DAC0800/DAC0802
8-Bit Digital-to-Analog Converters
General Description
The DAC0800 series are monolithic 8-bit high-speed
current-output digital-to-analog converters (DAC) featuring
typical settling times of 100 ns. When used as a multiplying
DAC, monotonic performance over a 40 to 1 reference current range is possible. The DAC0800 series also features
high compliance complementary current outputs to allow differential output voltages of 20 Vp-p with simple resistor loads
as shown in Figure 1. The reference-to-full-scale current
matching of better than  1 LSB eliminates the need for
full-scale trims in most applications while the nonlinearities
of better than  0.1% over temperature minimizes system error accumulations.
The noise immune inputs of the DAC0800 series will accept
TTL levels with the logic threshold pin, VLC, grounded.
Changing the VLC potential will allow direct interface to other
logic families. The performance and characteristics of the
device are essentially unchanged over the full  4.5V to
 18V power supply range; power dissipation is only 33 mW
with  5V supplies and is independent of the logic input
states.
The DAC0800, DAC0802, DAC0800C and DAC0802C are a
direct replacement for the DAC-08, DAC-08A, DAC-08C,
and DAC-08H, respectively.
Features
n
n
n
n
n
n
n
n
n
n
n
Fast settling output current: 100 ns
Full scale error:  1 LSB
Nonlinearity over temperature:  0.1%
Full scale current drift:  10 ppm/C
High output compliance: 10V to +18V
Complementary current outputs
Interface directly with TTL, CMOS, PMOS and others
2 quadrant wide range multiplying capability
Wide power supply range:  4.5V to  18V
Low power consumption: 33 mW at  5V
Low cost
Typical Applications
DS005686-1
FIGURE 1.  20 VP-P Output Digital-to-Analog Converter (Note 5)
Ordering Information
Non-Linearity
 0.1% FS
 0.19% FS
 0.19% FS
Temperature
Order Numbers
Range
J Package (J16A) (Note 1) N Package (N16E) (Note 1) SO Package (M16A)
0C  TA  +70C
DAC0802LCJ
55C  TA  +125C
DAC0800LJ
0C  TA  +70C
DAC0800LCJ
DAC-08HQ DAC0802LCN
DAC-08HP
DAC0802LCM
DAC-08EP
DAC0800LCM
DAC-08Q
DAC-08EQ DAC0800LCN
Note 1: Devices may be ordered by using either order number.
 1999 National Semiconductor Corporation
DS005686
www.national.com
DAC0800/DAC0802 8-Bit Digital-to-Analog Converters
June 1999
Absolute Maximum Ratings (Note 2)
Storage Temperature
Lead Temp. (Soldering, 10 seconds)
Dual-In-Line Package (plastic)
Dual-In-Line Package (ceramic)
Surface Mount Package
Vapor Phase (60 seconds)
Infrared (15 seconds)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Supply Voltage (V+  V)
Power Dissipation (Note 3)
Reference Input Differential Voltage
(V14 to V15)
Reference Input Common-Mode
Range (V14, V15)
Reference Input Current
Logic Inputs
Analog Current Outputs
(VS = 15V)
ESD Susceptibility (Note 4)
 18V or 36V
500 mW
V to V+
Operating Conditions
V to V+
5 mA
V to V plus 36V
Temperature (TA)
DAC0800L
DAC0800LC
DAC0802LC
4.25 mA
TBD V
65C to +150C
260C
300C
215C
220C
(Note 2)
Min
Max
Units
55
0
0
+125
+70
+70
C
C
C
Electrical Characteristics
The following specifications apply for VS =  15V, IREF = 2 mA and TMIN  TA  TMAX unless otherwise specified. Output
characteristics refer to both IOUT and IOUT.
