default search action
Machine Learning, Volume 112
Volume 112, Number 1, January 2023
- Anton Björklund, Jarmo Mäkelä, Kai Puolamäki:
SLISEMAP: supervised dimensionality reduction through local explanations. 1-43 - Fatoumata Dama, Christine Sinoquet:
Partially Hidden Markov Chain Multivariate Linear Autoregressive model: inference and forecasting - application to machine health prognostics. 45-97 - Yasunori Akagi, Naoki Marumo, Hideaki Kim, Takeshi Kurashima, Hiroyuki Toda:
MAP inference algorithms without approximation for collective graphical models on path graphs via discrete difference of convex algorithm. 99-129 - Niklas Åkerblom, Fazeleh Sadat Hoseini, Morteza Haghir Chehreghani:
Online learning of network bottlenecks via minimax paths. 131-150 - Eugène Ndiaye, Ichiro Takeuchi:
Root-finding approaches for computing conformal prediction set. 151-176 - Juan Alvarado, Yuyi Wang, Jan Ramon:
Limits of multi-relational graphs. 177-216 - Viktor Bengs, Eyke Hüllermeier:
Multi-armed bandits with censored consumption of resources. 217-240 - Shota Saito, Mark Herbster:
Generalizing p-Laplacian: spectral hypergraph theory and a partitioning algorithm. 241-280 - Ling Luo, Bin Li, Xuhui Fan, Yang Wang, Irena Koprinska, Fang Chen:
Dynamic customer segmentation via hierarchical fragmentation-coagulation processes. 281-310 - Kunsheng Tang, Ping Li, Yide Song, Tian Luo:
Reconciling privacy and utility: an unscented Kalman filter-based framework for differentially private machine learning. 311-351 - Liang Mi, Azadeh Sheikholeslami, José Bento:
A family of pairwise multi-marginal optimal transports that define a generalized metric. 353-384
Volume 112, Number 2, February 2023
- Elena Battaglia, Ruggero G. Pensa:
A parameter-less algorithm for tensor co-clustering. 385-427 - Ariyan Bighashdel, Pavol Jancura, Gijs Dubbelman:
Correction to: Model-free inverse reinforcement learning with multi-intention, unlabeled, and overlapping demonstrations. 429-430 - Anmol Kagrecha, Jayakrishnan Nair, Krishna Jagannathan:
Constrained regret minimization for multi-criterion multi-armed bandits. 431-458 - Sofia Fernandes, Hadi Fanaee-T, João Gama, Leo Tisljaric, Tomislav Smuc:
WINTENDED: WINdowed TENsor decomposition for Densification Event Detection in time-evolving networks. 459-481 - Emanuele Pesce, Giovanni Montana:
Learning multi-agent coordination through connectivity-driven communication. 483-514 - Daniel Cunnington, Mark Law, Jorge Lobo, Alessandra Russo:
FFNSL: Feed-Forward Neural-Symbolic Learner. 515-569 - Phuong Huynh Van Quoc, Johannes Fürnkranz, Florian Beck:
Efficient learning of large sets of locally optimal classification rules. 571-610 - Bahar Azari, Deniz Erdogmus:
Circular-symmetric correlation layer. 611-631 - Adnan Ahmad, Wei Luo, Antonio Robles-Kelly:
Robust federated learning under statistical heterogeneity via hessian-weighted aggregation. 633-654 - Heinke Hihn, Daniel A. Braun:
Hierarchically structured task-agnostic continual learning. 655-686 - Alexis Cvetkov-Iliev, Alexandre Allauzen, Gaël Varoquaux:
Relational data embeddings for feature enrichment with background information. 687-720 - Pavlin G. Policar, Martin Strazar, Blaz Zupan:
Embedding to reference t-SNE space addresses batch effects in single-cell classification. 721-740
Volume 112, Number 3, March 2023
- Vincent Grari, Sylvain Lamprier, Marcin Detyniecki:
Adversarial learning for counterfactual fairness. 741-763 - Luiz Angelo Steffenel, Vagner Anabor, Damaris Kirsch Pinheiro, Lissette Guzman, Gabriela Dornelles Bittencourt, Hassan Bencherif:
Forecasting upper atmospheric scalars advection using deep learning: an O3 experiment. 765-788 - Tianyi Luo, Yang Liu:
Machine truth serum: a surprisingly popular approach to improving ensemble methods. 789-815 - David M. Bossens, Nicholas Bishop:
