doorbell Registers

The Doorbell Array is organized as an array of up to 32 Doorbell Registers. One 32-bit Doorbell Register is defined in
the array for each Device Slot. System software utilizes the Doorbell Register to notify the xHC that it has Device Slot
related work for the xHC to perform.
These registers are pointed to by the Doorbell Offset Register (DBOFF) in the xHC Capability register space. The
Doorbell Array base address shall be Dword aligned and is calculated by adding the value in the DBOFF register (section
0) to “Base”. All registers are 32 bits in length. Software should read and write these registers using only Dword accesses.

Table 3-109. Doorbell Registers


31 23 15 7 Offset
24 16 8 0
DB Stream ID Reserved DB Target 800h ~ 88Fh

Table 3-110. Doorbell Register

Bits Field Read/ Value (Default) Comment


Write

7:0 DB Target RW 0h This field defines the target of the


doorbell reference. The table below
defines the xHC notification that is
generated by ringing the doorbell.
Note that Doorbell Register 0 is
dedicated to Command Ring and
decodes this field differently than
the other Doorbell Registers.

Device Context Doorbells (1 – 255)

15 : 8 Rsvd - - Reserved

31 : 16 DB Stream ID RW 0h Doorbell Stream ID. If the endpoint


of a Device Context Doorbell
defines Streams, then this field shall
be used to identify which Stream of
the endpoint the doorbell reference
is targeting. System software is
responsible for ensuring that the
value written to this field is valid.

If the endpoint does not define


Streams (MaxPStreams = 0) and a
non-„0‟ value is written to this field,
the doorbell reference shall be
ignored.

This field only applies to Device


Context Doorbells and shall be
cleared to „0‟ for Host Controller
Commands.

This field returns „0‟ when read.

ISG-NK1-110027 Rev.2.00 Page 80 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.7 xHCI Extended Capabilities

The PD720201 and PD720202 exports xHCI-specific extended capabilities utilizing a method similar to the PCI
extended capabilities. It specifies a non-zero value in xHCI Extended Capabilities Pointer field of the HCPARAMS register.
This value is an offset into xHC MMIO space from the Base, where the Base is beginning of the host controller‟s MMIO
address space.

3.7.1 USB Legacy Support Capability


The USB Legacy Support provided by the xHC is optional normative functionality that is applicable to pre-OS software
(BIOS) and the operating system for the coordination of ownership of the xHC.
This capability is chained through the xHCI Extended Capabilities Pointer (xECP) field and resides in MMIO space.

Table 3-111. HC Extended Capability Registers


31 23 15 7 Offset
24 16 8 0
USB Legacy Support Capability Register (USBLEGSUP) 500h
USB Legacy Support Control and Status Register (USBLEGCTLSTS) 504h

3.7.1.1 USB Legacy Support Capability (USBLEGSUP)


This register is an xHC extended capability register. It includes a specific function section and a pointer to the next
xHCI Extended Capability. This register is used by pre-OS software (BIOS) and the operating system to coordinate
ownership of the xHC. This register is in the Auxiliary Power well.

Table 3-112. USBLEGSUP (Offset Address: xECP (500h) + 00h)

Bits Field Read/ Value (Default) Comment


Write

7:0 Capability ID RO 1h This field identifies the xHCI


Extended capability. The xHCI
Extended capability ID for the USB
Legacy Support is 01h.

15 : 8 Next Capability Pointer RO 4h This field points to the xHC MMIO


space offset of the next xHCI
extended capability pointer.

16 HC BIOS Owned RW 0h The BIOS sets this bit to establish


Semaphore ownership of the xHC. System BIOS
will set this bit to a „0‟ in response to
a request for ownership of the xHC
by system software.

23 : 17 Rsvd - - Reserved.

24 HC OS Owned RW 0h System software sets this bit to


Semaphore request ownership of the xHC.
Ownership is obtained when this bit
reads as „1‟ and the HC BIOS
Owned Semaphore bit reads as „0‟.

31 : 25 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 81 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.7.1.2 USB Legacy Support Control / Status (USBLEGCTLSTS)


Pre-OS (BIOS) software uses this register to enable System Management Interrupts (SMIs) for every xHCI/USB event
it needs to track. Bits [21:16] of this register are simply shadow bit of USBSTS register [5:0]. This register is in the Auxiliary
Power well.

Table 3-113. USBLEGCTLSTS (Offset Address: xECP (500h) + 04h)

Bits Field Read/ Value (Default) Comment


Write

0 USB SMI Enable RW 0b When this bit is a „1‟, and the SMI
on SMI on Event Interrupt bit in this
register is a „1‟, the host controller
will issue an SMI immediately.

3:1 Rsvd - - Reserved.

4 SMI on Host System RW 0b When this bit is a „1‟, and the SMI
Error Enable on Host System Error bit in this
register is a „1‟, the host controller
will issue an SMI immediately.

12 : 5 Rsvd - - Reserved.

13 SMI on OS Ownership RW 0b When this bit is a „1‟ and the OS


Enable Ownership Change bit is „1‟, then
the host controller will issue an SMI.

14 SMI on PCI Command RW 0b When this bit is „1‟ and SMI on PCI
Enable Command is „1‟, then the host
controller will issue an SMI.

15 SMI on BAR Enable RW 0b When this bit is „1‟ and SMI on BAR
is „1‟, then the host controller will
issue an SMI.

16 SMI on Event Interrupt RO 0b Shadow bit of Event Interrupt (EINT)


bit in the USBSTS register.

This bit follows the state the Event


Interrupt (EINT) bit in the USBSTS
register, e.g. it automatically clears
when EINT clears or set when EINT
is set.

19 : 17 Rsvd - - Reserved.

20 SMI on Host System RO 0b Shadow bit of Host System Error


Error (HSE) bit in the USBSTS register.

To clear this bit to „0‟, system


software shall write a „1‟ to the Host
System Error (HSE) bit in the
USBSTS register.

28 : 21 Rsvd - - Reserved.

29 SMI on OS Ownership RW1C 0b This bit is set to „1‟ whenever the


Change HC OS Owned Semaphore bit in the
USBLEGSUP register transitions
from „1‟ to a „0‟ or „0‟ to a „1‟.

30 SMI on PCI Command RW1C 0b This bit is set to „1‟ whenever the
PCI Command Register is written.

ISG-NK1-110027 Rev.2.00 Page 82 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

31 SMI on BAR RW1C 0b This bit is set to „1‟ whenever the


Base Address Register (BAR) is
written.

Note: SMI – System Management Interrupt.


BAR – Base Address Register.

ISG-NK1-110027 Rev.2.00 Page 83 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.7.2 xHCI Supported Protocol Capability

Table 3-114. xHCI Supported Protocol Capability Register


31 2423 16115 87 0 Offset
Revision Major Revision Minor Next Capability Pointer Capability ID 00h
Name String 04h
PSIC Protocol Defined Compatible Port Count Compatible Port Offset 08h
Reserved Protocol Slot Type 0Ch

3.7.2.1 USB 3.0 Supported Protocol Capability

Table 3-115. Offset 00h - xHCI Supported Protocol Capability Field (Offset Address: xECP + 10h (510h))

Bits Field Read/ Value (Default) Comment


Write

7:0 Capability ID RO 02h This field identifies the xHCI


Extended capability. The xHCI
Extended capability ID for the USB
Supported Protocol is 02h.

15 : 8 Next Capability Pointer RO 05h This field points to the xHC MMIO
space offset of the next xHCI
extended capability pointer.

23 : 16 Minor Revision RO 00h Minor Specification Release


Number in Binary –Coded Decimal.

31 : 24 Major Revision RO 03h Major Specification Release


Number in Binary –Coded Decimal.

Table 3-116. Offset 04h - xHCI Supported Protocol Capability Field (Offset Address: xECP + 14h (514h))

Bits Field Read/ Value (Default) Comment


Write

31 : 0 Name String RO 20425355h This field is a mnemonic name


string that references the
specification with which the xHC is
compliant.

Table 3-117. Offset 08h - xHCI Supported Protocol Capability Field (Offset Address: xECP + 18h (518h))

Bits Field Read/ Value (Default) Comment


Write

7:0 USB3 Compatible Port RO 01h This field specifies the starting Port
Offset Number of Root Hub Port that
supports this protocol.

15 : 8 USB3 Compatible Port RO 04h This field identifies the number of


Count ( PD720201) consecutive Root Hub Ports that
support this protocol.
02h

( PD720202)

ISG-NK1-110027 Rev.2.00 Page 84 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

27 : 16 Protocol Defined RO 0h This field is reserved.

31 : 28 PSIC RO 0h Protocol Speed ID Count. This field


indicates the number of Protocol
Speed ID Dwords that the xHCI
Supported Protocol Capability data
structure contains.

Table 3-118. Offset 0Ch - xHCI Supported Protocol Capability Field (Offset Address: xECP + 1Ch (51Ch))

Bits Field Read/ Value (Default) Comment


Write

4:0 Protocol Slot Type RO 0h This field is reserved.

31 : 5 Rsvd - - Reserved.

3.7.2.2 USB 2.0 Supported Protocol Capability

Table 3-119. Offset 00h - xHCI Supported Protocol Capability Field (Offset Address: xECP + 24h (524h))

Bits Field Read/ Value (Default) Comment


Write

7:0 Capability ID RO 02h This field identifies the xHCI


Extended capability. The xHCI
Extended capability ID for the USB
Supported Protocol is 02h.

15 : 8 Next Capability Pointer RO 07h This field points to the xHC MMIO
space offset of the next xHCI
extended capability pointer.

23 : 16 Minor Revision RO 00h Minor Specification Release


Number in Binary –Coded Decimal.

31 : 24 Major Revision RO 02h Major Specification Release


Number in Binary –Coded Decimal.

