0% found this document useful (0 votes)
292 views16 pages

05 Electrical Characteristics

The document discusses the electrical characteristics of MOSFETs. It covers threshold voltage, I-V characteristics including cutoff, active, and saturation modes, and the effects of body biasing. The key points are: 1) Threshold voltage depends on oxide capacitance, surface potential, and doping concentration. 2) In the active region above threshold, drain current varies quadratically with gate voltage and linearly with drain-source voltage. 3) Saturation occurs when drain-source voltage equals gate voltage minus threshold. Drain current then becomes independent of drain-source voltage.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
292 views16 pages

05 Electrical Characteristics

The document discusses the electrical characteristics of MOSFETs. It covers threshold voltage, I-V characteristics including cutoff, active, and saturation modes, and the effects of body biasing. The key points are: 1) Threshold voltage depends on oxide capacitance, surface potential, and doping concentration. 2) In the active region above threshold, drain current varies quadratically with gate voltage and linearly with drain-source voltage. 3) Saturation occurs when drain-source voltage equals gate voltage minus threshold. Drain current then becomes independent of drain-source voltage.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 16

Electrical Characteristics of MOSFETs

Dae Hyun Kim

EECS
Washington State University
References
• John P. Uyemura, “Introduction to VLSI Circuits and Systems,” 2002.
– Chapter 6
• Neil H. Weste and David M. Harris, “CMOS VLSI Design: A Circuits
and Systems Perspective,” 2011.
– Chapter 2
Goal
• Understand the electrical characteristics of MOSFETs.
MOS Physics – Threshold Voltage (nFET)
• Oxide capacitance per unit area (𝐹𝐹/𝑚𝑚2 )
𝜀𝜀
– 𝑐𝑐𝑜𝑜𝑜𝑜 = 𝑡𝑡𝑜𝑜𝑜𝑜
𝑜𝑜𝑜𝑜

• Surface charge per unit area (𝐶𝐶/𝑚𝑚2 )


– 𝑄𝑄𝑆𝑆 = −𝑐𝑐𝑜𝑜𝑜𝑜 𝑉𝑉𝐺𝐺
• 𝑉𝑉𝐺𝐺 = 𝑉𝑉𝑜𝑜𝑜𝑜 + 𝜙𝜙𝑆𝑆
– 𝜙𝜙𝑆𝑆 : surface potential

𝑉𝑉𝐺𝐺 𝑉𝑉𝐺𝐺 > 0 Voltage

M O S
electric field
G 𝜙𝜙𝑆𝑆 G 𝑉𝑉𝐺𝐺
+ 𝑉𝑉
𝑡𝑡𝑜𝑜𝑜𝑜 − 𝑜𝑜𝑜𝑜 𝑉𝑉𝑜𝑜𝑜𝑜
n+ n+ n+ n+

p-sub p-sub 𝜙𝜙𝑆𝑆

Distance
surface charge
MOS Physics – Threshold Voltage (nFET)
• Force on a charged particle
– 𝐹𝐹 = 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐸𝐸
• 𝐹𝐹𝑒𝑒 = −𝑞𝑞𝑞𝑞 (for electrons)
• 𝐹𝐹ℎ = +𝑞𝑞𝑞𝑞 (for holes)
• Bulk charge density (negative charge on the surface)
– 𝑄𝑄𝐵𝐵 = − 2𝑞𝑞𝜀𝜀𝑠𝑠𝑠𝑠 𝑁𝑁𝑎𝑎 𝜙𝜙𝑠𝑠
– 𝑄𝑄𝐵𝐵 = −𝑐𝑐𝑜𝑜𝑜𝑜 𝑉𝑉𝑜𝑜𝑜𝑜
1
• 𝑉𝑉𝑜𝑜𝑜𝑜 = 2𝑞𝑞𝜀𝜀𝑠𝑠𝑠𝑠 𝑁𝑁𝑎𝑎 𝜙𝜙𝑠𝑠
𝑐𝑐𝑜𝑜𝑜𝑜
𝑉𝑉𝐺𝐺 > 0
• Depletion region (depleted of free electrons and holes)
– Holes: forced away electric field
𝜙𝜙𝑆𝑆 G
– Electrons: absorbed by the dopant atoms.
+ 𝑉𝑉
− 𝑜𝑜𝑜𝑜
n+ n+