Explicit Explore, Exploit, or Escape (E4): near-optimal safety-constrained reinforcement learning in polynomial time. 817-858 - Qisong Yang, Thiago D. Simão, Simon H. Tindemans, Matthijs T. J. Spaan:
Safety-constrained reinforcement learning with a distributional safety critic. 859-887 - Shota Nakajima, Masashi Sugiyama:
Positive-unlabeled classification under class-prior shift: a prior-invariant approach based on density ratio estimation. 889-919 - Daniel Heestermans Svendsen, Daniel Hernández-Lobato, Luca Martino, Valero Laparra, Álvaro Moreno-Martínez, Gustau Camps-Valls:
Inference over radiative transfer models using variational and expectation maximization methods. 921-937 - Preethi Lahoti, P. Krishna Gummadi, Gerhard Weikum:
Responsible model deployment via model-agnostic uncertainty learning. 939-970 - Michael Thomas Smith, Kathrin Grosse, Michael Backes, Mauricio A. Álvarez:
Adversarial vulnerability bounds for Gaussian process classification. 971-1009 - Nan Xia, Hang Yu, Yin Wang, Junyu Xuan, Xiangfeng Luo:
DAFS: a domain aware few shot generative model for event detection. 1011-1031 - Haotao Wang, Tianlong Chen, Zhangyang Wang, Kede Ma:
Troubleshooting image segmentation models with human-in-the-loop. 1033-1051 - Jingzheng Li, Hailong Sun, Jiyi Li:
Beyond confusion matrix: learning from multiple annotators with awareness of instance features. 1053-1075
Volume 112, Number 4, April 2023
- Chunchao Ma, Mauricio A. Álvarez:
Large scale multi-output multi-class classification using Gaussian processes. 1077-1106 - Mahmoud Al Najar, Gregoire Thoumyre, Erwin W. J. Bergsma, Rafael Almar, Rachid Benshila, Dennis G. Wilson:
Satellite derived bathymetry using deep learning. 1107-1130 - Felix Mohr, Marcel Wever:
Naive automated machine learning. 1131-1170 - Mario Luca Bernardi, Marta Cimitile, Fabrizio Maria Maggi:
Data-aware process discovery for malware detection: an empirical study. 1171-1199 - Hadeer M. Sayed, Hesham E. ElDeeb, Shereen A. Taie:
Bimodal variational autoencoder for audiovisual speech recognition. 1201-1226 - Yantao Wei, Shujian Yu, Luis G. Sánchez Giraldo, José C. Príncipe:
Multiscale principle of relevant information for hyperspectral image classification. 1227-1252 - Alexander Tornede, Lukas Gehring, Tanja Tornede, Marcel Wever, Eyke Hüllermeier:
Algorithm selection on a meta level. 1253-1286 - Georgios Makridis, Philip Mavrepis, Dimosthenis Kyriazis:
A deep learning approach using natural language processing and time-series forecasting towards enhanced food safety. 1287-1313 - Babatounde Moctard Oloulade, Jianliang Gao, Jiamin Chen, Raeed Al-Sabri, Tengfei Lyu:
Neural predictor-based automated graph classifier framework. 1315-1335 - Jure Brence, Jovan Tanevski, Jennifer Adams, Edward Malina, Saso Dzeroski:
Surrogate models of radiative transfer codes for atmospheric trace gas retrievals from satellite observations. 1337-1363 - Oghenejokpeme I. Orhobor, Nastasiya F. Grinberg, Larisa N. Soldatova, Ross D. King:
Imbalanced regression using regressor-classifier ensembles. 1365-1387 - Giovanni De Toni, Bruno Lepri, Andrea Passerini:
Synthesizing explainable counterfactual policies for algorithmic recourse with program synthesis. 1389-1409
Volume 112, Number 5, May 2023
- Manuel Schürch, Dario Azzimonti, Alessio Benavoli, Marco Zaffalon:
Correlated product of experts for sparse Gaussian process regression. 1411-1432 - Ziyi Chen, Bhavya Kailkhura, Yi Zhou:
An accelerated proximal algorithm for regularized nonconvex and nonsmooth bi-level optimization. 1433-1463 - Hikaru Shindo, Viktor Pfanschilling, Devendra Singh Dhami, Kristian Kersting:
αILP: thinking visual scenes as differentiable logic programs. 1465-1497 - Chien-Min Yu, Ming-Hsin Chen, Hsuan-Tien Lin:
Learning key steps to attack deep reinforcement learning agents. 1499-1522 - Clément Lejeune, Josiane Mothe, Adil Soubki, Olivier Teste:
Data driven discovery of systems of ordinary differential equations using nonconvex multitask learning. 1523-1549 - Céline Hocquette, Andrew Cropper:
Learning programs with magic values. 1551-1595 - Yanghao Zhang, Wenjie Ruan, Fu Wang, Xiaowei Huang:
Generalizing universal adversarial perturbations for deep neural networks. 1597-1626 - Xuhong Li, Haoyi Xiong, Siyu Huang, Shilei Ji, Dejing Dou:
Cross-model consensus of explanations and beyond for image classification models: an empirical study. 1627-1662 - Lucas G. S. Jeub, Giovanni Colavizza, Xiaowen Dong, Marya Bazzi, Mihai Cucuringu:
Local2Global: a distributed approach for scaling representation learning on graphs. 1663-1692 - Andrew James Turner, Ata Kabán:
PAC-learning with approximate predictors. 1693-1732 - Hugo N. Oliveira, Caio C. V. da Silva, Gabriel L. S. Machado, Keiller Nogueira, Jefersson A. dos Santos:
Fully convolutional open set segmentation. 1733-1784 - Zongyu Yin, Federico Reuben, Susan Stepney, Tom Collins:
Deep learning's shallow gains: a comparative evaluation of algorithms for automatic music generation. 1785-1822
Volume 112, Number 6, June 2023
- Ye Shi, Shao-Yuan Li, Sheng-Jun Huang:
Learning from crowds with sparse and imbalanced annotations. 1823-1845 - Hao Chang, Guochen Xie, Jun Yu, Qiang Ling, Fang Gao, Ye Yu:
A viable framework for semi-supervised learning on realistic dataset. 1847-1869 - Keren Gu, Xander Masotto, Vandana Bachani, Balaji Lakshminarayanan, Jack Nikodem, Dong Yin:
An instance-dependent simulation framework for learning with label noise. 1871-1896 - Bilge Celik, Prabhant Singh, Joaquin Vanschoren:
Online AutoML: an adaptive AutoML framework for online learning. 1897-1921 - Suncheng Xiang, Yuzhuo Fu, Mengyuan Guan, Ting Liu:
Learning from self-discrepancy via multiple co-teaching for cross-domain person re-identification. 1923-1940 - Benjamin Lucas, Charlotte Pelletier, Daniel F. Schmidt, Geoffrey I. Webb, François Petitjean:
A Bayesian-inspired, deep learning-based, semi-supervised domain adaptation technique for land cover mapping. 1941-1973 - Pierre Gloaguen, Laetitia Chapel, Chloé Friguet, Romain Tavenard:
Scalable clustering of segmented trajectories within a continuous time framework: application to maritime traffic data. 1975-2001 - Dorian Cazau, Paul Nguyen Hong Duc, J.-N. Druon, S. Matwins, Ronan Fablet:
Multimodal deep learning for cetacean distribution modeling of fin whales (Balaenoptera physalus) in the western Mediterranean Sea. 2003-2024 - Morteza Haghir Chehreghani:
Shift of pairwise similarities for data clustering. 2025-2051 - Gonzalo Jaimovitch-López, Cèsar Ferri, José Hernández-Orallo, Fernando Martínez-Plumed, María José Ramírez-Quintana:
Can language models automate data wrangling? 2053-2082 - Vítor Cerqueira, Luís Torgo, Paula Branco, Colin Bellinger:
Automated imbalanced classification via layered learning. 2083-2104 - Zhuorong Li, Daiwei Yu, Minghui Wu, Canghong Jin, Hongchuan Yu:
Adversarial supervised contrastive learning. 2105-2130 - Julien Ferry, Ulrich Aïvodji, Sébastien Gambs, Marie-José Huguet, Mohamed Siala:
Improving fairness generalization through a sample-robust optimization method. 2131-2192 - Xuhong Li, Haoyi Xiong, Yi Liu, Dingfu Zhou, Zeyu Chen, Yaqing Wang, Dejing Dou:
Distilling ensemble of explanations for weakly-supervised pre-training of image segmentation models. 2193-2209 - Rodrigo Caye Daudt, Bertrand Le Saux, Alexandre Boulch, Yann Gousseau:
Weakly supervised change detection using guided anisotropic diffusion. 2211-2237
Volume 112, Number 7, July 2023
