0% found this document useful (0 votes)
11 views3 pages

Solution Mid-2 Math 366 (2025 - 1)

The document is a Midsession Exam for MATH 336 Differential Equations, consisting of multiple-choice questions and problem-solving sections. It covers topics such as general solutions of differential equations, complementary functions, and methods for solving partial differential equations. The exam includes specific equations and conditions for students to solve within a one-hour timeframe.

Uploaded by

artieahmed
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
11 views3 pages

Solution Mid-2 Math 366 (2025 - 1)

The document is a Midsession Exam for MATH 336 Differential Equations, consisting of multiple-choice questions and problem-solving sections. It covers topics such as general solutions of differential equations, complementary functions, and methods for solving partial differential equations. The exam includes specific equations and conditions for students to solve within a one-hour timeframe.

Uploaded by

artieahmed
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

2nd Midsession Exam MATH 336 Differential Equations

Wednesday 20/11/2024 -- 1 hour


Name: ________________________________________ Student ID: ______________

Question 1 (A): (K1+K2) Choose the correct answer [5 Marks]

[1]. If 𝒚𝟏 (𝒙) and 𝒚𝟐 (𝒙) are solutions of 𝒚′′ + 𝒚 = 𝟎, 𝒙 ∈ ℝ, such that


𝒚𝟏 (𝟎) = 𝟏, 𝒚′𝟏 (𝟎) = 𝟎, 𝒚𝟐 (𝟎) = 𝟎, 𝒚′𝟐 (𝟎) = 𝟏, then the general solution is written as:
(a) 𝑦(𝑥) = 𝑐1 cos(𝑥) + 𝑐2 sin(𝑥) (c) 𝑦(𝑥) = 𝑐1 sin(𝑥) + 𝑐2 cos(𝑥)
(b) 𝑦(𝑥) = 𝑐1 𝑒 𝑥 + 𝑐2 𝑒 −𝑥 (d) 𝑦(𝑥) = 𝑐1 𝑥 + 𝑐2 𝑥 −1

[2]. The complementary function C.F. (𝒚𝒄 ) of 𝒙𝟐 𝒚′′ − 𝟑𝒙𝒚′ + 𝟒𝒚 = 𝟎 is


(a) 𝑦𝑐 = (𝑐1 + 𝑐2 𝑥)𝑒 2𝑥 (b) 𝑦𝑐 = (𝑐1 + 𝑐2 ln 𝑥)𝑥 2 (c) 𝑦𝑐 = (𝑐1 + 𝑐2 𝑥)𝑥 2 (d) None

[3]. The trial particular solution (𝑦𝑝 ) of the DE 𝒚′′ + 𝒚 = 𝟐 sin(𝑥) is


(a) 𝑦𝑝 = 𝐴 cos 𝑥 + 𝐵 sin 𝑥 (b) 𝑦𝑝 = 𝐴𝑥 sin 𝑥 (c) 𝑦𝑝 = 𝐴𝑥 cos 𝑥 + 𝐵𝑥 sin 𝑥 (d) None

[4]. The general solution of the DE 𝒚′′′ − 𝟓𝒚′′ + 𝟖𝒚′ − 𝟒𝒚 = 𝟎 is


(a) 𝑦 = (𝑐1 + 𝑐2 𝑥 + 𝑐3 𝑥 2 )𝑒 𝑥 (c) 𝑦 = 𝑐1 𝑒 𝑥 + (𝑐2 + 𝑐3 𝑥)𝑒 2𝑥
(b) 𝑦 = (𝑐1 + 𝑐2 𝑥 + 𝑐3 𝑥 2 )𝑒 2𝑥 (d) 𝑦 = 𝑐1 𝑒 2𝑥 + (𝑐2 + 𝑐3 𝑥)𝑒 𝑥

[5]. The PDE uxx  2 xuxy  xu yy  2 yux  xu y  u  0 is Elliptic if


(b) 𝑥 < 1 (b) 0 < 𝑥 < 1 (c) 𝑥 > 1 (d) None

Question 1 (B): (K3) Solve the following differential equation [3 Marks]


