FORMALIZED MATHEMATICS
Volume 13, Number 3, Pages 383–387
University of Bialystok, 2005
Formulas and Identities of Inverse
Hyperbolic Functions
Fuguo Ge Xiquan Liang
Qingdao University of Science Qingdao University of Science
and Technology and Technology
China China
Yuzhong Ding
Qingdao University of Science
and Technology
China
Summary. This article describes definitions of inverse hyperbolic func-
tions and their main properties, as well as some addition formulas with hyperbolic
functions.
MML identifier: SIN COS7, version: 7.5.01 4.39.921
The papers [1], [8], [4], [2], [9], [3], [6], [5], and [7] provide the terminology and
notation for this paper.
1. Preliminaries
In this paper x, y, t denote real numbers.
Next we state a number of propositions:
(1) If x > 0, then x1 = x−1 .
√
2
(2) If x > 1, then ( xx −1 )2 < 1.
(3) ( √xx2 +1 )2 < 1.
√
(4) x2 + 1 > 0.
√
(5) x2 + 1 + x > 0.
c
2005 University of Bialystok
383 ISSN 1426–2630
384 fuguo ge and xiquan liang and yuzhong ding
x+1
(6) If y ≥ 0 and x ≥ 1, then y ≥ 0.
x−1
(7) If y ≥ 0 and x ≥ 1, then y ≥ 0.
q
(8) If x ≥ 1, then x+12 ≥ 1.
2
(9) If y ≥ 0 and x ≥ 1, then x y−1 ≥ 0.
q q
(10) If x ≥ 1, then x+12 + x−1
2 > 0.
(11) If x2 < 1, then x + 1 > 0 and 1 − x > 0.
(12) If x 6= 1, then (1 − x)2 > 0.
x2 +1
(13) If x2 < 1, then 1−x 2 ≥ 0.
2·x 2
(14) If x2 < 1, then ( 1+x 2 ) < 1.
(15) If 0 < x and x < 1, then 1+x
1−x > 0.
(16) If 0 < x and x < 1, then x2 < 1.
1
(17) If 0 < x and x < 1, then √1−x 2
> 1.
2·x
(18) If 0 < x and x < 1, then 1−x2
> 0.
(19) If 0 < x and x < 1, then 0 < (1 − x2 )2 .
1+x2
(20) If 0 < x and x < 1, then 1−x 2 > 1.
(21) If 1 < x2 , then ( x1 )2 < 1.
(22) If 0 < x and x ≤ 1, then 1 − x2 ≥ 0.
√
(23) If 1 ≤ x, then 0 < x + x2 − 1.
p √
(24) If 1 ≤ x and 1 ≤ y, then 0 ≤ x · y 2 − 1 + y · x2 − 1.
p
(25) If 1 ≤ x and 1 ≤ y and |y| ≤ |x|, then 0 < y − y 2 − 1.
√ p
(26) If 1 ≤ x and 1 ≤ y and |y| ≤ |x|, then 0 ≤ y · x2 − 1 − x · y 2 − 1.
(27) If x2 < 1 and y 2 < 1, then x · y 6= −1.
(28) If x2 < 1 and y 2 < 1, then x · y 6= 1.
(29) If x 6= 0, then exp x 6= 1.
(30) If 0 6= x, then (exp x)2 − 1 6= 0.
2 −1
(31) If 0 < t, then tt2 +1 < 1.
t+1
(32) If −1 < t and t < 1, then 0 < 1−t .
2. Formulas and Identities of Inverse Hyperbolic Functions
Let x be a real number. The functor sinh′ x yields a real number and is
defined by:
√
(Def. 1) sinh′ x = loge (x + x2 + 1).
Let x be a real number. The functor cosh′1 x yielding a real number is defined
by:
formulas and identities of inverse . . . 385
√
(Def. 2) cosh′1 x = loge (x + x2 − 1).
Let x be a real number. The functor cosh′2 x yields a real number and is
defined by:
√
(Def. 3) cosh′2 x = −loge (x + x2 − 1).
Let x be a real number. The functor tanh′ x yields a real number and is
defined by:
(Def. 4) tanh′ x = 21 · loge ( 1−x
1+x
).
Let x be a real number. The functor coth′ x yielding a real number is defined
as follows:
(Def. 5) coth′ x = 21 · loge ( x−1
x+1
).
Let x be a real number. The functor sech′1 x yields a real number and is
defined by:
√
2
(Def. 6) sech′1 x = loge ( 1+ x1−x ).
Let x be a real number. The functor sech′2 x yielding a real number is defined
as follows:
√
2
(Def. 7) sech′2 x = −loge ( 1+ x1−x ).
Let x be a real number. The functor csch′ x yielding a real number is defined
by:
√
1+x2
(Def. 8)(i) csch′ x = loge ( 1+ ) if 0 < x,
√ x
1− 1+x2
(ii) csch′ x = loge ( x ) if x < 0,
(iii) x < 0, otherwise.
The following propositions are true:
√
(33) If 0 ≤ x, then sinh′ x = cosh′1 x2 + 1.
√
(34) If x < 0, then sinh′ x = cosh′2 x2 + 1.
(35) sinh′ x = tanh′ ( √xx2 +1 ).
√
(36) If x ≥ 1, then cosh′1 x = sinh′ x2 − 1.
√
x2 −1
(37) If x > 1, then cosh′1 x = tanh′ ( x ).
q
x+1
(38) If x ≥ 1, then cosh′1 x = 2 · cosh′1 2 .
q
(39) If x ≥ 1, then cosh′2 x = 2 · cosh′2 x+1
2 .
q
(40) If x ≥ 1, then cosh′1 x = 2 · sinh′ x−1
2 .
x
(41) If x2 < 1, then tanh′ x = sinh′ ( √1−x 2
).