depletion region p-sub

surface charge
MOS Physics – Threshold Voltage (nFET)
• 𝑉𝑉𝐺𝐺 < 𝑉𝑉𝑇𝑇𝑇𝑇
𝑉𝑉𝐺𝐺 > 𝑉𝑉𝑇𝑇𝑇𝑇
– 𝑄𝑄𝑆𝑆 = 𝑄𝑄𝐵𝐵
• 𝑉𝑉𝐺𝐺 > 𝑉𝑉𝑇𝑇𝑇𝑇 electron layer 𝑄𝑄𝑒𝑒
– 𝑄𝑄𝑆𝑆 = 𝑄𝑄𝐵𝐵 + 𝑄𝑄𝑒𝑒 < 0 G
– The additional electrons are movable.
• 𝑄𝑄𝑒𝑒 = −𝑐𝑐𝑜𝑜𝑜𝑜 (𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇 ) n+ n+

• Surface potential p-sub


– 𝜙𝜙𝑆𝑆 = 2|𝜙𝜙𝐹𝐹 |
bulk charge
• |𝜙𝜙𝐹𝐹 |: bulk Fermi potential
𝑘𝑘𝑘𝑘 𝑁𝑁𝑎𝑎
• 𝜙𝜙𝐹𝐹 = ln
𝑞𝑞 𝑛𝑛𝑖𝑖

• Threshold voltage for an ideal MOS structure


1
– 𝑉𝑉𝑇𝑇𝑇𝑇 = 𝑉𝑉𝑜𝑜𝑜𝑜 |𝜙𝜙𝑆𝑆 =2|𝜙𝜙𝐹𝐹 | + 2 𝜙𝜙𝐹𝐹 = 2𝑞𝑞𝜀𝜀𝑠𝑠𝑠𝑠 𝑁𝑁𝑎𝑎 (2 𝜙𝜙𝐹𝐹 ) + 2 𝜙𝜙𝐹𝐹
𝑐𝑐𝑜𝑜𝑜𝑜
• A general expression
1 𝑞𝑞𝐷𝐷𝐼𝐼
– 𝑉𝑉𝑇𝑇𝑇𝑇 = 2𝑞𝑞𝜀𝜀𝑠𝑠𝑠𝑠 𝑁𝑁𝑎𝑎 (2 𝜙𝜙𝐹𝐹 ) + 2 𝜙𝜙𝐹𝐹 + 𝑉𝑉𝐹𝐹𝐹𝐹 +
𝑐𝑐𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑜𝑜
• 𝑉𝑉𝐹𝐹𝐹𝐹 : flatband voltage
• 𝐷𝐷𝐼𝐼 : implant dose
MOS Physics – I-V Characteristics (nFET)
• Cutoff
– 𝑉𝑉𝐺𝐺𝐺𝐺 < 𝑉𝑉𝑇𝑇𝑇𝑇
𝑉𝑉𝐷𝐷
– 𝐼𝐼𝐷𝐷 = 0 +

– Open switch 𝑉𝑉𝐺𝐺 𝑉𝑉𝐷𝐷𝐷𝐷 𝐼𝐼𝐷𝐷


+

𝑉𝑉𝐺𝐺𝐺𝐺 𝑉𝑉𝑆𝑆

• Active
– 𝑉𝑉𝐺𝐺𝐺𝐺 > 𝑉𝑉𝑇𝑇𝑇𝑇
– If 𝑉𝑉𝐷𝐷𝐷𝐷 = 𝑉𝑉𝐷𝐷𝐷𝐷
1 𝑊𝑊 1 𝑊𝑊 1
• 𝐼𝐼𝐷𝐷 = 𝜇𝜇𝑛𝑛 𝑐𝑐𝑜𝑜𝑜𝑜 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇 2
= 𝑘𝑘𝑛𝑛 ′ 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇 2
= 𝛽𝛽𝑛𝑛 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇 2
2 𝐿𝐿 2 𝐿𝐿 2