Table 3-120. Offset 04h - xHCI Supported Protocol Capability Field (Offset Address: xECP + 28h (528h))

Bits Field Read/ Value (Default) Comment


Write

31 : 0 Name String RO 20425355h This field is a mnemonic name


string that references the
specification with which the xHC is
compliant.

ISG-NK1-110027 Rev.2.00 Page 85 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Table 3-121. Offset 08h - xHCI Supported Protocol Capability Field (Offset Address: xECP + 2Ch (52Ch))

Bits Field Read/ Value (Default) Comment


Write

7:0 USB2 Compatible Port RO 05h This field specifies the starting Port
Offset ( PD720201) Number of Root Hub Port that
supports this protocol.
03h

( PD720202)

15 : 8 USB2 Compatible Port RO 04h This field identifies the number of


Count ( PD720201) consecutive Root Hub Ports that
support this protocol.
02h

( PD720202)

16 Rsvd - - Reserved

17 HSO RO 0b High-speed Only. 0b indicates this


USB2 ports are Low, Full, and High-
speed capable.

18 IHI RO 0b Integrated Hub Implemented. 0b


indicates this host does not
implement integrated hub.

19 HLC RO 0b Hardware LMP Capability. If this bit


is set to „1‟, the ports described by
this capability support hardware
controlled USB2 Link Power
Management.

27 : 20 Rsvd - - Reserved

31 : 28 PSIC RO 0h Protocol Speed ID Count. This field


indicates the number of Protocol
Speed ID Dwords that the xHCI
Supported Protocol Capability data
structure contains.

Table 3-122. Offset 0Ch - xHCI Supported Protocol Capability Field (Offset Address: xECP + 30h (530h))

Bits Field Read/ Value (Default) Comment


Write

4:0 Protocol Slot Type RO 0h This field is reserved.

31 : 5 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 86 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.7.3 Debug Capability

Table 3-123. Debug Capability Register Layout


31 23 15 7 Offset
24 16 8 0
Reserved DCERST Max Next Capability Pointer Capability ID 00h
Reserved DB Target Reserved 04h
Reserved Event Ring Segment Table Size 08h
Reserved 0Ch
Event Ring Segment Table Base Address Lo Reserved 10h
Event Ring Segment Table Base Address Hi 14h
Event Ring Dequeue Pointer Lo Reserved 18h
Event Ring Dequeue Pointer Hi 1Ch
Debug Capability Control Register 20h
Debug Capability Status Register 24h
Debug Capability Port Status and Control Register 28h
Reserved 2Ch
Debug Capability Context Pointer Lo Reserved 30h
Debug Capability Context Pointer Hi 34h
Vendor ID Reserved DbC Protocol 38h
Device Revision Product ID 3Ch

3.7.3.1 Debug Capability ID Register

Table 3-124. Offset 00h – Debug Capability Field (Offset Address: xECP + 50h (550h))

Bits Field Read/ Value (Default) Comment


Write

7:0 Capability ID RO 02h This field identifies the xHCI


Extended capability. The xHCI
Extended capability ID for the USB
Supported Protocol is 02h.

15 : 8 Next Capability Pointer RO 00h This field points to the xHC MMIO
space offset of the next xHCI
extended capability pointer.

20 : 16 DCERST Max RO 00h This field determines the maximum


value supported the Debug
Capability Event Ring Segment
Table Base Size registers. 0h
indicates that the maximum number
of Event Ring Segment Table
entries is 1.

31 : 21 Rsvd. - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 87 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.7.3.2 Debug Capability Doorbell Register

Table 3-125. Offset 04h – Debug Capability Field (Offset Address: xECP + 54h (554h))

Bits Field Read/ Value (Default) Comment


Write

7:0 Rsvd - - Reserved.

15 : 8 DB Target WO 00h Doorbell Target. This field defines


the target of the doorbell reference.
The table below defines the Debug
Capability notification that is
generated by ringing the doorbell.

Value Definition
0 Data EP 1 OUT
Enqueue Pointer
Update

1 Data EP 1 IN Enqueue
Pointer Update

2 : 255 Reserved.

31 : 16 Rsvd - - Reserved.

3.7.3.3 Debug Capability Event Ring Segment Table Size Register

Table 3-126. Offset 08h – Debug Capability Field (Offset Address: xECP + 58h (558h))

Bits Field Read/ Value (Default) Comment


Write

15 : 0 Event Ring Segment RW 0000h This field identifies the number of


Table Size valid Event Ring Segment Table
entries in the Event Ring Segment
Table pointed to by the Debug
Capability Event Ring Segment
Table Base Address Register.
Software shall initialize this register
before setting the Debug Capability
Enable field in the Debug Capability
Control Register.

31 : 16 Rsvd. - - Reserved.

3.7.3.4 Debug Capability Event Ring Segment Table Base Address Register

Table 3-127. Offset 0Ch – Debug Capability Field (Offset Address: xECP + 60h (560h))

Bits Field Read/ Value (Default) Comment


Write

3:0 Rsvd. - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 88 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

63 : 4 Event Ring Segment RW 0h This field defines the high order bits
Table Base Address of the start address of the Debug
Register Capability Event Ring Segment
Table. Software shall initialize this
register before setting the Debug
Capability Enable field.

3.7.3.5 Debug Capability Event Ring Dequeue Pointer Register

Table 3-128. Offset 18h – Debug Capability Field (Offset Address: xECP + 68h (568h))

Bits Field Read/ Value (Default) Comment


Write

2:0 DESI RW 000b This field may be used by the xHC


to accelerate checking the Event
Ring full condition. This field is
written with the low order 3bits of
the offset of the ERST entry which
defines the Event Ring segment that
the Event Ring Dequeue Pointer
resides in.

3 Rsvd - - Reserved.

63 : 4 Dequeue Pointer RW 0h This field defines the high order bits


of the 64-bit address of the current
Debug Capability Event Ring
Dequeue Pointer. Software shall
initialize this register before setting
the Debug Capability Enable field.

3.7.3.6 Debug Capability Event Ring Dequeue Pointer Register

Table 3-129. Offset 20h – Debug Capability Field (Offset Address: xECP + 70h (570h))

Bits Field Read/ Value (Default) Comment


Write

0 DCR RO 0b DbC Run. When „0‟, Debug Device


is not in the Configured state. When
„1‟, Debug Device is in the
Configured state and bulk Data pipe
transactions are accepted by Debug
Capability and routed to the IN and
OUT Transfer Rings. A „0‟ to „1‟
transition of the Port Reset bit will
clear this bit to „0‟.

ISG-NK1-110027 Rev.2.00 Page 89 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

1 LSE RW 0b Link Status Event Enable. Setting


this bit to a „1‟ enables the Debug
Capability to generate Port Status
Change Events due the Port Link
Status Change bit transitioning from
a „0‟ to a „1‟.

2 HOT RW1S 0b Halt OUT TR. While this bit is „1‟,


the Debug Capability shall generate
STALL TPs for all IN TPs received
for the OUT TR. The Debug
Capability shall clear this bit when a
ClearFeature(ENDPOINT_HALT)re
quest is received for the endpoint.
This field is valid only when the
Debug Capability is in Run Mode
(DCR = „1‟). When not in Run Mode,
this field shall return „0‟ when read,
and writes will have no effect.

3 HIT RW1S 0b Halt IN TR. While this bit is „1‟, the


Debug Capability shall generate
STALL TPs for all OUT DPs
received for the IN TR. The Debug
Capability shall clear this bit when a
ClearFeature(ENDPOINT_HALT)
request is received for the endpoint.
This field is valid only when the
Debug Capability is in Run Mode

4 DRC RW1C 0b This bit shall be set to „1‟ when DCR


bit is cleared to „0‟, i.e. by any DbC
Port State transition that exits the
DbC-Configured state. While this bit
is „1‟ the Debug Capability Doorbell
Register (DCDB) is disabled.
Software shall clear this bit to re-
enable the DCDB.

15 : 5 Rsvd. - - Reserved.

23 : 16 Debug Max Burst Size RO 0h This field identifies the maximum


burst size supported by the bulk
endpoints of this DbC
implementation.

30 : 24 Device Address RO 0h This field reports he USB device


address assigned to the Debug
Device during the enumeration
process. This field is valid when the
DbC Run bit is „1‟.

ISG-NK1-110027 Rev.2.00 Page 90 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

31 DCE RW 0h Debug Capability Enable. Setting


this bit to a „1‟ enables xHC USB
Debug Capability operation. This bit
is a „0‟ if the USB Debug Capability
is disabled. Clearing this bit
releases the Root Hub port
assigned to the Debug Capability,
and terminates any Debug
Capability Transfer or Event Ring
activity.,

3.7.3.7 Debug Capability Status Register

Table 3-130. Offset 24h – Debug Capability Field (Offset Address: xECP + 74h (574h))

Bits Field Read/ Value (Default) Comment


Write

0 Event Ring Not Empty RO 0b When „1‟, this field indicates that the
Debug Capability Event Ring has a
Transfer Event on it. It is
automatically cleared to „0‟ by the
xHC when the Debug Capability
Event Ring is empty, i.e. the Debug
Capability Enqueue Pointer is equal
to the Debug Capability Event Ring
Dequeue Pointer register.

23 : 1 Rsvd - - Reserved.

31 : 24 Debug Port Number RO 0h This field provides the ID of the Root


Hub port that the Debug Capability
has been automatically attached to.
The value is „0‟ when the Debug
Capability is not attached to a Root
Hub port.

ISG-NK1-110027 Rev.2.00 Page 91 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.7.3.8 Debug Capability Port Status and Control Register

Table 3-131. Offset 28h – Debug Capability Field (Offset Address: xECP + 78h (578h))

Bits Field Read/ Value (Default) Comment


Write

0 CCS RO 0b Current Connect Status. „1‟ = A Root


Hub port is connected to a Debug
Host and assigned to the Debug
Capability. „0‟ = No Debug Host is
present. This value reflects the
current state of the port, and may
not correspond to the value reported
by the Connect Status Change
(CSC) field in the Port Status
Change Event that was generated
by a „0‟ to „1‟ transition of this bit.
This flag is „0‟ if DCE is „0‟.