DAC0802LC
Symbol
Parameter
DAC0800LC
Min
Typ
Max
Min
Typ
Units
Max
Resolution
Bits
Monotonicity
Bits
 0.19
%FS
 0.1
Nonlinearity
Settling Time
ts
DAC0800L/
Conditions
To  12 LSB, All Bits Switched
100
135
ns
ON or OFF, TA = 25C
tPLH,
tPHL
Propagation Delay
DAC0800L
100
135
ns
DAC0800LC
100
150
ns
ns
TA = 25C
Each Bit
35
60
35
60
All Bits Switched
35
60
35
60
ns
 10
 50
 10
 50
ppm/C
18
1.99
2.04
mA
A
TCIFS
Full Scale Tempco
VOC
Output Voltage Compliance
Full Scale Current Change
10
18
10
1.992
2.000
1.94
 0.5
 4.0
 8.0
0.1
1.0
0.2
2.0
< 12 LSB, ROUT > 20 M Typ
IFS4
Full Scale Current
VREF = 10.000V, R14 = 5.000 k
1.984
R15 = 5.000 k, TA = 25C
IFSS
Full Scale Symmetry
IZS
Zero Scale Current
IFSR
Output Current Range
IFS4IFS2
V = 5V
2.0
2.1
2.0
2.1
mA
V = 8V to 18V
2.0
4.2
2.0
4.2
mA
0.8
Logic Input Levels
VIL
Logic 0
VIH
Logic 1
Logic Input Current
VLC = 0V
0.8
2.0
2.0
VLC = 0V
IIL
Logic 0
10VVIN+0.8V
2.0
10
2.0
10
IIH
Logic 1
2VVIN+18V
0.002
10
0.002
10
VIS
Logic Input Swing
V = 15V
10
18
10
18
VTHR
Logic Threshold Range
VS =  15V
10
13.5
10
13.5
I15
Reference Bias Current
dl/dt
Reference Input Slew Rate
(Figure 11)
4.0
PSSIFS+
Power Supply Sensitivity
4.5VV+18V
0.0001
0.01
0.0001
0.01
%/%
4.5VV18V
0.0001
0.01
0.0001
0.01
%/%
PSSIFS
1.0
IREF = 1mA
www.national.com
3.0
8.0
1.0
4.0
3.0
8.0
A
mA/s
Electrical Characteristics
(Continued)
The following specifications apply for VS =  15V, IREF = 2 mA and TMIN  TA  TMAX unless otherwise specified. Output
characteristics refer to both IOUT and IOUT.
DAC0802LC
Symbol
Parameter
DAC0800LC
Min
Power Supply Current
DAC0800L/
Conditions
Typ
Max
Min
Typ
Units
Max
VS =  5V, IREF = 1 mA
I+
2.3
3.8
2.3
3.8
mA
4.3
5.8
4.3
5.8
mA
VS = 5V, 15V, IREF = 2 mA
I+
2.4
3.8
2.4
3.8
mA
6.4
7.8
6.4
7.8
mA
VS =  15V, IREF = 2 mA
I+
2.5
3.8
2.5
3.8
mA
6.5
7.8
6.5
7.8
mA
PD
Power Dissipation
 5V, IREF = 1 mA
33
48
33
48
mW
5V,15V, IREF = 2 mA
108
136
108
136
mW
 15V, IREF = 2 mA
135
174
135
174
mW
Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating
the device beyond its specified operating conditions.
Note 3: The maximum junction temperature of the DAC0800 and DAC0802 is 125C. For operating at elevated temperatures, devices in the Dual-In-Line J package
must be derated based on a thermal resistance of 100C/W, junction-to-ambient, 175C/W for the molded Dual-In-Line N package and 100C/W for the Small Outline
M package.
Note 4: Human body model, 100 pF discharged through a 1.5 k resistor.
Note 5: Pin-out numbers for the DAC080X represent the Dual-In-Line package. The Small Outline package pin-out differs from the Dual-In-Line package.
Connection Diagrams
Dual-In-Line Package
Small Outline Package
DS005686-14
Top View
DS005686-13
Top View
See Ordering Information
www.national.com
Block Diagram (Note 5)
DS005686-2
Typical Performance Characteristics
Full Scale Current
vs Reference Current
LSB Propagation Delay vs IFS
Reference Input
Frequency Response
DS005686-23
DS005686-24
DS005686-22
Curve 1: CC = 15 pF, VIN = 2 Vp-p centered at 1V.
Curve 2: CC = 15 pF, VIN = 50 mVp-p centered at
200 mV.
Curve 3: CC = 0 pF, VIN = 100 mVp-p centered at
0V and applied through 50 connected to pin
14.2V applied to R14.
