FOURIER TRANSFORMS
PART –A
1. State the Fourier integral theorem.
2. Define Fourier transform pair.
3. State the convolution theorem on Fourier transform.
4. Write the Parseval’s identity for Fourier transform.
5. State Modulation theorem on Fourier transform.
6. Prove that if F(s) is the Fourier transform of f(x), then F{ f(x –a) } = eisa F(s).
7. State and prove change of scale property of Fourier transform.
8. Find the F.T of f(x) defined by f(x) =               1 if a <x < b
                                                        0 otherwise
9. Find the F.T of f(x) defined by f(x) =               1 if |x| < a
                                                        0 if |x| > a >0
10. Find the F.T of f(x) defined by f(x) =              eimx if a <x < b
                                                        0 otherwise
11. Find the F.T of f(x) defined by f(x) =              √2 / 2t if -t <x < t
                                                        0 otherwise
                                                 -|x|
12. Find the F.T of f(x) defined by f(x) = e .
13. Find F.C.T and F.S.T of f(x) = e-ax.
14. Find the sine transform of 1/x.
15. If F c { e-ax } = √(2/ ) [ a / s2 +a2], find Fs [ x e-ax ].
16. Find F{ xnf(x) } & F{ fn (x) }.
17. Find F.C.T of e-ax cos ax.
18. Using transform methods, evaluate          dx / ( x2 +a2)2. in 0 < x< .
19. Using transform methods, evaluate          x2dx / ( x2 +a2)2. in 0 < x< .
20. Find F.S.T of (e-ax- e-bx ) / x.
                                          PART –B
1. A function f(x) is defined as f(x) =         1 if |x| < 1
                                                0 , otherwise . Using Fourier
      integral representation of f(x). Hence evaluate [sin s/ s] cos sx ds in 0 < x< .
2. A function f(x) is defined as f(x) =                    1 if |x| < 1
                                                           0 , otherwise . Using Fourier
 cosine integral representation of f(x). Hence evaluate [sin s/ s] cos sx ds in
0<x< .
3. Find the F.T of f(x) is defined as f(x) =                    1 if |x| < 1
                                                               0 , otherwise . Hence evaluate
   (i) [sin / ] d          (ii) [sin2 /      2
                                                 ] d in (0 ,         ).
4. Find the F.T of f(x) is defined as f(x) =                    a -|x| if |x| < a
                                                               0 , otherwise . Hence evaluate
  (i)     [sin / ] 2 d in (0 ,         ). (ii)         [sin / ] 4 d in (0 ,          ).
5. Find the F.T of f(x) is defined as f(x) =                    1 –x2 if |x| < 1
                                                               0 , otherwise . Hence evaluate
 (i)     [sin t – t cos t/ t 3] dt in (0 ,       ). (ii)        [x cos x - sin x / x 3] cos (x /2)dx in (0 ,   ).
6. Find the F.T of f(x) is defined as f(x) = e-a2x2 ,a >0. Hence S.T e-x2 / 2 is self reciprocal
under F.T.
7. Find the F.T of e-|x| and hence find the F.T of e-|x| cos 2x.
8. Obtain the F.S.T of f(x) =           x         if 0 <x < 1
                                        2 – x if 1<x<2
                                        0 , otherwise
9. Find the F.C.T of f(x) is defined as f(x) = cos x if 0 <x < a
                                                               0 , otherwise .
10. State and Prove Parseval’s Identity.
11. Find the F.S.T and F.C.T of x n-1, where 0 < n< 1, x >0 . Deduce that 1/ x is self-
       reciprocal under both F.S.T and F.C.T.
12. Find the F.S.T of e-ax / x . Hence find F.S.T of 1 / x.
13. Evaluate [dx / (a2 + x2 ) (b2 + x2) ] dx in (0 ,                  ).
14. Find F c {f ’(x)}.
15. Solve the integral equation [f(x) cos x] dx in (0 ,                        ) and also [cos x / ( 1 + 2)] d
in (0 ,      ).