1 PED RW 0b Port Enabled/Disabled. This flag


shall be set to „1‟ by a „0‟ to „1‟
transition of CCS or a „1‟ to „0‟
transition of the PR. This field is „0‟ if
DCE or CCS are „0‟.

3:2 Rsvd - - Reserved.

4 PR RO 0b „1‟ = Port is in Reset. „0‟ = Port is not


in Reset. This bit is set to „1‟ when
the bus reset sequence as defined
in the USB Specification is detected
on the Root Hub port assigned to
the Debug Capability. This field is „0‟
if DCE or CCS are „0‟.

8:5 PLS RO 000b This field reflects its current link


state. This field is only relevant
when a Debug Host is attached.

Value Meaning

0 U0 State
1 U1 State

2 U2 State

3 U3 State

4 Disabled State

5 RxDetect State

6 Inactive State

7 Polling State

8 Recovery State

9 Hot Reset State


15: 10 Reserved

9 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 92 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

13 : 10 Port Speed RO 0h This field identifies the speed of the


port. This field is only relevant when
a Debug Host is attached (CCS =
„1‟) in all other cases this field shall
indicate Undefined Speed.

Value Meaning

0 Undefined Speed

1 – 15 Protocol Speed ID

16 : 14 Rsvd - - Reserved.

17 CSC RW1S 0b Connect Status Change. „1‟ =


Change in Current Connect Status.
„0‟ = No change. Indicates a change
has occurred in the port‟s Current
Connect Status. The xHC sets this
bit to „1‟ for all changes to the
Debug Device connect status, even
if system software has not cleared
an existing DbC Connect Status
Change. This field is „0‟ if DCE is „0‟.

20 : 18 Rsvd - - Reserved.

21 PRC RW1C 0b Port Reset Change. This bit is set


when reset processing on this port
is complete. „0‟ = No change. „1‟ =
Reset complete. Software shall
clear this bit by writing a „1‟ to ito.
This field is „0‟ if DCE is „0‟.

22 PLC RW1C 0b Port Link Status Change. This flag is


set to „1‟ due to the following PLS
transitions:
Transition Condition

U0 -> U3 Suspend
signaling
detected from
Debug Host.
U3 -> U0 Resume
complete

Polling -> Disabled Training Error

Ux or Recovery -> Error


Incactive

23 CEC RW1C 0b Port Config Error Change. This flag


indicates that the port failed to
configure its link partner.‟ 0‟ =
Nochange. „1‟ = Port Config Error
detected. Software shall clear this
bit by writing a „1‟ to it.

31 : 24 Rsvd - - Reserved.

ISG-NK1-110027 Rev.2.00 Page 93 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.7.3.9 Debug Capability Context Pointer Register

Table 3-132. Offset 30h – Debug Capability Field (Offset Address: xECP + 80h (580h))

Bits Field Read/ Value (Default) Comment


Write

3:0 Rsvd - - Reserved.

63 : 4 Debug Capability RW 0h This field defines the high order bits


Context Pointer Register of the start address of the Debug
Capability Context data structure
associated with the Debug
Capability. Software shall initialize
this register before setting the
Debug Capability Enable bit in the
Debug Capability Control Register
to „1‟.

3.7.3.10 Debug Capability Device Descriptor Info Register 1

Table 3-133. Offset 38h – Debug Capability Field (Offset Address: xECP + 88h (588h))

Bits Field Read/ Value (Default) Comment


Write

7:0 DbC Protocol RW 00h This field presented by the Debug


Device in the USB Interface
Descriptor bInterfaceProtocol field.

Value Function

0 Debug Target vendor


defined.

1 GNU Remote Debug


Command Set
supported.

2 - 255 Reserved.

15 : 8 Rsvd - - Reserved.

31 : 16 Vendor ID RW 00h This field is presented by the Debug


Device in the USB Device
Descriptor idVendor field.

3.7.3.11 Debug Capability Device Descriptor Info Register 2

Table 3-134. Offset 3Ch – Debug Capability Field (Offset Address: xECP + 8Ch (58Ch))

Bits Field Read/ Value (Default) Comment


Write

15 : 0 Product ID RW 0000h This field is presented by the Debug


Device in the USB Device
Descriptor idProduct field.

ISG-NK1-110027 Rev.2.00 Page 94 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

Bits Field Read/ Value (Default) Comment


Write

31 : 16 Device Revision RW 0000h This field is presented by the Debug


Device in the USB Device
Descriptor bcdDeviced field.

ISG-NK1-110027 Rev.2.00 Page 95 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.8 MSI-X / PBA Table

Table 3-135. MSI-X Table Registers


31 23 15 7 Offset
24 16 8 0
Message Address 00h
Message Upper Address 04h
Message Data 08h
Reserved MB 0Ch

Table 3-136. PBA Table Registers


31 23 15 7 Offset
24 16 8 0
PBA Table 00h

3.8.1 Message Address for MSI-X Table

Table 3-137. Message Address (Offset Address: Base + 1000h + (10h*Interrupter))

Bits Field Read/ Value (Default) Comment


Write

31 : 0 Message Address RW 0h System-specified message lower


address. For MSI-X messages, the
contents of this field from an MSI-X
Table entry specify the lower portion
of the DWORD-aligned address.

Note: Interrupter is 0, 1, 2, 3, 4, 5, 6 or 7.

3.8.2 Message Upper Address for MSI-X Table

Table 3-138. Message Upper Address (Offset Address: Base + 1004h + (10h*Interrupter))

Bits Field Read/ Value (Default) Comment


Write

31 : 0 Message Upper RW 0h System-specified message Upper


Address address.

Note: Interrupter is 0, 1, 2, 3, 4, 5, 6 or 7.

3.8.3 Message Data for MSI-X

Table 3-139. Message Data (Offset Address: Base + 1008h + (10h*Interrupter))

Bits Field Read/ Value (Default) Comment


Write

31 : 0 Message Data RW 0h System-specified message Data.

Note: Interrupter is 0, 1, 2, 3, 4, 5, 6 or 7.

ISG-NK1-110027 Rev.2.00 Page 96 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

ISG-NK1-110027 Rev.2.00 Page 97 of 132


March.2, 2012
PD720201/PD720202 3. Register Information

3.8.4 Vector Control for MSI-X

Table 3-140. Message Data (Offset Address: Base + 100Ch + (10h*Interrupter))

Bits Field Read/ Value (Default) Comment


Write

0 Mask Bit RW 0b When this bit is set, the function is


prohibited from sending a message
using this MSI-X Table.

31 : 1 Rsvd - - Reserved.

Note: Interrupter is 0, 1, 2, 3, 4, 5, 6 or 7.

3.8.5 Pending Bits for MSI-X PBA Entries

Table 3-141. Message Data (Offset Address: Base + 1080h)

Bits Field Read/ Value (Default) Comment


Write

31 : 0 Pending Bits RO 0h For each Pending Bit that is set, the


function has a pending message for
the associated MSI-X Table entry.

Note: Interrupter is 0, 1, 2, 3, 4, 5, 6 or 7.

ISG-NK1-110027 Rev.2.00 Page 98 of 132


March.2, 2012
PD720201/PD720202 4. Power Management

4. Power Management
4.1 Power Management States

This section defines the PCI Express Power Management states.

4.1.1 PCI Express Link State Power Management (L-States)

PCI Express defines Link power management states, replacing the bus power management states that were defined by
the PCI Bus Power Management Interface Specification. Link states are not visible to PCI Power Management legacy
compatible software, and are either derived from the power management D-states of the corresponding components
connected to that Link or by Active State Power Management (ASPM) protocols. PCI Express Power Management defines
L0, L0s, L1, L2/L3 Ready, L2, L3 and LDn. Refer to PCI Express Base Specification Rev.2.0 for more detail on PCI
Express Link State Power Management.

Table 4-1. PCI Express Link States

L-States Description

L0 Active state. All PCI Express transactions and other operations are enabled.

L0s A low resume latency, energy saving “standby” ASPM state. Entry into the L0s state is managed separately for
each direction of the Link. It is the responsibility of each device at either end of the Link to initiate an entry into the
L0s state on its transmitting Lanes. Power management software (BIOS or OS) enables or disables this function by
programming the ASPM control field in the Link Control Register. Renesas Electronics does not recommend using
L0s function because transfer throughput decreases.

L1 (ASPM) Higher latency, lower power “standby” ASPM state. The PD720201 and  PD720202 can initiate entry into the L1
ASPM state in the D0 state when they detect idle time on the PCIe bus and both components on a Link enable the
L1 Entry enable bit of ASPM control field in the Link Control Register. Power management software (BIOS or OS)
enables or disables this function by programming the ASPM control field in the Link Control Register (3.2.5.7).

L1 Higher latency, lower power “standby” state. The  PD720201 and  PD720202 initiates entry into the L1 state in
the D3hot state.

L2/L3 Ready Staging point for L2 or L3. The  PD720201 and  PD720202 enters the L2/L3 Ready state after receiving the
PME_Turn_Off Message from the Root Complex and responding with the PME_TO_Ack.

L2 Auxiliary –powered Link, deep-energy-saving state.

L3 Link Off state. When no power is present, the component is in the L3 state.

LDn A transitional Link Down pseudo-state prior to L0.