Reference Amp
Common-Mode Range
Logic Input Current
vs Input Voltage
VTH  VLC vs Temperature
DS005686-27
DS005686-25
DS005686-26
Note. Positive common-mode range is always
(V+)  1.5V.
www.national.com
Typical Performance Characteristics
Output Current vs Output
Voltage (Output Voltage
Compliance)
(Continued)
Output Voltage Compliance
vs Temperature
Bit Transfer
Characteristics
DS005686-29
DS005686-28
Power Supply Current
vs +V
DS005686-30
Note. B1B8 have identical transfer
characteristics. Bits are fully switched with less
than 12 LSB error, at less than  100 mV from
actual threshold. These switching points are
guaranteed to lie between 0.8 and 2V over the
operating temperature range (VLC = 0V).
Power Supply Current
vs V
DS005686-31
Power Supply Current
vs Temperature
DS005686-32
DS005686-33
Equivalent Circuit
DS005686-15
FIGURE 2.
www.national.com
Typical Applications
DS005686-5
IO + IO = IFS for all logic states
For fixed reference, TTL operation, typical values are:
VREF = 10.000V
RREF = 5.000k
R15  RREF
CC = 0.01 F
VLC = 0V (Ground)
FIGURE 3. Basic Positive Reference Operation (Note 5)
DS005686-16
DS005686-21
FIGURE 4. Recommended Full Scale Adjustment
Circuit (Note 5)
Note. RREF sets IFS; R15 is for bias current cancellation
FIGURE 5. Basic Negative Reference Operation
(Note 5)
DS005686-17
IO mA
IOmA
EO
EO
Full Scale
B1 B2 B3 B4 B5 B6 B7 B8
1
1.992
0.000
9.960
0.000
Full ScaleLSB
1.984
0.008
9.920
0.040
Half Scale+LSB
1.008
0.984
5.040
4.920
Half Scale
1.000
0.992
5.000
4.960
Half ScaleLSB
0.992
1.000
4.960
5.000
Zero Scale+LSB
0.008
1.984
0.040
9.920
Zero Scale
0.000
1.992
0.000
9.960
FIGURE 6. Basic Unipolar Negative Operation (Note 5)
www.national.com
Typical Applications
(Continued)
DS005686-6
B1 B2 B3 B4 B5 B6 B7 B8
EO
EO
Pos. Full Scale
9.920 +10.000
Pos. Full ScaleLSB
9.840
+9.920
Zero Scale+LSB
0.080
+0.160
Zero Scale
0.000
+0.080
Zero ScaleLSB
+0.080
0.000
Neg. Full Scale+LSB
+9.920
9.840
Neg. Full Scale
0 +10.000
9.920
FIGURE 7. Basic Bipolar Output Operation (Note 5)
DS005686-18
If RL = RL within  0.05%, output is symmetrical about ground
B1 B2 B3 B4 B5 B6 B7 B8
EO
Pos. Full Scale
+9.960
Pos. Full ScaleLSB
+9.880
(+)Zero Scale
+0.040
()Zero Scale
0.040
Neg. Full Scale+LSB
9.880
Neg. Full Scale
9.960
FIGURE 8. Symmetrical Offset Binary Operation (Note 5)
DS005686-19
For complementary output (operation as negative logic DAC), connect inverting input of op amp to IO (pin 2), connect IO (pin 4) to ground.
FIGURE 9. Positive Low Impedance Output Operation (Note 5)
www.national.com
Typical Applications
(Continued)
DS005686-20
For complementary output (operation as a negative logic DAC) connect non-inverting input of op am to IO (pin 2); connect IO (pin 4) to ground.
FIGURE 10. Negative Low Impedance Output Operation (Note 5)
DS005686-10
Typical values: RIN = 5k,+VIN = 10V
FIGURE 11. Pulsed Reference Operation (Note 5)
DS005686-9
VTH = VLC + 1.4V
15V CMOS, HTL, HNIL
VTH = 7.6V
Note. Do not exceed negative logic input range of DAC.
FIGURE 12. Interfacing with Various Logic Families
DS005686-12
(b) +VREF must be above peak positive swing of VIN
DS005686-11
(a) IREF  peak negative swing of IIN
FIGURE 13. Accommodating Bipolar References (Note 5)
www.national.com
Typical Applications
(Continued)
DS005686-7
FIGURE 14. Settling Time Measurement (Note 5)
DS005686-8
Note. For 1 s conversion time with 8-bit resolution and 7-bit accuracy, an LM361 comparator replaces the LM319 and the reference current is doubled by
reducing R1, R2 and R3 to 2.5 k and R4 to 2 M.
FIGURE 15. A Complete 2 s Conversion Time, 8-Bit A/D Converter (Note 5)
www.national.com