𝐼𝐼𝐷𝐷
cutoff active

𝑉𝑉𝐺𝐺𝐺𝐺
0
𝑉𝑉𝑇𝑇𝑇𝑇
MOS Physics – I-V Characteristics (nFET)
• Active
– 𝑉𝑉𝐺𝐺𝐺𝐺 > 𝑉𝑉𝑇𝑇𝑇𝑇
– If 𝑉𝑉𝐷𝐷𝐷𝐷 varies
𝑊𝑊 1 1
• 𝐼𝐼𝐷𝐷 = 𝜇𝜇𝑛𝑛 𝑐𝑐𝑜𝑜𝑜𝑜 { 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇 𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝐷𝐷𝑆𝑆 2 } = 𝛽𝛽𝑛𝑛 { 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇 𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝐷𝐷𝐷𝐷 2 }
𝐿𝐿 2 2
𝜕𝜕𝐼𝐼𝐷𝐷
• The saturation occurs when = 0.
𝜕𝜕𝑉𝑉𝐷𝐷𝑆𝑆
– 𝑉𝑉𝐷𝐷𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇 (saturation voltage)
– If 𝑉𝑉𝐷𝐷𝐷𝐷 ≥ 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇
• Saturation
1 2
• 𝐼𝐼𝐷𝐷 = 𝛽𝛽𝑛𝑛 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇
2
1 𝐼𝐼𝐷𝐷
• 𝐼𝐼𝐷𝐷 = 𝛽𝛽 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇 2 [1 + λ(𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 )]
2 𝑛𝑛
– λ: Channel-length modulation parameter non-saturation saturation

𝑉𝑉𝐷𝐷𝐷𝐷
0
𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠
MOS Physics – I-V Characteristics (nFET)
• Body-bias effects
– occurs when 𝑉𝑉𝑆𝑆𝑆𝑆 > 0.
• 𝑉𝑉𝐵𝐵 : bulk potential
𝑉𝑉𝐷𝐷
– 𝑉𝑉𝑇𝑇𝑇𝑇 = 𝑉𝑉𝑇𝑇𝑇𝑇𝑇 + 𝛾𝛾( 2 𝜙𝜙𝐹𝐹 + 𝑉𝑉𝑆𝑆𝑆𝑆 − 2 𝜙𝜙𝐹𝐹 )
• 𝛾𝛾: Body-bias coefficient 𝑉𝑉𝐺𝐺
2𝑞𝑞𝜀𝜀𝑠𝑠𝑠𝑠 𝑁𝑁𝑎𝑎
– 𝛾𝛾 = 𝑉𝑉𝑆𝑆 +
𝑐𝑐𝑜𝑜𝑜𝑜 𝑉𝑉𝑆𝑆𝑆𝑆 − 𝑉𝑉𝐵𝐵
• 2 𝜙𝜙𝐹𝐹 : Bulk Fermi potential

• Example (NAND3)

𝑉𝑉𝑆𝑆𝑆 > 0 ⟹ 𝑉𝑉𝑆𝑆𝐵𝐵𝐵 > 0 ⟹ 𝑉𝑉𝑇𝑇𝑇𝑇 > 𝑉𝑉𝑇𝑇0𝑛𝑛

𝑉𝑉𝑆𝑆𝑆 > 0 ⟹ 𝑉𝑉𝑆𝑆𝐵𝐵𝐵 > 0 ⟹ 𝑉𝑉𝑇𝑇𝑇𝑇 > 𝑉𝑉𝑇𝑇0𝑛𝑛

𝑉𝑉𝑆𝑆𝑆 = 0 ⟹ 𝑉𝑉𝑆𝑆𝐵𝐵𝐵 = 0 ⟹ 𝑉𝑉𝑇𝑇𝑇𝑇 = 𝑉𝑉𝑇𝑇0𝑛𝑛


MOS Physics – I-V Characteristics (nFET)
• Derivation 𝑉𝑉𝐺𝐺
𝑑𝑑𝑑𝑑
– 𝐸𝐸 𝑦𝑦 = − channel
𝑑𝑑𝑑𝑑
• Boundary conditions G 𝑉𝑉𝐷𝐷
– 𝑉𝑉 0 = 0
– 𝑉𝑉 𝐿𝐿 = 𝑉𝑉𝐷𝐷𝐷𝐷
n+ n+
– Charge 𝐸𝐸
• 𝑄𝑄𝑒𝑒 𝑦𝑦 = −𝑐𝑐𝑜𝑜𝑜𝑜 [𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇 − 𝑉𝑉(𝑦𝑦)] p-sub