Figure 4-1. Link Power Management State Flow Diagram

LDn

L0s
L0
ASPM

L2 L3

L1 L2/L3
L1
ASPM Ready

ISG-NK1-110027 Rev.2.00 Page 99 of 132


March.2, 2012
PD720201/PD720202 4. Power Management

4.1.2 PCI Express Device Power Management States (D-States)

PCI Express supports all PCI Device power management states. The PD720201 and PD720202 supports D0 and
D3 (D3hot and D3cold) states.
Table 4-2. PCI Express Device Power Management States

D-States Description

D0 Normal operation state.

When the Power State field in the Power Management Status / Control Register (Refer to 3.2.2.3) is set to
D3hot 11b and PERST# is high,  PD720201 and  PD720202 is D3hot state. In this state, configuration and
message requests are accepted.

When the Power State field in the Power Management Status / Control Register (Refer to 3.2.2.3) is set to
D3cold
11b and PERST# is low,  PD720201 and  PD720202 is D3cold state.

4.1.3 CLKREQ# Signal

The PD720201 and PD720202 supports the CLKREQ# signal and assigns it to the PECREQB pin. Since the
CLKREQ# signal is an open drain and active low signal an external pull-up resistor is required. Operation of the CLKREQ#
signal is determined by the state of the enable clock management bit in the Link Control Register (Refer to 3.2.5.7). When
the enable clock management bit is disabled, the CLKREQ# signal is asserted at all times. When the enable clock
management bit is enabled, the CLKREQ# signal may be de-asserted during an L1 Link state.

Table 4-3. Operation of CLKREQ# Signal

D-States Description

D0, D3hot The conditions that CLKREQ# is de-asserted are:

Enable clock management bit in the Link Control Register is 1b and

Link state is L1.

ISG-NK1-110027 Rev.2.00 Page 100 of 132


March.2, 2012
PD720201/PD720202 4. Power Management

4.1.4 Summary of PCI Express Power Management States

Table summarizes the relationship between D-state and L-State.

Table 4-4. Summary of PCI Express Power Management States

Reference
D-States L-States Conditions
Clock

L0 ON Active state.

- The L0s Entry Enable bit (3.2.5.7) in the ASPM Control field of the
L0s ON
 PD720201 and  PD720202 is enabled.

- The L1 Entry Enable bit in the ASPM Control field of both the
ON  PD720201/202 and the Root Complex are enabled.

D0 -  PD720201/202 detects idle time on the PCIe bus.

- L1 Entry Enable bit of both the  PD720201/ PD720202 and the


L1 ASPM
Root Complex are enabled.

OFF -  PD720201/202 detects idle time on the PCIe bus.


- The PECREQB pin is connected to the CLKREQ# of the system.
- The Enable clock management bit (3.2.5.7) is set to 1b.

- The Power State field is set to 11b and PERST# is high. Main
ON
power sources remains during this state.

- The Power State field is set to 11b and PERST# is high. Main
D3hot L1
power sources remains during this state.
OFF
- The PECREQB pin is connected to the CLKREQ# of the system.

- The Enable clock management bit (3.2.5.7) is set to 1b.

- Power State field set to 11b.

- Execution of the PME_Turn_Off/PME_TO_Ack handshake


D3cold L2 OFF
sequences.
- PERST# is low. Main power remains during this state.

ISG-NK1-110027 Rev.2.00 Page 101 of 132


March.2, 2012
PD720201/PD720202 4. Power Management

★ 4.2 Power Management Event (PME) Mechanism

Power Management Event (PME) is typically utilized to revive the system. The PME mechanism is software compatible
with the PME mechanism defined by the PCI Bus Power Management Interface Specification. Power Management Events
are generated by the PD720201 and PD720202 as a means of requesting a Power Management state change. When
the Link state is L1 and D-state is D3hot, the PD720201 and PD720202 asserts the WAKEB signal and sends PME
Message to the root complex to wake up the system. On the other hand, when the Link state is L2 (D-state is D3cold),
PD720201 and PD720202 assert the WAKEB signal to re-establish reference clock before sending PME Message to
the root complex.

4.2.1 PME support

If the power state of host controller should be changed from D0 or D3 to the other, PME event will occur as shown in
the PME_support bits in PMC (Power Management Capabilities) register. The 5-bit field in the PME_support indicates the
power states in which PD720201 and PD720202 may send PME Message. A value of 0b for any bit indicates that it is
not capable of sending PME Message while in that power state. Note that the default value of the Bit15 of the
PME_support for D3cold is “HwInit” and depends on the AUXDET bit in the Host Controller Configuration Register.

4.2.2 Pin configuration for supporting PME generation from D3cold

In case where the PME generation from D3cold is required, system board implementation shall be taken into
consideration.

Pin name Wake Up support from D3cold and D3hot Wake Up support only from D3hot

3.3 V and 1.05 Both 3.3 V and 1.05 V power must be maintained to Both 3.3 V and 1.05 V power must be maintained to
V the  PD720201/202 during D3cold and D3hot states the  PD720201/202 during D3hot states.

PONRSTB “High” during D3cold and D3hot states. “High” during D3hot states.

PEWAKEB Connect to WAKE# of the system chipset and is Connect to WAKE# of the system chipset and is
pulled “high” with 3.3 V maintained during D3cold and pulled “high” with 3.3 V maintained during D3hot
D3hot states. state.

PECREQB Connect to CLKREQ# of the system chipset and is Connect to CLKREQ# of the system chipset and is
pulled “high” with 3.3 V maintained during D3hot pulled “high” with 3.3 V maintained during D3hot
states. (PECREQB is not used during D3cold.) states. (PECREQB is not used during D3cold.)

OCI (2:1)B Pulled “high” with 3.3 V maintained during D3cold Pulled “high” with 3.3 V maintained during D3hot.
and D3hot.

SPISO Pulled “high” with 3.3 V maintained during D3cold Pulled “high” with 3.3 V maintained during D3hot.
and D3hot. Note that the power of the Serial ROM Note that the power of the Serial ROM must be
must be maintained during D3cold and D3hot states. maintained during D3hot states.

ISG-NK1-110027 Rev.2.00 Page 102 of 132


March.2, 2012
PD720201/PD720202 4. Power Management

4.2.3 Timing Diagram for PME

When Power State bits in PMCSR register indicate D3 and PONRST# is clamped high, the PD720201 and
PD720202 maintain Power Management Context (PMCSR register and PORTSC register), even if the PERST# goes low
and reference clock is removed. Note that the voltage level of the PERST# depends on the system during a sleeping state.

Figure 4-2. Wake Up State Transition from D3cold (AUXDET bit = „1‟)

High
3.3V & 1.0V
(Power supply for this device)
High
PONRSTB

PRSTB (PERST#) (W3)

PCI Express Referece Clock

Device State D0 D3hot D3cold D0

(W1) (W2)
USB Wake Up Event

WAKEB (WAKE#)

PME Message
(PCE Express Packet)

1) PERSTB should be “high” during normal PCI operation.


2) System SW sets PME_En bit in the PMCSR register.
3) System SW sets D3 in Power State bits in the PMCSR register.
4) System goes into sleeping states and PERSTB goes low. PD720201/202 is D3cold state.
5) When USB wake-up event occurs, WAKEB is asserted (W1).
6) Reference clock is re-established and PERSTB goes high (W2)
7) PD720201/202 sends PME Message to the root complex (W3).

ISG-NK1-110027 Rev.2.00 Page 103 of 132


March.2, 2012
PD720201/PD720202 4. Power Management

Figure 4-3. Wake Up State Transition only from D3hot

High
3.3V & 1.0V
(Power supply for this device)
High
PONRSTB
High
PRSTB (PERST#)

PCI Express Referece Clock

Device State D0 D3hot D0

(W1)
USB Wake Up Event
High
WAKEB (WAKE#)

PME Message
(PCE Express Packet)

1) PERSTB should be “high” during normal PCI operation.


2) System SW sets PME_En bit in the PMCSR register.
3) System SW sets D3 in Power State bits in the PMCSR register.
4) System goes into sleeping states and PERSTB maintain “high”. PD720201/202 is D3hot state.
5) When USB wake-up event occurs, PD720201/202 sends PME Message to the root complex (W1) and
asserts the WAKEB.

ISG-NK1-110027 Rev.2.00 Page 104 of 132


March.2, 2012
PD720201/PD720202 4. Power Management

4.2.4 Wakeup Events

An external USB event may initiate a system level resume. When resume signaling is detected by a suspend USB port,
the PME Event occurs if enabled (i.e. PMCSR PME_En bit = „1‟).
The following table summarizes the system wake-up events, defining the state of the Port Link State (PLS), Current
Connect Status (CCS), Port Enabled/Disabled (PED), Over-Current Active (OCA) fields in the PORTSC register and the
Port Change Detect (PCD) bit in the USBSTS register as function of the respective Wake Enable flag (WDE, WCE, WOE).
The table values indicate the state of the fields after the respective event.

Table 4-5. Wakeup Events

Port Status and Signaling Device State Port State After Event
Type PLS CCS PED OCA PCD

Port is in the U3. Resume signaling Resume 1 1 0 1


received.

A port is in a state that may detect a RxDetect 0 0 0 1


disconnect, and the port‟s WDE bit is „1‟. A
disconnect is detected.

Port is in the Disconnected state and the U0 (SS) 1 1 (SS) 0 1


port‟s WCE bit is „1‟. A connect is detected. 0 (USB2)
Polling
(USB2)

If a port is in a state that may detect an Disabled 0 0 1 1


over-current condition and the port‟s WOE
bit is „1‟. An over-current condition occurs.

Note: A USB2 port may detect a disconnect when the port is in the Disabled, Enabled, or Reset state. A
USB3 Port may detect a disconnect when the port is in the Loopback, Compliance, Error, Polling,
Enabled, or Reset States.

ISG-NK1-110027 Rev.2.00 Page 105 of 132


March.2, 2012
PD720201/PD720202 4. Power Management

4.3 Control for System Clock Operation

When PD720201 and PD720202 are put into power down state as D3hot and D3cold, its internal clock system is
controlled to reduce power consumption. This section describes the clock system and power management for the clock
path.