𝒚′′ − 𝟗𝒚′ + 𝟗𝒚 = 𝟒𝒆−𝟒𝒙
Solution:
93 5 93 5
The auxiliary equation is 𝑚2 − 9𝑚 + 9 = 0  m  , .
2 2
9 3 5 x 93 5 x
yc  c1e 2  c2e 2 . 1.5 Marks
Let y p  Ae
4 x
 yp  4 Ae 4 x and yp  16 Ae 4 x , 0.5 Marks
Substituting in the given DE, we have
16 Ae 4 x  36 Ae 4 x  9 Ae 4 x  4e 4 x
4
 A .
61
4 4 x
Hence, y p  e . 0.5 Marks
61
9 3 5 93 5
x x 4 4 x
The general solution is y  c1e 2
 c2e 2
 e . 0.5 Marks
61

1
2nd Midsession Exam MATH 336 Differential Equations
Wednesday 20/11/2024 -- 1 hour
Name: ________________________________________ Student ID: ______________

Question 2: (S1+S2): Write the answer of the following [Marks 𝟐 × 𝟑 = 𝟔]


[1]. Find the general solution of the differential equation:
𝒙𝟐 𝒚′′ − 𝟒𝒙𝒚′ + 𝟏𝟑𝒚 = (𝐥𝐧 𝒙)𝟐 + 𝟐.
[2]. Apply the method of variation of parameters to solve the following differential equation:
𝒚′′ − 𝟒𝒚′ + 𝟒𝒚 = (𝒙𝟐 − 𝟏)𝒆𝟐𝒙 .
Let x  e or t  ln x , then
t
Solution [1]:
2
dy dy 2 d y d 2 y dy
Substituting x  and x   in the given DE, we get
dx dt dx 2 dt 2 dt
d2y dy
2
 5  13 y  t 2  2 . (1)
dt dt
5 3 3
The auxiliary equation is m2  5m  13  0  m   i,
2 2
5
t  3 3   3 3 
yc  e2 c1 cos  t   c2 sin  t   . 1.5 Marks
  2   2  
y p  At 2  Bt  C  yp  2 At  B and yp  2 A .
Substituting in (1), we have
13 At 2  (10 A  13B)t  (2 A  5B  13C )  t 2  2
1 10 262
 13 A  1 i.e. A  , 10 A  13B  0  B  2
, and 2 A  5B  13C  2  C  .
13 (13) (13)3
1 10 262
Hence y p  t 2  2
t . 1.5 Marks
13 (13) (13)3
5 
t 3 3   3 3  1 2 10 262
The general solution is y  e 2 c1 cos  t   c2 sin  t    t  2
t 3
.
  2   2  13 (13) (13)
Solution [2]: The auxiliary equation is m  4m  4  0  m  2,2
2

yc  c1e2 x  c2 xe2 x . 1 Marks


Let y1 ( x)  e 2 x and y2 ( x)  xe 2 x , then y p  Ay1 ( x)  B y2 ( x)
e2 x xe 2 x
W  e4 x . 0.5 Marks
2e 2x
e  2 xe
2x 2x

y2 ( x ) xe 2 x x4 x2
A   R( x)dx    4 x ( x 2  1)e 2 x dx    ( x 3  x)dx    . 0.5 Marks
W e 4 2
2x 3
y ( x) e x
B 1 R ( x)dx   4 x ( x 2  1)e 2 x dx   ( x 2  1)dx   x . 0.5 Marks
W e 3
 x 4
x 
2
x 3
 x 4
x 
2
y p      e 2 x    x  xe 2 x     e 2 x .
 4 2  3   12 2 
 x 4 x2 
Hence the general solution is y  c1e 2 x  c2 xe 2 x     e 2 x . 0.5 Marks
 12 2 

2
2nd Midsession Exam MATH 336 Differential Equations
Wednesday 20/11/2024 -- 1 hour
Name: ________________________________________ Student ID: ______________

Question 3: (S3+S4): Write the answer of the following [Marks 𝟐 × 𝟑 = 𝟔]