– 𝑑𝑑𝑑𝑑 = 𝐼𝐼𝐷𝐷 𝑑𝑑𝑑𝑑


1 𝑑𝑑𝑑𝑑 1 𝑑𝑑𝑑𝑑 𝑦𝑦
– 𝑑𝑑𝑑𝑑 = ∙ = ∙ 0 𝐿𝐿
𝜎𝜎𝑛𝑛 𝐴𝐴𝑛𝑛 𝑞𝑞∙𝑢𝑢𝑛𝑛 ∙𝑛𝑛𝑒𝑒 𝑊𝑊∙𝑥𝑥𝑒𝑒
• 𝑥𝑥𝑒𝑒 : channel thickness
𝑉𝑉𝑆𝑆 = 0𝑉𝑉 −
𝑑𝑑𝑑𝑑+ 𝑉𝑉𝐷𝐷
– Channel charge density
• 𝑄𝑄𝑒𝑒 = −𝑞𝑞𝑛𝑛𝑒𝑒 𝑥𝑥𝑒𝑒 𝑊𝑊 𝐼𝐼𝐷𝐷
𝐼𝐼𝐷𝐷 𝑑𝑑𝑑𝑑 𝐼𝐼𝐷𝐷 𝑑𝑑𝑑𝑑 n+ n+
– 𝑑𝑑𝑑𝑑 = − =
𝜇𝜇𝑛𝑛 𝑊𝑊𝑄𝑄𝑒𝑒 𝜇𝜇𝑛𝑛 𝑊𝑊𝑐𝑐𝑜𝑜𝑜𝑜 (𝑉𝑉𝐺𝐺𝐺𝐺 −𝑉𝑉𝑇𝑇𝑇𝑇 −𝑉𝑉)
𝐿𝐿 𝑉𝑉
– 𝐼𝐼𝐷𝐷 ∫0 𝑑𝑑𝑑𝑑 = 𝜇𝜇𝑛𝑛 𝑊𝑊𝑐𝑐𝑜𝑜𝑜𝑜 ∫0 𝐷𝐷𝐷𝐷 [𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇 − 𝑉𝑉]𝑑𝑑𝑉𝑉 𝑑𝑑𝑑𝑑
𝑦𝑦
𝑊𝑊 1 0 𝐿𝐿
– 𝐼𝐼𝐷𝐷 = 𝜇𝜇𝑛𝑛 𝑐𝑐𝑜𝑜𝑜𝑜 [ 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝑇𝑇𝑇𝑇 𝑉𝑉𝐷𝐷𝑆𝑆 − 𝑉𝑉𝐷𝐷𝐷𝐷 2 ]
𝐿𝐿 2
MOS Physics – FET RC Model
• FET RC models provide simplified linear models.
𝑉𝑉𝐺𝐺
𝑉𝑉𝐺𝐺
𝑅𝑅𝑛𝑛
𝑉𝑉𝑆𝑆 𝑉𝑉𝐷𝐷
𝑉𝑉𝑆𝑆 𝑉𝑉𝐷𝐷
𝑊𝑊 𝐶𝐶𝑆𝑆 𝐶𝐶𝐷𝐷
𝐿𝐿 𝑛𝑛

• 𝑅𝑅𝑛𝑛 varies depending on 𝑉𝑉𝐷𝐷𝐷𝐷 .


𝑉𝑉𝐷𝐷𝐷𝐷
– 𝑅𝑅𝑛𝑛 = 𝐼𝐼𝐷𝐷
1
– At a: 𝑅𝑅𝑛𝑛 ≈
𝛽𝛽𝑛𝑛 (𝑉𝑉𝐺𝐺𝐺𝐺 −𝑉𝑉𝑇𝑇𝑇𝑇 )
1
– At b: 𝑅𝑅𝑛𝑛 = 1
𝛽𝛽𝑛𝑛 [ 𝑉𝑉𝐺𝐺𝐺𝐺 −𝑉𝑉𝑇𝑇𝑇𝑇 −2𝑉𝑉𝐷𝐷𝐷𝐷 ] 𝐼𝐼𝐷𝐷
2𝑉𝑉𝐷𝐷𝐷𝐷
– At c: 𝑅𝑅𝑛𝑛 = 𝛽𝛽𝑛𝑛 (𝑉𝑉𝐺𝐺𝑆𝑆 −𝑉𝑉𝑇𝑇𝑇𝑇 )2 b
c
– In general
𝜂𝜂
a
• 𝑅𝑅𝑛𝑛 = (𝜂𝜂 = 1~6). 𝑉𝑉𝐷𝐷𝐷𝐷
𝛽𝛽𝑛𝑛 (𝑉𝑉𝐷𝐷𝐷𝐷 −𝑉𝑉𝑇𝑇𝑇𝑇 )
0
𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠
MOS Physics – FET RC Model
• Capacitance
– MOS capacitance 𝐶𝐶𝐺𝐺𝐺𝐺 G 𝐶𝐶𝐺𝐺𝐺𝐺
• 𝐶𝐶𝐺𝐺 = 𝑐𝑐𝑜𝑜𝑜𝑜 𝐴𝐴𝐺𝐺 (gate capacitance)
1
• 𝐶𝐶𝐺𝐺𝐺𝐺 ≈ 𝐶𝐶𝐺𝐺𝐷𝐷 ≈ 𝐶𝐶𝐺𝐺 S D
2
– Junction (depletion) capacitance
𝑉𝑉𝐺𝐺
𝐶𝐶0
• 𝐶𝐶 = 𝑉𝑉 𝑚𝑚𝑗𝑗
1+ 𝑅𝑅
𝜙𝜙0