4.3.1 Clock system

The PD720201 and PD720202 use 24 MHz crystal for system clock signal. The PD720201 and PD720202 also
use 100MHz PCI Express reference clock for system clock. Internal analog PLL generates the system clock signals for
internal logic circuit. Internal system clock signals can be controlled to stop and run by the PD720201/202 itself. Spread
Spectrum Clock (SSC) for the SuperSpeed signal is generated internally.

Figure 4-4. PD720201/202‟s Clock System

µPD720201/202

XT2 Clocks
for
Internal
Crystal OSC
Logic
(24MHz) Block
XT1 Analog Clock
PLL Control

PECLKP Internal
(100MHz) SSC
PECLKN Gen
(100MHz)

ISG-NK1-110027 Rev.2.00 Page 106 of 132


March.2, 2012
PD720201/PD720202 5. How to Connect to External Elements

5. How to Connect to External Elements


5.1 Handling Unused Pins
★ Table 5-1. Unused Pin Connection

Pin Direction Connection Method

U2DPx I/O Connect to GND, directly or through a resistor

U2DMx I/O Connect to GND, directly or through a resistor

U3TXDPx O Open

U3TXDNx O Open

U3RXDPx I Connect to GND, directly or through a resistor

U3RXDNx I Connect to GND, directly or through a resistor

OCIx I Pull-up by 3.3V (VDD33)

PPONx O Open

SMIB O Open

SPISCK O Pull-down with 10k ohm resistor

SPICSB O Pull-down with 10k ohm resistor

SPISI O Pull-down with 10k ohm resistor

SPISO I Pull-up with 47k ohm resistor

Note: When a system has fewer than 4 downstream ports (PD720201) or fewer than 2 downstream ports
(PD720202), the implemented ports must be assigned as shown in Tables 5-2 and 5-3 below. In addition, the
DisablePortCount field in the HCConfiguration register must be set accordingly.

Table 5-2. Port configuration for PD720201

DisablePortCount Port1 Port2 Port3 Port4

register

00b

01b X

10b X X

11b X X X

X : Unused port.

Table 5-3. Port configuration for PD720202

DisablePortCount Port1 Port2

register

00b

01b X

X : Unused port.

ISG-NK1-110027 Rev.2.00 Page 107 of 132


March.2, 2012
PD720201/PD720202 5. How to Connect to External Elements

5.2 USB Port Connection

The PD720201 implements 8 Root Hub ports (P1 – P8): 4 SuperSpeed and 4 High-speed. The ports P1 to P4 provide
a SuperSpeed data bus (i.e. U3RXDPx/U3RXDNx and U3TXDPx/U3TXDNx signal pairs), while P5 to P8 provide a USB2
data bus (i.e. U2DPx/U2DMx signal pair). The USB3 protocol P1 to P4 attach to the Physical USB3 compatible connector
C1 to C4 respectively, while the USB2 protocol P5 and P8 attach to the Physical USB3 compatible connector C1 to C4
respectively.

★ Figure 5-1. Root Hub Port to USB Connector Mapping of PD720201

Motherboard

PD720201

Root Hub

USB3 Protocol USB2 Protocol


Root Hub
P1 P2 P3 P4 P5 P6 P7 P8
Ports

Physical USB
C1 C2 C3 C4 Motherboard
connectors

USB cables

USB3 Compatible Connectors

USB3 Compatible Root Hub Associated with USB Interface of  PD720201


Connectors Ports

C1 P1 U3TXDP1, U3TXDN1, U3RXDP1, U3RXDN1 OCI1B, PPON1

P5 U2DP1, U2DM1

C2 P2 U3TXDP2, U3TXDN2, U3RXDP2, U3RXDN2 OCI2B, PPON2

P6 U2DP2, U2DM2

C3 P3 U3TXDP3, U3TXDN3, U3RXDP3, U3RXDN3 OCI3B, PPON3

P7 U2DP3, U2DM3

C4 P4 U3TXDP4, U3TXDN4, U3RXDP4, U3RXDN4 OCI4B, PPON4

P8 U2DP4, U2DM4

ISG-NK1-110027 Rev.2.00 Page 108 of 132


March.2, 2012
PD720201/PD720202 5. How to Connect to External Elements

The PD720202 implements 4 Root Hub ports (P1 – P4): 2 SuperSpeed and 2 High-speed. The ports P1 and P2
provide a SuperSpeed data bus (i.e. U3RXDPx/U3RXDNx and U3TXDPx/U3TXDNx signal pairs), while P3 and P4
provide a USB2 data bus (i.e. U2DPx/U2DMx signal pair). The USB3 protocol P1 and P2 attach to Physical USB3
compatible connectors C1 and C2 respectively, while the USB2 protocol P3 and P4 attach to the Physical USB3
compatible connectors C1 and C2 respectively.

★ Figure 5-2. Root Hub Port to USB Connector Mapping of PD720202

Motherboard

PD720202
µPD720200A

Root Hub

USB3 Protocol USB2 Protocol


Root Hub
P1 P2 P3 P4
Ports

Physical USB
C1 C2 Motherboard
Connectors

USB Cables

USB3 compatible
connectors

USB3 Compatible Root Hub Associated with USB Interface of  PD720202


Connectors Ports

C1 P1 U3TXDP1, U3TXDN1, U3RXDP1, U3RXDN1 OCI1B, PPON1

P3 U2DP1, U2DM1

C2 P2 U3TXDP2, U3TXDN2, U3RXDP2, U3RXDN2 OCI2B, PPON2

P4 U2DP2, U2DM2

ISG-NK1-110027 Rev.2.00 Page 109 of 132


March.2, 2012
PD720201/PD720202 5. How to Connect to External Elements

Figure 5-3. USB Downstream Port Connection

3.3V 5V

µPD720201
µ PD720200A 10 kΩ
µPD720202
Port Power
Port Power
Control Power Switch

PPONx EN VIN
OCIx Over Current # VOUT
GND To VBUS

From power switch output


µPD720201
µ PD720200A
µPD720202
USB2. 0 Down stream port
USB2.0
Signals USB3.0 Standard-A
receptacle connector

VBUS 9
1
D- 8
U2DMx 2
D+ 7
U2DPx 3
GND 4
6
5

µPD720201
µ PD720200A
µPD720202
USB3. 0
USB3.0
Signals
0.1 µF SSTX+
U3TXDPx 9
SSTX- 1
U3TXDNx 8
0.1 µF 2 GND
7
SSRX+ 3
U3RXDPx 6
SSRX- 4
U3RXDNx 5

Note: The 3.3 V that pulls up OCIx must be the same 3.3 V supplied to the PD720201 and PD720202.

ISG-NK1-110027 Rev.2.00 Page 110 of 132


March.2, 2012
PD720201/PD720202 5. How to Connect to External Elements

Figure 5-4. Prohibited USB Downstream Port Connection

μPD720201
Down stream port.
μPD720202
USB3.0 Standard-A
USB signals
0.1 µF Receptacle connector
U3TXDPx
U3TXDNx 9
0.1 µF 1
8
U2DMx 2
U2DPx 7
3
6
U3RXDPx 4
5
U3RXDNx

Other
USB signals
D-
D+

Important: For USB 3.0 Specification compliance, the composition that only super-speed signals are connected is
strictly prohibited. Also, to avoid potentially severe conflicts between USB drivers, it is essential for the
USB 3.0 driver to control the USB 2.0 signals as well as the USB 3.0 signals. This means the USB 2.0
signals in the USB 3.0 connector must come from the same controller ( PD720201/PD720202) as the
USB 3.0 signals.

ISG-NK1-110027 Rev.2.00 Page 111 of 132


March.2, 2012
PD720201/PD720202 5. How to Connect to External Elements

5.3 Analog Circuit Connection

Figure 5-5. RREF Connection

μPD720201
µ PD720200A
μPD720202

RREF

1.6 kΩ±1%

GND

GND

Note: The board layout should minimize the total path length from RREF through the resistor to GND and path
length to GND. GND must be stable.
Due to analog sensitivity, 1.62K should not be used instead of 1.60K, and two or more resistors in series or
parallel should not be used in place of a single 1.60K resistor.
Although 1.6K is usually a standard 5% value, 1.60K is also commonly available in 1% tolerance.

ISG-NK1-110027 Rev.2.00 Page 112 of 132


March.2, 2012
PD720201/PD720202 5. How to Connect to External Elements

5.4 Crystal Connection

Figure 5-6. Crystal Connection

µPD720200A

XT1

Crystal
R
CSEL XT2
C2 C1

GND

Note: Clock shall be 24 MHz within 100ppm. Moreover optimal crystal parameters and RC
component values may be affected by the PCB layout..

ISG-NK1-110027 Rev.2.00 Page 113 of 132


March.2, 2012
PD720201/PD720202 5. How to Connect to External Elements

★ 5.5 External Serial ROM Connection

Figure 5-7 shows the HW configuration for an external serial ROM.


When the external serial ROM is not installed, Refer to Figure 5-8.

Figure 5-7. External Serial ROM Connection

3.3V

μPD720201
µ PD720200A
μPD720202
47 kΩ
External Serial ROM 10 kΩ

SPISCK SCK VCC


SPICSB CS# HOLD#
SPISO SO WP#
C
SPISI SI GND

Note: The 3.3 V that pulls SO must be the same as the 3.3 V supplied to the PD720201 and PD720202 .

Table 5-4 shows the supported External Serial ROM types.

