Skip to content

Releases: modelscope/ms-swift

v2.2.1

08 Jul 07:08

Choose a tag to compare

English Version

New Features

  1. Multimodal: Supported a large number of multimodal datasets and restructured the multimodal architecture. Some models now support grounding tasks.
  2. Web-ui: Added support for RLHF, evaluation, and quantization.
  3. Evaluation Functionality: Refactored the evaluation functionality, now using OpenCompass internally, supporting over 50 evaluation datasets.
  4. Deployment Functionality: VLLM infer_backend now supports multimodal models.
  5. Agent Training: Refactored the construction, training, and deployment of agent datasets, making the agent pipeline more complete.
  6. Human Alignment: Added alignment algorithms such as KTO and CPO, and refactored the human alignment code.

New Models

  1. openbuddy-llama3-70b
  2. Deepseek-coder-v2
  3. llava1.5, llava1.6, llava-next-video
  4. gemma2
  5. Florence
  6. phi3-4k
  7. internlm2.5, xcomposer2.5
  8. internvl2
  9. codegeex4
  10. mistral-7b-instruct-v0.3

New Datasets

  1. Over 30 foundational multimodal datasets, including GQA, RefCOCO, and Llava-pretrain.
  2. Swift-mix general mixed dataset.
  3. Video-chatgpt video dataset.

中文版本

新功能

  1. 多模态:支持了非常多的多模态数据集,并重构了多模态架构,部分模型开始支持grounding任务
  2. Web-ui:支持了RLHF、评测和量化
  3. 评测功能:进行了重构,内部使用了OpenCompass,支持50+评测集
  4. 部署功能:VLLM infer_backend支持多模态模型
  5. Agent训练:重构了Agent数据集构造、训练、部署,Agent链路更加完整
  6. 人类对齐:增加了KTO、CPO等对齐算法,并重构了人类对齐的代码

新模型

  1. openbuddy-llama3-70b
  2. Deepseek-coder-v2
  3. llava1.5, llava1.6, llava-next-video
  4. gemma2
  5. Florence
  6. phi3-4k
  7. internlm2.5, xcomposer2.5
  8. internvl2
  9. codegeex4
  10. mistral-7b-instruct-v0.3

新数据集

  1. GQA、RefCOCO、Llava-pretrain等30+多模态基础数据集
  2. swift-mix通用混合数据集
  3. video-chatgpt视频数据集

What's Changed

New Contributors

Full Changelog: v2.1.1...v2.2.1

v2.1.0

12 Jun 05:45

Choose a tag to compare

中文

新功能

  • 支持了SimPO对齐算法,请查看文档
  • 支持多模态部署能力
  • web-ui支持量化和评测功能,并支持多模态界面推理和部署

新模型

  • ChatGLM4和ChatGLMv
  • Qwen2系列
  • llava1.5/1.6系列模型
  • mini-internvl系列模型
  • paligemma系列模型
  • Yuan2模型

Bug修复

请查看下方的详细提交记录

English

New Features

  • Add SimPO alignment algorithm. Please refer to the documentation.
  • Support for multimodal deployment capabilities.
  • Web UI now supports quantization and evaluation command, as well as multimodal inference and deployment.

New Models

  • ChatGLM4 and ChatGLMv
  • Qwen2 series
  • llava1.5/1.6 series models
  • mini-internvl series models
  • paligemma series models
  • Yuan2 model

Bug fixing

Please check the update logs for details

What's Changed

New Contributors

Full Changelog: v2.0.5...v2.1.0

v2.0.5.post1

28 May 07:18

Choose a tag to compare

Merge branch 'main' into release/2.0

v2.0.5

22 May 10:59

Choose a tag to compare

Merge branch 'main' into release/2.0

v2.0.4

01 May 05:20

Choose a tag to compare

Merge branch 'main' into release/2.0

v2.0.3

23 Apr 17:00

Choose a tag to compare

bump version

v2.0.0

15 Apr 09:19

Choose a tag to compare

New Features

  1. Support for peft 0.10.x version, with the default value of the tuner_backend parameter changed to peft. The interface of peft has been dynamically patched to support parameters like lora_dtype.
  2. Support for vllm+lora inference.
  3. Refactored and updated the README file.
  4. Added English versions of the documentation. Currently, all documents have both English and Chinese versions.
  5. Support for training 70B models using FSDP+QLoRA on dual 24GB GPUs. Script available at: https://github.com/modelscope/swift/blob/main/examples/pytorch/llm/scripts/llama2_70b_chat/qlora_fsdp/sft.sh
  6. Support for training agents and using the ModelScopeAgent framework. Documentation available at: https://github.com/modelscope/swift/blob/main/docs/source/LLM/Agent%E5%BE%AE%E8%B0%83%E6%9C%80%E4%BD%B3%E5%AE%9E%E8%B7%B5.md
  7. Support for model evaluation and benchmark. Documentation available at: https://github.com/modelscope/swift/blob/main/docs/source/LLM/LLM%E8%AF%84%E6%B5%8B%E6%96%87%E6%A1%A3.md
  8. Support for multi-task experiment management. Documentation available at: https://github.com/modelscope/swift/blob/main/docs/source/LLM/LLM%E5%AE%9E%E9%AA%8C%E6%96%87%E6%A1%A3.md
  9. Support for GaLore training.
  10. Support for training and inference of AQLM and AWQ quantized models.

New Models

New Datasets

What's Changed

New Contributors

Read more

v1.7.0

09 Mar 07:54

Choose a tag to compare

New Features:

  1. Added support for swift export, enabling awq-int4 quantization and gpt-int2,3,4,8 quantization. Models can be pushed to the Modelscope Hub. You can view the documentation here.
  2. Enabled fine-tuning of awq quantized models.
  3. Enabled fine-tuning of aqlm quantized models.
  4. Added support for deploying LLM with infer_backend='pt'.
  5. Added web-ui with task management and visualization of training loss, eval loss, etc. Inference is accelerated using VLLM.

New Tuners:

  1. Lora+.
  2. LlamaPro.

New Models:

  1. qwen1.5 awq series.
  2. gemma series.
  3. yi-9b.
  4. deepseek-math series.
  5. internlm2-1_8b series.
  6. openbuddy-mixtral-moe-7b-chat.
  7. llama2 aqlm series.

New Datasets:

  1. ms-bench-mini.
  2. hh-rlhf-cn series.
  3. disc-law-sft-zh, disc-med-sft-zh.
  4. pileval.

What's Changed

Full Changelog: v1.6.0...v1.7.0

v1.6.1

21 Feb 08:09

Choose a tag to compare

New Models:

  1. deepseek-math series

New Datasets:

  1. sharegpt-gpt4-mini
  2. disc-law-sft-zh
  3. disc-med-sft-zh

Bug Fix

  1. Fix vllm==0.3 & swift deploy bug.
  2. Fix zero3 & swift lora bug.

Full Changelog: v1.6.0...v1.6.1

v1.6.0

07 Feb 10:16

Choose a tag to compare

New Features:

  1. Agent Training
  2. AIGC support: controlnet, controlnet_sdxl, dreambooth, text_to_image, text_to_image_sdxl
  3. Compatibility with vllm==0.3.*

New Models:

  1. qwen1.5 series
  2. openbmb series

What's Changed

Full Changelog: v1.5.4...v1.6.0