[1]. Use D’Alembert’s method to find the solution of the partial differential equation:
𝒖𝒕𝒕 = 𝒄𝟐 𝒖𝒙𝒙 ,
where −∞ < 𝒙 < ∞ , 𝒕 > 𝟎, with initial conditions 𝒖(𝒙, 𝟎) = 𝐜𝐨𝐬 𝒙 , 𝒖𝒕 (𝒙, 𝟎) = 𝐬𝐢𝐧 𝒙

[2]. Find the product solution of the following partial differential equation:
𝒖𝒙𝒙 − 𝟒𝒖𝒚𝒚 = 𝟎.
Solution [1]: Using D’Alembert’s method with u0 (x)  cos x and v0 (x)  sin x , we have
1 1 x ct
u(x ,t )  u0 (x - ct)  u0 (x  ct )  x-ct v0 (s)ds 1 Mark
2 2c
1 1 x ct
 cos(x  ct )  cos(x  ct )   sin s ds
2 2c x ct
1 1 x ct
 cos x cos ct  sin x sin ct  cos x cos ct  sin x sin ct     cos s x ct 1 Mark
2 2c
1
 cos x cos ct  cos(x  ct )  cos(x  ct )
2c
1
 cos x cos ct  (sin x sin ct ) . 1 Mark
c
Solution [2]: Given that 𝑢𝑥𝑥 − 4𝑢𝑦𝑦 = 0 (1)
Let u ( x, t )  XY then 𝑢𝑥𝑥 = 𝑋 ′′ 𝑌 𝑎𝑛𝑑 𝑢𝑦𝑦 = 𝑋𝑌 ′′
Substituting in (1), we have
𝑋 ′′ 𝑌= 4 𝑋𝑌 ′′
𝑋 ′′ 𝑌 ′′
This implies = = 𝜆 (𝑠𝑎𝑦) 0.5 Marks
4𝑋 𝑌
We need to solve 𝑋 − 4𝑋𝜆 = 0 and 𝑌 ′′ − 𝜆𝑌 = 0.
′′

Case 1: For 𝜆 = 0
𝑋 ′′ = 0 𝑌 ′′ = 0
𝑋 = 𝐴𝑥 + 𝐵 𝑌 = 𝐶𝑦 + 𝐷

The product solution 𝑢(𝑥, 𝑦) = (𝐴𝑥 + 𝐵)(𝐶𝑦 + 𝐷). 0.5 Marks


Case 2: For 𝜆 = 𝑘2 > 0
𝑌 ′′ − 𝑘 2 𝑌 = 0
𝑋 ′′ − 4𝑘 2 𝑋 = 0
𝑌 = 𝐶𝑒 𝑘𝑦 + 𝐵𝑒 −𝑘𝑦
𝑋 = 𝐴𝑒 2𝑘𝑥 + 𝐵𝑒 −2𝑘𝑥
The product solution 𝑢(𝑥, 𝑦) = (𝐴𝑒 2𝑘𝑥 + 𝐵𝑒 −2𝑘𝑥 )(𝐶𝑒 𝑘𝑦 + 𝐵𝑒 −𝑘𝑦 ). 1 Mark

Case 3: For 𝜆 = −𝑘2 > 0


𝑋 ′′ + 4𝑘 2 𝑋 = 0 𝑌 ′′ + 𝑘 2 𝑌 = 0
𝑋 = 𝐴𝑐𝑜𝑠(2𝑘𝑥) + 𝐵𝑠𝑖𝑛(2𝑘𝑥) 𝑌 = 𝐶𝑐𝑜𝑠(𝑘𝑦) + 𝐵𝑠𝑖𝑛(𝑘y)

The product solution 𝑢(𝑥, 𝑦) = (𝐴𝑐𝑜𝑠(2𝑘𝑥) + 𝐵𝑠𝑖𝑛(2𝑘𝑥))(𝐶𝑐𝑜𝑠(𝑘𝑦) + 𝐵𝑠𝑖𝑛(𝑘y). 1 Mark

3
Wishing you all the best

You might also like