Table 5-4. Supported External Serial ROM List

Vendor Product Name

Macronix MX25L512E/MX25L1006E/MX25L2006E/MX25L4006E

MX25L5121E/MX25L1021E

Winbond W25X10BV/W25X20BV/W25X40BV

Micron (Numonyx) M25P05-A/M25P10-A/M25P20/M25P40

Chingis Pm25LD512C/ Pm25LD512C2

Atmel AT25F512B

EON EN25F05/EN25F10/EN25F20/EN25F40

AMIC A25L512/A25L010/A25L020/A25L040

SST SST25VF512A/SST25VF010A

ISG-NK1-110027 Rev.2.00 Page 114 of 132


March.2, 2012
PD720201/PD720202 5. How to Connect to External Elements

Figure 5-8. Unused Pins Connection When the External Serial ROM Is Not Mounted

3.3V

10KΩ
47KΩ
SPISCK

SPICSB
10KΩ
SPISO

SPISI
10KΩ

Note: SPISO pin must be pulled up by VDD33 (3.3V) through a pull-up resistor in any cases.

ISG-NK1-110027 Rev.2.00 Page 115 of 132


March.2, 2012
PD720201/PD720202 5. How to Connect to External Elements

5.6 PCI Express Interface Connection

Figure 5-9. PCI Express Interface Connection

µPD720200A Chipset

PECLKP REFCLK+
PECLKN REFCLK-
0.1µF
PETXP PERp
0.1µF
PETXN PERn
0.1µF
PERXP PETp
0.1µF
PERXN PETn

3.3V 3.3V
µPD720200A Chipset

R R

PERSTB PERST#
PEWAKEB WAKE#
PECREQB CLKREQ#

Note: PEWAKEB and PECREQB pin use an open drain buffer and should be pulled high.

ISG-NK1-110027 Rev.2.00 Page 116 of 132


March.2, 2012
PD720201/PD720202 5. How to Connect to External Elements

5.7 SMIB/SMI Interface Connection

Figure 5-10. SMIB Interface Connection

3.3V

µPD720200A Chipset
10k

SMIB GPIO

SMI GPIO

Note: The 3.3 V that pulls up SMIB must be the same as the 3.3 V supplied to the PD720201 and PD720202.

ISG-NK1-110027 Rev.2.00 Page 117 of 132


March.2, 2012
PD720201/PD720202 6. How to Access External ROM

★ 6. How to Access External ROM


PD720201 and PD720202 support the External ROM (Serial Peripheral Interface (SPI) type ROM) for firmware (FW).
To access the External ROM, PD720201 and PD720202 support the External ROM Access Control and Status Register
(ERACSR) in PCI Configuration registers. This section describes how to access the External ROM.

6.1 Access External ROM Registers

Accessing the External ROM related registers uses a total of five registers in the PCI Configuration registers of
PD720201 and PD720202.
1. External ROM Information Register (Refer to Table 3-54)
 When the External ROM is mounted for PD720201 or PD720202, PD720201 or PD720202 sets the
ROM Information.
2. External ROM Configuration Register (Refer to Table 3-55)
 To access the External ROM, the software shall set the ROM Parameter.
3. External ROM Access Control and Status Register (ERACSR)(Refer to Table 3-57)
 This register contains bits to access the External ROM and to check the status for the result.
4. Data0 Register (Refer to Table 3-58)
5. Data1 Register (Refer to Table 3-59)
 Data0/1 registers are window register for reading the External ROM data & writing FW.

The following Table 6-1 shows the External ROM Information & Parameter which uPD720201/720202 supports. To
access the External ROM, the software must set the ROM parameter before accessing the External ROM.

ISG-NK1-110027 Rev.2.00 Page 118 of 132


March.2, 2012
PD720201/PD720202 6. How to Access External ROM

Table 6-1. External ROM Information & Parameter

Vendor Product Name ROM Information (PCI ROM Parameter (PCI Block Erase
Configuration register Configuration register Size
offset 0xEC) offset 0xF0) (Byte)
MX25L512E 00C2_2010h
MX25L1006E 00C2_2011h
0000_0700h
MX25L2006E 00C2_2012h
Macronix 16K
MX25L4006E 00C2_2013h
MX25L5121E 00C2_2210h
0000_0500h
MX25L1021E 00C2_2211h
W25X10BV 00EF_3011h
Winbond W25X20BV 00EF_3012h 0000_0700h 16K
W25X40BV 00EF_3013h
M25P05-A 0020_2010h
0000_0750h 32K
M25P10-A 0020_2011h
Numonyx
M25P20 0020_2012h
0000_0760h 64K
M25P40 0020_2013h
Pm25LD512C 019D_20FFh
Chingis 0000_0700h 16K
Pm25LD512C2 019D_207Fh
ATMEL AT25F512B 001F_6500h 0000_0700h 16K
EN25F05 001C_3110h
EN25F10 001C_3111h
EON 0000_0700h 16K
EN25F20 001C_3112h
EN25F40 001C_3113h
A25L512 0037_3010h
A25L010 0037_3011h
AMIC 0000_0700h 16K
A25L020 0037_3012h
A25L040 0037_3013h
SST25VF512A 00BF_0048h
SST 0001_0791h 16K
SST25VF010A 00BF_0049h

ISG-NK1-110027 Rev.2.00 Page 119 of 132


March.2, 2012
PD720201/PD720202 6. How to Access External ROM

6.2 Access External ROM

This section describes the outline of accessing the External ROM sequence. PD720201 and PD720202 supports the
following functions.
1. Writing FW to the External ROM.
2. Reading ROM Data from the External ROM
3. Erasing the External ROM data of the whole chip to be “1b”. (Refer to section6.3.2.3 about the External
ROM data)

6.2.1 How to write FW to External ROM

6.2.1.1 Outline
When the System Software starts to write the FW to the External ROM, at first the System Software needs to check
“External ROM Exists”. If “External ROM Exists” is „1b‟, it indicates the External ROM is connected. After that, the System
Software needs to write „„53524F4Dh‟ to “DATA0” and set “External ROM Access Enable” to „1b‟. The System Software
writes the first External ROM data to “DATA0”, and writes the second External ROM data to “DATA1”, then sets “Set
DATA0” and “Set DATA1” to „1b‟. After that, the System Software confirms whether “Set DATA0” is „0b‟. If it is „0b‟, the
System Software writes the third data to “DATA0” and sets “Set DATA0”. Then the System Software confirms “Set
DATA1” is „0b‟ to write next data to “DATA1”. The System Software continues this sequence until the last data is written to
“DATA0” or “DATA1”. After all data is written, the System Software must set “External ROM Access Enable” to „0b‟.

When “External ROM Access Enable” is „0b‟, the System Software needs to verify that “Result Code” is changed to a
value other than „000b‟. If “Result Code” is „001b‟, FW writing is successful. If “Result Code” is „010b‟, FW writing failed.

6.2.1.2 Sequence to write the FW (External ROM data) of PD720201 and PD720202
1. Read “External ROM Exists” and confirm it is „1b‟.
2. Write „53524F4Dh‟ to “DATA0”.
3. Set “External ROM Access Enable” to „1b‟
4. Read “Result Code” and confirm it is „000b‟.
5. Read “Set DATA0” and confirm it is „0b‟.
6. Write FW data to”DATA0”.
7. Read “Set DATA1” and confirm it is „0b‟.
8. Write FW data to”DATA1”.
9. Set “Set DATA0” and “Set DATA1” to „1b‟.
10. Read “Set DATA0” and confirm it is „0b‟.
11. Write FW data to”DATA0”.
12. Read “Set DATA1” and confirm it is „0b‟.
13. Write FW data to”DATA1”.
14. Return to step 10 and repeat steps 10 to 13.
15. After writing the last data of FW, the System Software must set “External ROM Access Enable” to „0b‟.
16. Read “Result Code” and confirm it is „001b‟.

Note1: The FW of PD720201 and PD720202 includes the CRC16 code. The PD720201 and PD720202
return “Result Code” after finishing the CRC check.

Note2: If an immediate reload is required after the updating External ROM (sequence 16), the System Software
sets “Reload” to „1b‟. The System Software must not set “Reload” to „1b‟ when “Run/Stop” of
USBCMD Register is „1b‟. At the completion of reload process, that bit cleared to „0b‟ automatically.

ISG-NK1-110027 Rev.2.00 Page 120 of 132


March.2, 2012
PD720201/PD720202 6. How to Access External ROM

6.2.2 How to read ROM Data from External ROM

6.2.2.1 Outline
When the System Software starts to read the External ROM data from the External ROM, first the System Software
needs to check “External ROM Exists”. If “External ROM Exists” is „1b‟, it indicates the External ROM is connected. After
that, the System Software needs to write „„53524F4Dh‟ to “DATA0” and set “External ROM Access Enable” to „1b‟. The
System Software sets “Get DATA0” and “Get DATA1” to „1b‟ to read the External ROM data from the External ROM. After
that, the System Software confirms whether “Get DATA0” is „0b‟. If it is „0b‟, the System Software gets the first External
ROM data from “DATA0”. Then the System Software sets “Get DATA0” to „1b‟ and confirms whether “Get DATA1” is „0b‟.
If “Get DATA1” is „0b‟, the System Software gets the second External ROM data from “DATA1”. After that, the System
Software sets “Get DATA1” to „1b‟ and confirms whether “Get DATA0” is „0b‟ for the getting next External ROM data.
The System Software continues this sequence until the last data is read from “DATA0” or “DATA1”. After all data is
read, the System Software must set “External ROM Access Enable” to „0b‟.

6.2.2.2 Sequence to read External ROM data from External ROM


1. Read “External ROM Exists” and confirm it is „1b‟.
2. Write „53524F4Dh‟ to “DATA0”.
3. Set “1b” to “External ROM Access Enable”
4. Read “Result Code” and confirm it is „000b‟.
5. Set “Get DATA0” and “Get DATA1” to „1b‟.
6. Read “Get DATA0” and confirm it is „0b‟.
7. Get External ROM data from “DATA0”.
8. Set “Get DATA0” to „1b‟.
9. Read “Get DATA1” and confirm it is „0b‟.
10. Get External ROM data from “DATA1”.
11. Set “Get DATA1” to „1b‟.
12. Return to sequence 6 and repeat sequence 6 to sequence 11.
13. After reading the last data of External ROM data, the System Software must set “External ROM Access
Enable” to „0b‟.

