2nd Midsession Exam MATH 336 Differential Equations
Wednesday 20/11/2024 -- 1 hour
Name: ________________________________________ Student ID: ______________
Question 1 (A): (K1+K2) Choose the correct answer [5 Marks]
[1]. If 𝒚𝟏 (𝒙) and 𝒚𝟐 (𝒙) are solutions of 𝒚′′ + 𝒚 = 𝟎, 𝒙 ∈ ℝ, such that
𝒚𝟏 (𝟎) = 𝟏, 𝒚′𝟏 (𝟎) = 𝟎, 𝒚𝟐 (𝟎) = 𝟎, 𝒚′𝟐 (𝟎) = 𝟏, then the general solution is written as:
(a) 𝑦(𝑥) = 𝑐1 cos(𝑥) + 𝑐2 sin(𝑥) (c) 𝑦(𝑥) = 𝑐1 sin(𝑥) + 𝑐2 cos(𝑥)
(b) 𝑦(𝑥) = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −𝑥 (d) 𝑦(𝑥) = 𝑐1 𝑥 + 𝑐2 𝑥 −1
[2]. The complementary function C.F. (𝒚𝒄 ) of 𝒙𝟐 𝒚′′ − 𝟑𝒙𝒚′ + 𝟒𝒚 = 𝟎 is
(a) 𝑦𝑐 = (𝑐1 + 𝑐2 𝑥)𝑒 2𝑥 (b) 𝑦𝑐 = (𝑐1 + 𝑐2 ln 𝑥)𝑥 2 (c) 𝑦𝑐 = (𝑐1 + 𝑐2 𝑥)𝑥 2 (d) None
[3]. The trial particular solution (𝑦𝑝 ) of the DE 𝒚′′ + 𝒚 = 𝟐 sin(𝑥) is
(a) 𝑦𝑝 = 𝐴 cos 𝑥 + 𝐵 sin 𝑥 (b) 𝑦𝑝 = 𝐴𝑥 sin 𝑥 (c) 𝑦𝑝 = 𝐴𝑥 cos 𝑥 + 𝐵𝑥 sin 𝑥 (d) None
[4]. The general solution of the DE 𝒚′′′ − 𝟓𝒚′′ + 𝟖𝒚′ − 𝟒𝒚 = 𝟎 is
(a) 𝑦 = (𝑐1 + 𝑐2 𝑥 + 𝑐3 𝑥 2 )𝑒 𝑥 (c) 𝑦 = 𝑐1 𝑒 𝑥 + (𝑐2 + 𝑐3 𝑥)𝑒 2𝑥
(b) 𝑦 = (𝑐1 + 𝑐2 𝑥 + 𝑐3 𝑥 2 )𝑒 2𝑥 (d) 𝑦 = 𝑐1 𝑒 2𝑥 + (𝑐2 + 𝑐3 𝑥)𝑒 𝑥
[5]. The PDE uxx 2 xuxy xu yy 2 yux xu y u 0 is Elliptic if
(b) 𝑥 < 1 (b) 0 < 𝑥 < 1 (c) 𝑥 > 1 (d) None
Question 1 (B): (K3) Solve the following differential equation [3 Marks]
𝒚′′ − 𝟗𝒚′ + 𝟗𝒚 = 𝟒𝒆−𝟒𝒙
Solution:
93 5 93 5
The auxiliary equation is 𝑚2 − 9𝑚 + 9 = 0 m , .
2 2
9 3 5 x 93 5 x
yc c1e 2 c2e 2 . 1.5 Marks
Let y p Ae
4 x
yp 4 Ae 4 x and yp 16 Ae 4 x , 0.5 Marks
Substituting in the given DE, we have
16 Ae 4 x 36 Ae 4 x 9 Ae 4 x 4e 4 x
4
A .
61
4 4 x
Hence, y p e . 0.5 Marks
61
9 3 5 93 5
x x 4 4 x
The general solution is y c1e 2
c2e 2
e . 0.5 Marks
61
1
2nd Midsession Exam MATH 336 Differential Equations
Wednesday 20/11/2024 -- 1 hour
Name: ________________________________________ Student ID: ______________
Question 2: (S1+S2): Write the answer of the following [Marks 𝟐 × 𝟑 = 𝟔]
[1]. Find the general solution of the differential equation:
𝒙𝟐 𝒚′′ − 𝟒𝒙𝒚′ + 𝟏𝟑𝒚 = (𝐥𝐧 𝒙)𝟐 + 𝟐.
[2]. Apply the method of variation of parameters to solve the following differential equation:
𝒚′′ − 𝟒𝒚′ + 𝟒𝒚 = (𝒙𝟐 − 𝟏)𝒆𝟐𝒙 .
Let x e or t ln x , then
t
Solution [1]:
2
dy dy 2 d y d 2 y dy
Substituting x and x in the given DE, we get
dx dt dx 2 dt 2 dt
d2y dy
2
5 13 y t 2 2 . (1)
dt dt
5 3 3
The auxiliary equation is m2 5m 13 0 m i,
2 2
5
t 3 3 3 3
yc e2 c1 cos t c2 sin t . 1.5 Marks
2 2
y p At 2 Bt C yp 2 At B and yp 2 A .
Substituting in (1), we have
13 At 2 (10 A 13B)t (2 A 5B 13C ) t 2 2
1 10 262
13 A 1 i.e. A , 10 A 13B 0 B 2
, and 2 A 5B 13C 2 C .