1
(42) If 0 < x and x < 1, then tanh′ x = cosh′1 ( √1−x 2
).
1 2·x
(43) If x2 < 1, then tanh′ x = 2 · sinh′ ( 1−x 2 ).
1 ′ 1+x2
(44) If x > 0 and x < 1, then tanh′ x = 2 · cosh1 ( 1−x2 ).
1 2·x
(45) If x2 < 1, then tanh′ x = 2 · tanh′ ( 1+x 2 ).
386 fuguo ge and xiquan liang and yuzhong ding
(46) If x2 > 1, then coth′ x = tanh′ ( x1 ).
(47) If x > 0 and x ≤ 1, then sech′1 x = cosh′1 ( x1 ).
(48) If x > 0 and x ≤ 1, then sech′2 x = cosh′2 ( x1 ).
(49) If x > 0, then csch′ x = sinh′ ( x1 ).
√ p p
(50) If√x·y+ x2 + 1· y 2 + 1 ≥ 0, then sinh′ x+sinh′ y = sinh′ (x· 1 + y 2 +
y · 1 + x2 ).
p √
(51) sinh′ x − sinh′ y = sinh′ (x · 1 + y 2 − y · 1 + x2 ).
(52) pIf 1 ≤ x and 1 ≤ y, then cosh′1 x + cosh′1 y = cosh′1 (x · y +
(x2 − 1) · (y 2 − 1)).
(53) pIf 1 ≤ x and 1 ≤ y, then cosh′2 x + cosh′2 y = cosh′2 (x · y +
(x2 − 1) · (y 2 − 1)).
(54) pIf 1 ≤ x and 1 ≤ y and |y| ≤ |x|, then cosh′1 x − cosh′1 y = cosh′1 (x · y −
(x2 − 1) · (y 2 − 1)).
(55) pIf 1 ≤ x and 1 ≤ y and |y| ≤ |x|, then cosh′2 x − cosh′2 y = cosh′2 (x · y −
(x2 − 1) · (y 2 − 1)).
x+y
(56) If x2 < 1 and y 2 < 1, then tanh′ x + tanh′ y = tanh′ ( 1+x·y ).
x−y
(57) If x2 < 1 and y 2 < 1, then tanh′ x − tanh′ y = tanh′ ( 1−x·y ).
(58) If 0 < x and ( x−1 2 ′ x−1
x+1 ) < 1, then loge x = 2 · tanh ( x+1 ).
2 2
(59) If 0 < x and ( xx2 −1
+1
)2 < 1, then loge x = tanh′ ( xx2 −1
+1
).
x2 +1 +1 2
(60) If 1 < x and 1 ≤ 2·x , then loge x = cosh′1 ( x2·x ).
x2 +1 2+1
(61) If 0 < x and x < 1 and 1 ≤ 2·x , then loge x = cosh′2 ( x2·x ).
′ x2 −1
(62) If 0 < x, then loge x = sinh ( 2·x ).
1
p
(63) If y = 2 · (exp x − exp(−x)), then x = loge (y + y 2 + 1).
(64) If y = 21 · (exp x + exp(−x)) and 1 ≤ y, then x = loge (y +
p
y 2 − 1) or
p
x = −loge (y + y 2 − 1).
exp x−exp(−x) 1 1+y
(65) If y = exp x+exp(−x) , then x = 2 · loge ( 1−y ).
exp x+exp(−x) 1 y+1
(66) If y = exp x−exp(−x) and x 6= 0, then x = 2 · loge ( y−1 ).
√ √
1 1+ 1−y 2 1+ 1−y 2
(67) If y = exp x+exp(−x) , then x = loge ( )
or x = −loge (
y y ).
2
√
1 1+ 1+y 2
(68) If y = exp x−exp(−x) and x =
6 0, then x = loge ( y ) or x =
√ 2
1− 1+y 2
loge ( y ).
(69) (The function cosh)(2 · x) = 1 + 2 · (the function sinh)(x)2 .
(70) (The function cosh)(x)2 = 1 + (the function sinh)(x)2 .
(71) (The function sinh)(x)2 = (the function cosh)(x)2 − 1.
(72) sinh(5 · x) = 5 · sinh x + 20 · (sinh x)3 + 16 · (sinh x)5 .
formulas and identities of inverse . . . 387
(73) cosh(5 · x) = (5 · cosh x − 20 · (cosh x)3 ) + 16 · (cosh x)5 .
References
[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[2] Czeslaw Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
[3] Jaroslaw Kotowicz. Real sequences and basic operations on them. Formalized Mathematics,
1(2):269–272, 1990.
[4] Rafal Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890,
1990.
[5] Takashi Mitsuishi and Yuguang Yang. Properties of the trigonometric function. Formalized
Mathematics, 8(1):103–106, 1999.
[6] Library Committee of the Association of Mizar Users. Binary operations on numbers. To
appear in Formalized Mathematics.
[7] Konrad Raczkowski and Andrzej Nȩdzusiak. Real exponents and logarithms. Formalized
Mathematics, 2(2):213–216, 1991.
[8] Andrzej Trybulec and Czeslaw Byliński. Some properties of real numbers. Formalized
Mathematics, 1(3):445–449, 1990.
[9] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle
ratio. Formalized Mathematics, 7(2):255–263, 1998.
Received May 24, 2005