6.2.3 How to erase the data of the whole chip to be “1b” (Chip Erase)

6.2.3.1 Outline
When Chip Erase is required, first the System Software needs to check “External ROM Exists”. If “External ROM
Exists” is „1b‟, it indicates External ROM is connected. After that, the System Software needs to write „„„5A65726Fh‟ to
“DATA0” and set “External ROM Erase” to „1b‟. When this operation is complete, the “External ROM Erase” is cleared to
„0b‟ automatically.
When the System Software updates the FW in the field, the System Software shall not do Chip Erase. (Refer to section
6.3.4)

6.2.3.2 Sequence for Chip Erase


1. Read “External ROM Exists” and confirm it is „1b‟.
2. Write „5A65726Fh‟ to “DATA0”.
3. Set “1b” to “External ROM Erase”
4. Read “External ROM Erase” and confirm it is „000b‟.

ISG-NK1-110027 Rev.2.00 Page 121 of 132


March.2, 2012
PD720201/PD720202 6. How to Access External ROM

6.3 Data Format

This section describes the data formats for PD720201/PD720202.

6.3.1 Firmware
The format of FW released by Renesas Electronics is shown in Figure 6-1. Each row is 8 bytes, LSB on the left. The
First 2 Bytes are the header code. This value is a fixed value (55AAh). The value at offset 0004h is the FW Ver Pointer.
The FW Ver Pointer indicates the address of the FW version. The other parts are undisclosed.

Figure 6-1. Firmware

Header Code FW Ver Pointer

FW Version

Reserved

Table 6-2. Firmware Block Description

Offset(Byte) Size (Byte) Field Name Description

0000h 2 Header Code Header Code is 55AAh.

0002h 2 Reserved Reserved

0004h 2 FW Ver Pointer FW Version Address

(FW Ver Pointer)h 2 FW Version FW Version.

ISG-NK1-110027 Rev.2.00 Page 122 of 132


March.2, 2012
PD720201/PD720202 6. How to Access External ROM

6.3.2 Vendor Specific Configuration Data Block


The System Software can write the Vendor Specific Configuration Data Block to the External ROM. The Vendor
Specific Configuration Data Block configures the RENESAS Specific register when PD720201/PD720202 downloads
the FW from External ROM.

6.3.2.1 Data Format

Figure 6-2. Vendor Specific Configuration Data Block

Upper byte Lower byte

Length
Data block 1
Data Address
Data block 2
Data Address
Data block 3 Vendor Specific
Data Address
Configuration Data

Data block N
Data Address

CRC16

Table 6-3. Vendor Specific Configuration Data Block Description

Offset(Byte) Size (Byte) Field Name Description

0000h 2 Length Indicate the length of Vendor Specific


Configuration Block.

0002h 2*N Vendor Specific Indicate the Vendor Specific Configuration


Configuration Data N Data (N > 0).

(0002+2*N)h 2 CRC16 CRC16 of Length field and Vendor


Specific Configuration Data N field

The Vendor Specific Configuration field consists of one Data block or more. Data block N consists of 2 Byte, and the
first 1 Byte is Address of section 6.3.2.2, Second Byte is the value to write to the Address.

6.3.2.2 Address map for Vendor Specific Configuration Block


The Vendor Specific Configuration Block has an individual address map. When PD720201/PD720202 downloads
the ROM data from the External ROM, PD720201/PD720202 configures the RENESAS Specific register by the Vendor
Specific Configuration Data Block. The address map is below.

Table 6-4. Address Map for Vendor Specific Configuration Block

Address (Byte) Register PCI Configuration


register Offset Address
(Byte)

03h - 00h Subsystem Vendor ID, Subsystem ID 02Fh - 02Ch


(Refer to section 3.2.1.13 & section 3.2.1.14)

0Bh - 04h Serial Number (Refer to section 3.2.8.2) 14Bh – 144h

ISG-NK1-110027 Rev.2.00 Page 123 of 132


March.2, 2012
PD720201/PD720202 6. How to Access External ROM

Address (Byte) Register PCI Configuration


register Offset Address
(Byte)

0Fh – 0Ch PHY Control 0 (Refer to section 3.2.6.2) 0DFh – 0DCh

13h – 10h PHY Control 1 (Refer to section 3.2.6.3) 0E3h – 0E0h

17h – 14h PHY Control 2 (Refer to section 3.2.6.4) 0E7h – 0E4h

1Bh - 18h Host Controller Configuration 0EBh – 0E8h


(Refer to section 3.2.6.5)

ISG-NK1-110027 Rev.2.00 Page 124 of 132


March.2, 2012
PD720201/PD720202 6. How to Access External ROM

6.3.2.3 External ROM Data


The External ROM Data is a data for writing Firmware with Vendor Specific Configuration Data to the External ROM.
This data image is the following.

Figure 6-3. External ROM Data

Header Code FW Ver Pointer

FW Version

Upper byte Lower byte

Length
Data block 1
Data Address
Reserved
Combine Data
Data block 2
Address
Data block 3
Data Address

Data block N
Data Address

CRC16

Firmware of  PD720201/  PD720202 Vendor Specific Configuration Data Block

Length
Vendor Specific
Vendor Specific Configuration Data N
Configuration Data Block
CRC16
Header Code FW Ver Pointer

FW Version

Firmware

Reserved

ISG-NK1-110027 Rev.2.00 Page 125 of 132


March.2, 2012
PD720201/PD720202 6. How to Access External ROM

6.3.3 CRC16 calculation


CRC16 is generated by the following polynomial which is defined by ITU-T V.41.

x16  x12  x 5  1

The following function is an example of CRC16 calculation.

const UWORD16 crc_table[16] = {


0x0000, 0x1081, 0x2102, 0x3183, 0x4204, 0x5285, 0x6306, 0x7387, // 0- 7
0x8408, 0x9489, 0xA50A, 0xB58B, 0xC60C, 0xD68D, 0xE70E, 0xF78F, // 8 - 15
};

UWORD16 update_crc16(UWORD16 crc, const BYTE *t, int len){


int n;
UWORD16 c = crc ^ 0xffffU;
BYTE m;

for(n = 0; n < len; n++) {


m = t[n];
c = crc_table[(c ^ m) & 0xf] ^ (c >> 4);
c = crc_table[(c ^ (m >> 4)) & 0xf] ^ (c >> 4);
}

return c ^ 0xffffU;
}

Note: const UWORD16 crc_table[16] calculates the following routine.

void make_crc_table(UWORD16 crc_table[]){


int n,k;

for(n = 0; n < 16; n++) {


UWORD16 c = (UWORD16)n;
for(k = 0; k < 4; k++) {
if(c & 1) c = 0x8408U ^ (c >> 1);
else c >>= 1;
}
crc_table[n] = c;
}
}

ISG-NK1-110027 Rev.2.00 Page 126 of 132


March.2, 2012
PD720201/PD720202 6. How to Access External ROM

6.3.4 External ROM Data format


This section describes the External ROM data format of the External ROM. The External ROM Data consists of two
blocks as Figure 6-4. This means that PD720201 and PD720202 can have two kinds of a different FW. The first is
located at offset address 00h. The second is located at the offset address equal to the Block Erase Size (Refer to Table 6-
1).
This purpose is to prevent the ROM from being in blank status in the field. When the System Software updates the FW
in the field, the System Software shall not do Chip Erase.

Figure 6-4. External ROM Data Format

Offset Address : 00h


Vendor Specific Configuration
00h
Firmware
First External ROM
Image Data Block

All 0xFF (Blank)

Offset Address :
Vendor Specific Configuration
(Block Erase Size)h
Firmware
Second External
ROM Image Data
Block
All 0xFF (Blank)

6.3.4.1 First External ROM Image Data Block of Figure 6-4


The System Software can write the External ROM Data Image to the First External ROM Image Data Block when the
External ROM is in blank status. After Chip Erase, the System Software can also write the External ROM Data Image to
the First External ROM Image Data Block.
This External ROM Data Block can only be erased by using Chip Erase.

6.3.4.2 Second External ROM Image Data Block of Figure 6-4


The System Software can write the External ROM Data Image to the Second External ROM Image Data Block when
the System Software has already written the External ROM Data Image to the First External ROM Image Data Block.
This External ROM Data Block always is erased when the System Software first sets “Set DATA0” to „1b‟ for writing the
FW.

6.3.4.3 Loading the FW from the External ROM


At first, when PD720201/PD720202 downloads the External ROM data from the External ROM, PD720201 /
PD720202 reads data from the Second External ROM Image Data Block. If the Second External ROM Image Data is in
blank status or is broken (an illegal data), PD720201/PD720202 reads data from the First External ROM Image Data
Block and downloads the First External ROM Image Data.
If the Second External ROM Image Data Block has valid FW (External ROM data), PD720201/PD720202 downloads
this data from the External ROM data.

Note: PD720201/PD720202 starts to download firmware from the External ROM after de-asserting PONRSTB and
PERSTB.

ISG-NK1-110027 Rev.2.00 Page 127 of 132


March.2, 2012
PD720201/PD720202 6. How to Access External ROM

Figure 6-5. Loading FW from External ROM

Start FW Download
from External ROM

Read Second External


ROM Image Data

Exist Second External


ROM Image Data
NO

YES

Download Second External Read First External


ROM Image Data ROM Image Data

Error

Exist First External


Check CRC16
ROM Image Data
No

Yes

Success
Check CRC16

Error

Success FW Download Fail FW Download


from External ROM
Success from External ROM

ISG-NK1-110027 Rev.2.00 Page 128 of 132


March.2, 2012
PD720201/PD720202 7. FW Download Interface

★ 7. FW Download Interface
PD720201 and PD720202 supports Firmware Download Interface from the System Software (BIOS or Device
Driver) for firmware. This section describes these functions.