13 (13) (13)3
1 10 262
Hence y p t 2 2
t . 1.5 Marks
13 (13) (13)3
5
t 3 3 3 3 1 2 10 262
The general solution is y e 2 c1 cos t c2 sin t t 2
t 3
.
2 2 13 (13) (13)
Solution [2]: The auxiliary equation is m 4m 4 0 m 2,2
2
yc c1e2 x c2 xe2 x . 1 Marks
Let y1 ( x) e 2 x and y2 ( x) xe 2 x , then y p Ay1 ( x) B y2 ( x)
e2 x xe 2 x
W e4 x . 0.5 Marks
2e 2x
e 2 xe
2x 2x
y2 ( x ) xe 2 x x4 x2
A R( x)dx 4 x ( x 2 1)e 2 x dx ( x 3 x)dx . 0.5 Marks
W e 4 2
2x 3
y ( x) e x
B 1 R ( x)dx 4 x ( x 2 1)e 2 x dx ( x 2 1)dx x . 0.5 Marks
W e 3
x 4
x
2
x 3
x 4
x
2
y p e 2 x x xe 2 x e 2 x .
4 2 3 12 2
x 4 x2
Hence the general solution is y c1e 2 x c2 xe 2 x e 2 x . 0.5 Marks
12 2
2
2nd Midsession Exam MATH 336 Differential Equations
Wednesday 20/11/2024 -- 1 hour
Name: ________________________________________ Student ID: ______________
Question 3: (S3+S4): Write the answer of the following [Marks 𝟐 × 𝟑 = 𝟔]
[1]. Use D’Alembert’s method to find the solution of the partial differential equation:
𝒖𝒕𝒕 = 𝒄𝟐 𝒖𝒙𝒙 ,
where −∞ < 𝒙 < ∞ , 𝒕 > 𝟎, with initial conditions 𝒖(𝒙, 𝟎) = 𝐜𝐨𝐬 𝒙 , 𝒖𝒕 (𝒙, 𝟎) = 𝐬𝐢𝐧 𝒙
[2]. Find the product solution of the following partial differential equation:
𝒖𝒙𝒙 − 𝟒𝒖𝒚𝒚 = 𝟎.
Solution [1]: Using D’Alembert’s method with u0 (x) cos x and v0 (x) sin x , we have
1 1 x ct
u(x ,t ) u0 (x - ct) u0 (x ct ) x-ct v0 (s)ds 1 Mark
2 2c
1 1 x ct
cos(x ct ) cos(x ct ) sin s ds
2 2c x ct
1 1 x ct
cos x cos ct sin x sin ct cos x cos ct sin x sin ct cos s x ct 1 Mark
2 2c
1
cos x cos ct cos(x ct ) cos(x ct )
2c
1
cos x cos ct (sin x sin ct ) . 1 Mark
c
Solution [2]: Given that 𝑢𝑥𝑥 − 4𝑢𝑦𝑦 = 0 (1)
Let u ( x, t ) XY then 𝑢𝑥𝑥 = 𝑋 ′′ 𝑌 𝑎𝑛𝑑 𝑢𝑦𝑦 = 𝑋𝑌 ′′
Substituting in (1), we have
𝑋 ′′ 𝑌= 4 𝑋𝑌 ′′
𝑋 ′′ 𝑌 ′′
This implies = = 𝜆 (𝑠𝑎𝑦) 0.5 Marks
4𝑋 𝑌
We need to solve 𝑋 − 4𝑋𝜆 = 0 and 𝑌 ′′ − 𝜆𝑌 = 0.
′′
Case 1: For 𝜆 = 0
𝑋 ′′ = 0 𝑌 ′′ = 0
𝑋 = 𝐴𝑥 + 𝐵 𝑌 = 𝐶𝑦 + 𝐷
The product solution 𝑢(𝑥, 𝑦) = (𝐴𝑥 + 𝐵)(𝐶𝑦 + 𝐷). 0.5 Marks
Case 2: For 𝜆 = 𝑘2 > 0
𝑌 ′′ − 𝑘 2 𝑌 = 0
𝑋 ′′ − 4𝑘 2 𝑋 = 0
𝑌 = 𝐶𝑒 𝑘𝑦 + 𝐵𝑒 −𝑘𝑦
𝑋 = 𝐴𝑒 2𝑘𝑥 + 𝐵𝑒 −2𝑘𝑥
The product solution 𝑢(𝑥, 𝑦) = (𝐴𝑒 2𝑘𝑥 + 𝐵𝑒 −2𝑘𝑥 )(𝐶𝑒 𝑘𝑦 + 𝐵𝑒 −𝑘𝑦 ). 1 Mark
Case 3: For 𝜆 = −𝑘2 > 0
𝑋 ′′ + 4𝑘 2 𝑋 = 0 𝑌 ′′ + 𝑘 2 𝑌 = 0
𝑋 = 𝐴𝑐𝑜𝑠(2𝑘𝑥) + 𝐵𝑠𝑖𝑛(2𝑘𝑥) 𝑌 = 𝐶𝑐𝑜𝑠(𝑘𝑦) + 𝐵𝑠𝑖𝑛(𝑘y)
The product solution 𝑢(𝑥, 𝑦) = (𝐴𝑐𝑜𝑠(2𝑘𝑥) + 𝐵𝑠𝑖𝑛(2𝑘𝑥))(𝐶𝑐𝑜𝑠(𝑘𝑦) + 𝐵𝑠𝑖𝑛(𝑘y). 1 Mark
3
Wishing you all the best