– 𝐶𝐶0 = 𝐶𝐶𝑗𝑗 𝐴𝐴𝑝𝑝𝑝𝑝 G


» zero-bias capacitance
n+ n+ 𝑥𝑥𝑗𝑗
» 𝐶𝐶𝑗𝑗 : given
» 𝐴𝐴𝑝𝑝𝑝𝑝 : pn junction area p-sub
– 𝜙𝜙0 : built-in potential
– 𝑚𝑚𝑗𝑗 : grading coefficient
• 𝐶𝐶𝑛𝑛 = 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐶𝐶𝑠𝑠𝑠𝑠 = 𝐶𝐶𝑗𝑗 𝑋𝑋𝑋𝑋 + 𝐶𝐶𝑗𝑗 𝑥𝑥𝑗𝑗 (2𝑊𝑊 + 2𝑋𝑋)
𝐶𝐶𝑗𝑗 𝑋𝑋𝑋𝑋 𝐶𝐶𝑗𝑗 𝑥𝑥𝑗𝑗 (2𝑊𝑊+2𝑋𝑋) S G D 𝑊𝑊
• 𝐶𝐶𝑛𝑛 = 𝑉𝑉 𝑚𝑚𝑗𝑗 + 𝑉𝑉𝑅𝑅 𝑚𝑚𝑗𝑗𝑠𝑠𝑠𝑠
1+ 𝑅𝑅 1+
𝜙𝜙0 𝜙𝜙0𝑠𝑠𝑠𝑠
𝑋𝑋
MOS Physics – FET RC Model
• FET RC model
𝐶𝐶𝐺𝐺𝐺𝐺 G 𝐶𝐶𝐺𝐺𝐺𝐺

S D
𝐶𝐶𝑆𝑆𝑆𝑆 𝐶𝐶𝐷𝐷𝐷𝐷

– 𝐶𝐶𝑆𝑆 = 𝐶𝐶𝐺𝐺𝑆𝑆 + 𝐶𝐶𝑆𝑆𝐵𝐵


– 𝐶𝐶𝐷𝐷 = 𝐶𝐶𝐺𝐺𝐺𝐺 + 𝐶𝐶𝐷𝐷𝐵𝐵
𝑉𝑉𝐺𝐺
𝑉𝑉𝐺𝐺
𝑅𝑅𝑛𝑛
𝑉𝑉𝑆𝑆 𝑉𝑉𝐷𝐷
𝑉𝑉𝑆𝑆 𝑉𝑉𝐷𝐷
𝑊𝑊 𝐶𝐶𝑆𝑆 𝐶𝐶𝐷𝐷
𝐿𝐿 𝑛𝑛
MOS Physics – pFET
• 𝑉𝑉𝑆𝑆𝑆𝑆 < |𝑉𝑉𝑇𝑇𝑇𝑇 |
– 𝑄𝑄ℎ = 0
• 𝑉𝑉𝑆𝑆𝑆𝑆 > |𝑉𝑉𝑇𝑇𝑇𝑇 |
– 𝑄𝑄ℎ > 0
• Threshold voltage
1 𝑞𝑞𝐷𝐷𝐼𝐼
– 𝑉𝑉𝑇𝑇𝑇𝑇 = − 2𝑞𝑞𝜀𝜀𝑠𝑠𝑠𝑠 𝑁𝑁𝑑𝑑 2𝜙𝜙𝐹𝐹𝐹𝐹 − 2𝜙𝜙𝐹𝐹𝐹𝐹 + 𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹 ∓ 𝑐𝑐
𝑐𝑐𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜
𝑘𝑘𝑘𝑘 𝑁𝑁𝑑𝑑
• 2𝜙𝜙𝐹𝐹𝐹𝐹 = 2 ln : surface potential
𝑞𝑞 𝑛𝑛𝑖𝑖
• 𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹 : flatband voltage

𝑉𝑉𝑆𝑆

𝑉𝑉𝐺𝐺 current

𝑉𝑉𝐷𝐷
MOS Physics – pFET
• Cutoff
– 𝑉𝑉𝑆𝑆𝑆𝑆 < |𝑉𝑉𝑇𝑇𝑇𝑇 | 𝑉𝑉𝑆𝑆
+
𝑉𝑉𝑆𝑆𝑆𝑆
– 𝐼𝐼𝐷𝐷 = 0 +
𝑉𝑉𝐺𝐺 −
– Open switch 𝑉𝑉𝑆𝑆𝑆𝑆 𝐼𝐼𝐷𝐷

𝑉𝑉𝐷𝐷
• Active
– 𝑉𝑉𝑆𝑆𝐺𝐺 > |𝑉𝑉𝑇𝑇𝑝𝑝 |
– If 𝑉𝑉𝑆𝑆𝑆𝑆 = 𝑉𝑉𝐷𝐷𝐷𝐷
1 𝑊𝑊 2 1 𝑊𝑊 2 1 2
• 𝐼𝐼𝐷𝐷 = 𝜇𝜇𝑝𝑝 𝑐𝑐𝑜𝑜𝑜𝑜 𝑉𝑉𝑆𝑆𝑆𝑆 − |𝑉𝑉𝑇𝑇𝑇𝑇 | = 𝑘𝑘𝑝𝑝 ′ 𝑉𝑉𝑆𝑆𝑆𝑆 − |𝑉𝑉𝑇𝑇𝑇𝑇 | = 𝛽𝛽𝑝𝑝 𝑉𝑉𝑆𝑆𝑆𝑆 − |𝑉𝑉𝑇𝑇𝑇𝑇 |
2 𝐿𝐿 2 𝐿𝐿 2

𝐼𝐼𝐷𝐷
cutoff active

𝑉𝑉𝑆𝑆𝑆𝑆
0
|𝑉𝑉𝑇𝑇𝑇𝑇 |
MOS Physics – pFET
• Active
– 𝑉𝑉𝑆𝑆𝐺𝐺 > |𝑉𝑉𝑇𝑇𝑝𝑝 |
– If 𝑉𝑉𝑆𝑆𝑆𝑆 varies
𝑊𝑊 1 1
• 𝐼𝐼𝐷𝐷 = 𝜇𝜇𝑝𝑝 𝑐𝑐𝑜𝑜𝑜𝑜 { 𝑉𝑉𝑆𝑆𝑆𝑆 − |𝑉𝑉𝑇𝑇𝑇𝑇 | 𝑉𝑉𝑆𝑆𝑆𝑆 − 𝑉𝑉𝑆𝑆𝑆𝑆 2 } = 𝛽𝛽𝑝𝑝 { 𝑉𝑉𝑆𝑆𝐺𝐺 − |𝑉𝑉𝑇𝑇𝑝𝑝 | 𝑉𝑉𝑆𝑆𝐷𝐷 − 𝑉𝑉𝑆𝑆𝐷𝐷 2 }
𝐿𝐿 2 2
𝜕𝜕𝐼𝐼𝐷𝐷
• The saturation occurs when = 0.
𝜕𝜕𝑉𝑉𝑆𝑆𝑆𝑆
– 𝑉𝑉𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑉𝑉𝑆𝑆𝐺𝐺 − |𝑉𝑉𝑇𝑇𝑇𝑇 | (saturation voltage)
– If 𝑉𝑉𝑆𝑆𝑆𝑆 ≥ 𝑉𝑉𝑆𝑆𝑆𝑆 − |𝑉𝑉𝑇𝑇𝑇𝑇 |
• Saturation
1 2
• 𝐼𝐼𝐷𝐷 = 𝛽𝛽𝑝𝑝 𝑉𝑉𝑆𝑆𝐺𝐺 − |𝑉𝑉𝑇𝑇𝑝𝑝 |
2
𝐼𝐼𝐷𝐷
non-saturation saturation
• pFET resistance
1
– 𝑅𝑅𝑝𝑝 =
𝛽𝛽𝑝𝑝 (𝑉𝑉𝐷𝐷𝐷𝐷 −|𝑉𝑉𝑇𝑇𝑇𝑇 |)
𝑉𝑉𝑆𝑆𝑆𝑆
0
𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠

You might also like