7.1 How to Download a Firmware into PD720201/PD720202


The FW Download mechanism assumes that the FW released by Renesas Electronics is located in the BIOS or other
storage in advance. And BIOS or Driver reads it by DWORDS and writes it into PD720201 and PD720202 with the FW
Download related registers (DWORD size) in the PCI Configuration Registers.

7.1.1 FW download registers


FW Download related registers consist of a total of three registers in PCI Configuration registers.
1. FW Download Control & Status Register (refer to Table 3-56)
This register contains bits which control FW Download function, and status for the result.
2. DATA0 Register (refer to Table 3-58)
3. DATA1 Register (refer to Table 3-59)
DATA0 and DATA1 are window registers for loading FW.

7.1.2 Outline of FW download sequences


When the System Software starts FW Download, the System Software sets “FW Download Enable” to „1b‟. Then the
System Software writes the first data to “DATA0”, and writes the second data to “DATA1”, then sets “Set DATA0” and “Set
DATA1” to „1b‟. After that, the System Software confirms whether “Set DATA0” is „0b‟. If it is „0b‟, the System Software
writes the third data to “DATA0” and sets “Set DATA0”. Then the System Software confirms “Set DATA1” is „0b‟ before
writing the next data to “DATA1”. The System Software continues this sequence until the last data is written to “DATA0” or
“DATA1”. After all data is written, the System Software must set “FW Download Enable” to „0b‟.

When “FW Download Enable” is „0b‟, the System Software needs to poll “Result Code” for change (other than „000b‟). If
“Result Code” is „001b‟, FW download is a success.

7.1.3 FW download sequences


1. Set “FW Download Enable” to „1b‟.
2. Read “Set DATA0” and confirm it is „0b‟.
3. Write FW data to”DATA0”.
4. Read “Set DATA1” and confirm it is „0b‟.
5. Write FW data to”DATA1”.
6. Set “Set DATA0” & “Set DATA1” to „1b‟.
7. Read “Set DATA0” and confirm it is „0b‟.
8. Write FW data to”DATA0”. Set “Set DATA0” to „1b‟.
9. Read “Set DATA1” and confirm it is „0b‟.
10. Write FW data to”DATA1”. Set “Set DATA1” to „1b‟.
11. Return to step 7 and repeat the sequence from step 7 to step 10.
12. After writing the last data of FW, the System Software must set “FW Download Enable” to „0b‟.
13. Read “Result Code” and confirm it is „001b‟.

Note 1: If the Lock FW download function is needed, the System Software can lock FW download by setting “FW
Download Lock” after the step 13 in the above sequence. (Refer to Table 3-56)
Note 2: System Software must configure RENESAS Specific registers if the Vendor specific configuration is
needed. (Refer to section 3.2.6)

ISG-NK1-110027 Rev.2.00 Page 129 of 132


March.2, 2012
PD720201/PD720202 7. FW Download Interface

Note 3: The System Software must not set “FW Download Enable” to „1b‟ when “Run/Stop” of USBCMD Register
is „1b‟.
Note 4: The “Result Code” for the External ROM Access Control and Status Register is “don‟t care” during FW
Download.
Note 5: If the External ROM is installed and the FW Download function is used, PD720201 and PD720202
behaves according to the FW from the FW Download function.
Note 6: PD720201/PD720202 starts to download firmware after de-asserting PONRSTB and PERSTB.

ISG-NK1-110027 Rev.2.00 Page 130 of 132


March.2, 2012
PD720201/PD720202 8. Battery Charging Function

★ 8. Battery Charging Function


PD720201 and PD720202 support the USB Battery Charging Function. It is possible to permit devices to draw VBUS
current in excess of the USB2.0 specification for charging on the downstream port of PD720201 and PD720202. This
function complies with Battery Charging Specification Rev1.2.

8.1 Features
 All of PD720201 and PD720202 downstream ports support SDP, CDP and DCP.
 It is possible to select one Battery charging mode from 4 types.
 It is possible to set the Battery charging mode on each port individually.
 VBUS shall be controlled by PPONx in each port respectively.

8.2 Battery Charging Mode


PD720201 and PD720202 support the Battery charging modes shown in Table 8-1.

Table 8-1. Battery Charging Mode

Battery charging Battery charging port type


mode number
Under D0/D3-hot state Under D3-cold state

0 SDP

1 CDP

2 SDP DCP

3 CDP DCP

Note 1: To enable Battery charging function under S3/S4/S5, PD720201 and PD720202 must remain powered under
S3/S4/S5. When the power is supplied only in S0 and S3, the charging function is only available in those power
states.

Note 2: When “wake on connect function” and “wake on disconnect function” are enabled, modes 2 and 3 are not,
because these functions need to detect device attach or detach.

ISG-NK1-110027 Rev.2.00 Page 131 of 132


March.2, 2012
PD720201/PD720202 8. Battery Charging Function

8.3 How to Set Up


The battery charging mode of PD720201 or PD720202 is set by PHY control 2 register in PCI configuration space.
(Refer to section 3.2.6.4.) The PHY Control 2 register can be accessed simply and directly like any other PCI configuration
register.
Setting a value in this register reflects to the downstream port after any of the following events:
1. Resetting the host controller by using HCRST.
2. Device state transits to D3-cold.
3. Device state changes from D3-cold to D0.
4. Overcurrent is detected.

Furthermore, when External ROM for the firmware is selected in the HW configuration, it is possible to set the battery
charging function by using the Vendor Specific Configuration Data Block of External ROM. Refer to chapter 6.

8.3.1 HW configuration requirement


Some Battery charging functions change the port type in each device state. VBUS shall be cut off temporarily when the
charging port is changed, as required by the Battery Charging Specification. Thus, VBUS shall be controlled by a power
switch controlled by PPONx for each port. And it is recommended to use power switches having the VBUS discharge
function.

Figure 8-1. VBUS Control Configuration with Battery Charging Function

5V source

Vin
VBUS
PPON1 EN Port1
OCI1B FLG out

Vin
VBUS
PPON2 EN Port2
OCI2B FLG out

Vin
PPON3 EN VBUS Port3
OCI3B FLG out

Vin
PPON4 EN VBUS Port4
OCI4B FLG out

Power switch

ISG-NK1-110027 Rev.2.00 Page 132 of 132


March.2, 2012
REVISION HISTORY PD720201/PD720202 User’s Manual: Hardware

Rev. Date Description


Page Summary
0.01 March.31, 2011 - First Edition issued
0.02 May 17, 2011 -  1.3 Ordering Information
 Updated ordering information.
0.03 June 29, 2011 -  Chapter1
 Changed the revision of USB Battery Charging Specification
 Chapter2
 Added the note to 2.3 system clock
 Chapter3
 Modified the description Table 5-2.
 Chapter5
 Added the Chapter 5
0.04 Sep 15, 2011 -  Chapter3
 Updated Table 5-3. PCI Type 0 Configuration Space Header
 Changed the value (Default) of Max_Read_Request_Size of Table 3-41.
Device Control Register (Offset Address: A8h)
 Changed the section 3.2.6.8 FW Download Control and Status Register
 Updated the section 3.3 Host Controller Capability Register
 Updated the section 3.4 Host Controller Operational Registers
 Updated the section 3.5 Host Controller Runtime Registers
 Updated the section 3.6 Doorbell Registers
 Updated the section 3.7 xHCI Extended Capabilities
 Updated the section 3.8 MSI-X / PBA Table
 Chapter4
 Updated Chapter 4 Power Management
 Chapter5
 Updated Table 5-4. Supported External Serial ROM List.
1.00 Sep 26, 2011 -  Document promoted from Preliminary to v1.00.
(Document No. R19UH0078E)
 Chapter 1
 Updated the section 1.2 Applications

C-1
Rev. Date Description
Page Summary
2.00 Feb 22, 2012 -  Chapter2
 Changed Table 2-7.SPI Interface(SPISO).
 Chapter3
 Modified the typo of Table 3-2 PCI Type 0 Configuration Space Header
(Offset E4h – DCh).
 Updated Table 3-7 Revision ID Register (PD720201).
 Updated Table 3 25 PMC Register (Offset Address: 52h)
 Updated Table 3-53 PHY Control 0 register.
 Updated Table 3-54 PHY Control 1 register.
 Updated Table 3-55 PHY Control 2 register.
 Updated Table 3-56 HCConfiguration Register.(Bit 7:0)
 Updated Table 3-57 External ROM Information Register
 Updated Table 3-58 External ROM Configuration Register.
 Changed Comment of Table 3-59 FW Download Control and
Register(Bit 1, Bit 6:4).
 Modified Table 3-72 Serial Number Register (Read/Write)
 Updated Comment of Table 3-82 HCCPARAMS(Bit 3).
 Chapter4
 Modified 4.2 Power Management Event (PME) Mechanism
 Chapter5
 Changed Table 5-1 Unused Pin connection.
 Modified Figure 5-1 Root Hub Port to USB Connector Mapping of
PD720201
 Modified Figure 5-2 Root Hub Port to USB Connector Mapping of
PD720202
 Changed 5.5 External Serial ROM Connection
 Added Chapter 6 How to Access External ROM
 Added Chapter 7 Firmware Download Function
 Added Chapter 8 Battery Charging Function

C-2
PD720201/PD720202 User’s Manual: Hardware

Publication Date: Rev. 1.00 Sep 26, 2011


Rev. 2.00 Mar 2, 2012

Published by: Renesas Electronics Corporation


PD720201/PD720202

ISG-NK1-110027

You might also like