- Lei Zhou, Yang Liu, Pengcheng Zhang, Xiao Bai, Lin Gu, Jun Zhou, Yazhou Yao, Tatsuya Harada, Jin Zheng, Edwin R. Hancock:
Information bottleneck and selective noise supervision for zero-shot learning. 2239-2261 - Ariyan Bighashdel, Pavol Jancura, Gijs Dubbelman:
Model-free inverse reinforcement learning with multi-intention, unlabeled, and overlapping demonstrations. 2263-2296 - Oliver Struckmeier, Kshitij Tiwari, Ville Kyrki:
Autoencoding slow representations for semi-supervised data-efficient regression. 2297-2315 - Shalev Shaer, Yaniv Romano:
Learning to increase the power of conditional randomization tests. 2317-2357 - Cuong Manh Nguyen, Arun Raja, Le Zhang, Xun Xu, Balagopal Unnikrishnan, Mohamed Ragab, Kangkang Lu, Chuan-Sheng Foo:
Diverse and consistent multi-view networks for semi-supervised regression. 2359-2395 - Lincen Yang, Mitra Baratchi, Matthijs van Leeuwen:
Unsupervised discretization by two-dimensional MDL-based histogram. 2397-2431 - Harshat Kumar, Alec Koppel, Alejandro Ribeiro:
On the sample complexity of actor-critic method for reinforcement learning with function approximation. 2433-2467 - Abhishake Rastogi, Peter Mathé:
Inverse learning in Hilbert scales. 2469-2499 - Mieczyslaw Alojzy Klopotek, Robert Albert Klopotek:
On the Discrepancy between Kleinberg's Clustering Axioms and k-Means Clustering Algorithm Behavior. 2501-2553 - Rakshitha Godahewa, Geoffrey I. Webb, Daniel F. Schmidt, Christoph Bergmeir:
SETAR-Tree: a novel and accurate tree algorithm for global time series forecasting. 2555-2591 - Mattijs Baert, Sam Leroux, Pieter Simoens:
Inverse reinforcement learning through logic constraint inference. 2593-2618 - Leonardo Teixeira, Brian Jalaian, Bruno Ribeiro:
Reducing classifier overconfidence against adversaries through graph algorithms. 2619-2651 - Mohit Rajpal, Yehong Zhang, Bryan Kian Hsiang Low:
Pruning during training by network efficacy modeling. 2653-2684 - Anthony Sicilia, Xingchen Zhao, Seong Jae Hwang:
Domain adversarial neural networks for domain generalization: when it works and how to improve. 2685-2721 - Naimin Jing, Ethan X. Fang, Cheng Yong Tang:
Robust matrix estimations meet Frank-Wolfe algorithm. 2723-2760
Volume 112, Number 8, August 2023
- Maryam Badar, Wolfgang Nejdl, Marco Fisichella:
FAC-fed: Federated adaptation for fairness and concept drift aware stream classification. 2761-2786 - Ransalu Senanayake, Daniel J. Fremont, Mykel J. Kochenderfer, Alessio R. Lomuscio, Dragos D. Margineantu, Cheng Soon Ong:
Guest Editorial: Special issue on robust machine learning. 2787-2789 - Vyacheslav Kungurtsev, Adam D. Cobb, Tara Javidi, Brian Jalaian:
Decentralized Bayesian learning with Metropolis-adjusted Hamiltonian Monte Carlo. 2791-2819 - Taisuke Sato, Katsumi Inoue:
Differentiable learning of matricized DNFs and its application to Boolean networks. 2821-2843 - Dai Hai Nguyen, Tetsuya Sakurai:
Mirror variational transport: a particle-based algorithm for distributional optimization on constrained domains. 2845-2869 - Lei Tan, Shutong Wu, Wenxing Zhou, Xiaolin Huang:
Weighted neural tangent kernel: a generalized and improved network-induced kernel. 2871-2901 - Sydney M. Katz, Kyle D. Julian, Christopher A. Strong, Mykel J. Kochenderfer:
Generating probabilistic safety guarantees for neural network controllers. 2903-2931 - Matthew D. Norton, Johannes O. Royset:
Diametrical Risk Minimization: theory and computations. 2933-2951 - Hossein Askari, Yasir Latif, Hongfu Sun:
MapFlow: latent transition via normalizing flow for unsupervised domain adaptation. 2953-2974 - Shuisheng Zhou, Wendi Zhou:
Unified SVM algorithm based on LS-DC loss. 2975-3002 - Mohammad Azizmalayeri, Mohammad Hossein Rohban:
Lagrangian objective function leads to improved unforeseen attack generalization. 3003-3031 - Marco Loog, Jesse H. Krijthe, Manuele Bicego:
Also for k-means: more data does not imply better performance. 3033-3050
Volume 112, Number 9, September 2023
- Shuyi Yang, Mattia Cerrato, Dino Ienco, Ruggero G. Pensa, Roberto Esposito:
FairSwiRL: fair semi-supervised classification with representation learning. 3051-3076 - Bin Gu, Chenkang Zhang, Zhouyuan Huo, Heng Huang:
A new large-scale learning algorithm for generalized additive models. 3077-3104 - Matías Vera, Leonardo Rey Vega, Pablo Piantanida:
The role of mutual information in variational classifiers. 3105-3150 - David Schnörr, Christoph Schnörr:
Learning system parameters from turing patterns. 3151-3190 - Enes Altinisik, Safa Messaoud, Husrev Taha Sencar, Sanjay Chawla:
A3T: accuracy aware adversarial training. 3191-3210 - Telmo de Menezes e Silva Filho, Hao Song, Miquel Perelló-Nieto, Raúl Santos-Rodríguez, Meelis Kull, Peter A. Flach:
Classifier calibration: a survey on how to assess and improve predicted class probabilities. 3211-3260 - Eleonora Giunchiglia, Mihaela Catalina Stoian, Salman Khan, Fabio Cuzzolin, Thomas Lukasiewicz:
ROAD-R: the autonomous driving dataset with logical requirements. 3261-3291 - Alessandro Daniele, Emile van Krieken, Luciano Serafini, Frank van Harmelen:
Refining neural network predictions using background knowledge. 3293-3331 - Sarah Tan, Giles Hooker, Paul Koch, Albert Gordo, Rich Caruana:
Considerations when learning additive explanations for black-box models. 3333-3359 - Chunming Zhang, Lixing Zhu, Yanbo Shen:
Robust estimation in regression and classification methods for large dimensional data. 3361-3411 - Fernando E. Casado, Dylan Lema, Roberto Iglesias, Carlos Vázquez Regueiro, Senén Barro:
Ensemble and continual federated learning for classification tasks. 3413-3453 - Alexander Brenning:
Interpreting machine-learning models in transformed feature space with an application to remote-sensing classification. 3455-3471 - Jingzheng Li, Hailong Sun:
NaCL: noise-robust cross-domain contrastive learning for unsupervised domain adaptation. 3473-3496 - Adam White, Kwun Ho Ngan, James Phelan, Kevin Ryan, Saman Sadeghi Afgeh, Constantino Carlos Reyes-Aldasoro, Artur S. d'Avila Garcez:
Contrastive counterfactual visual explanations with overdetermination. 3497-3525 - Yian Deng, Tingting Mu:
Faster Riemannian Newton-type optimization by subsampling and cubic regularization. 3527-3589
Volume 112, Number 10, October 2023
- Lun Ai, Johannes Langer, Stephen H. Muggleton, Ute Schmid:
Explanatory machine learning for sequential human teaching. 3591-3632 - Taslim Murad, Sarwan Ali, Imdadullah Khan, Murray Patterson:
Spike2CGR: an efficient method for spike sequence classification using chaos game representation. 3633-3658 - Mihailo Obrenovic, Thomas Andrew Lampert, Milos R. Ivanovic, Pierre Gançarski:
Learning domain invariant representations of heterogeneous image data. 3659-3684 - Christopher A. Strong, Haoze Wu, Aleksandar Zeljic, Kyle D. Julian, Guy Katz, Clark W. Barrett, Mykel J. Kochenderfer:
Global optimization of objective functions represented by ReLU networks. 3685-3712 - Felix Berkenkamp, Andreas Krause, Angela P. Schoellig:
Bayesian optimization with safety constraints: safe and automatic parameter tuning in robotics. 3713-3747 - Cédric Beaulac:
A moment-matching metric for latent variable generative models. 3749-3772 - Jiyuan Tu, Weidong Liu, Xiaojun Mao:
Byzantine-robust distributed sparse learning for M-estimation. 3773-3804 - Daniel J. Fremont, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-Vincentelli, Sanjit A. Seshia:
Scenic: a language for scenario specification and data generation. 3805-3849 - Xiaowei Zhou, Ivor W. Tsang, Jie Yin:
LADDER: Latent boundary-guided adversarial training. 3851-3879 - Yun Bai, Ganglin Tian, Yanfei Kang, Suling Jia:
A hybrid ensemble method with negative correlation learning for regression. 3881-3916 - Rolf Morel, Andrew Cropper:
Learning logic programs by explaining their failures. 3917-3943 - Dimitris Bertsimas, Colin Pawlowski:
Tensor completion with noisy side information. 3945-3976 - Igor Buzhinsky, Arseny Nerinovsky, Stavros Tripakis:
Metrics and methods for robustness evaluation of neural networks with generative models. 3977-4012 - Lukasz Korycki, Bartosz Krawczyk:
Adversarial concept drift detection under poisoning attacks for robust data stream mining. 4013-4048 - Manuel Garcia-Piqueras, José Hernández-Orallo:
Heuristic search of optimal machine teaching curricula. 4049-4080
Volume 112, Number 11, November 2023
- Nikolaos Virtsionis Gkalinikis, Christoforos Nalmpantis, Dimitris Vrakas:
SAED: self-attentive energy disaggregation. 4081-4100 - Ioannis Mavroudopoulos, Anastasios Gounaris:
A comparison of proximity-based methods for detecting temporal anomalies in business processes. 4101-4128 - Eneldo Loza Mencía, Moritz Kulessa, Simon Bohlender, Johannes Fürnkranz:
Tree-based dynamic classifier chains. 4129-4165 - Johannes Schneider, Michalis Vlachos:
Explaining classifiers by constructing familiar concepts. 4167-4200 - Eric V. Strobl:
Causal discovery with a mixture of DAGs. 4201-4225 - Nuttapong Chairatanakul, Xin Liu, Nguyen Thai Hoang, Tsuyoshi Murata:
Heterogeneous graph embedding with single-level aggregation and infomax encoding. 4227-4256 - Ioulia Karagiannaki, Krystallia Gourlia, Vincenzo Lagani, Yannis Pantazis, Ioannis Tsamardinos:
Learning biologically-interpretable latent representations for gene expression data. 4257-4287 - Orestis Lampridis, Laura State, Riccardo Guidotti, Salvatore Ruggieri:
Explaining short text classification with diverse synthetic exemplars and counter-exemplars. 4289-4322 - Fabrizio Angiulli, Fabio Fassetti, Luca Ferragina:
${{\mathrm {Latent}}Out}$: an unsupervised deep anomaly detection approach exploiting latent space distribution. 4323-4349 - Vítor Cerqueira, Heitor Murilo Gomes, Albert Bifet, Luís Torgo:
STUDD: a student-teacher method for unsupervised concept drift detection. 4351-4378 - Matej Petkovic, Saso Dzeroski, Dragi Kocev:
Feature ranking for semi-supervised learning. 4379-4408 - Vítor Cerqueira, Luís Torgo, Carlos Soares:
Early anomaly detection in time series: a hierarchical approach for predicting critical health episodes. 4409-4430 - Joachim Bona-Pellissier, François Bachoc, François Malgouyres:
Parameter identifiability of a deep feedforward ReLU neural network. 4431-4493 - Andres Felipe Posada-Moreno, Lukas Kreisköther, Tassilo Glander, Sebastian Trimpe:
Scale-preserving automatic concept extraction (SPACE). 4495-4525 - Lingwei Zhu, Takamitsu Matsubara:
Cautious policy programming: exploiting KL regularization for monotonic policy improvement in reinforcement learning. 4527-4562 - Sebastian Meznar, Saso Dzeroski, Ljupco Todorovski:
Efficient generator of mathematical expressions for symbolic regression. 4563-4596 - Massimiliano Luca, Luca Pappalardo, Bruno Lepri, Gianni Barlacchi:
Trajectory test-train overlap in next-location prediction datasets. 4597-4634 - Mike Huisman, Thomas M. Moerland, Aske Plaat, Jan N. van Rijn:
Are LSTMs good few-shot learners? 4635-4662
Volume 112, Number 12, December 2023
- Pierre Nodet, Vincent Lemaire, Alexis Bondu, Antoine Cornuéjols:
Biquality learning: a framework to design algorithms dealing with closed-set distribution shifts. 4663-4692 - Yunan Lu, Weiwei Li, Huaxiong Li, Xiuyi Jia:
Ranking-preserved generative label enhancement. 4693-4721 - Shuo Chen, Chen Gong, Xiang Li, Jian Yang, Gang Niu, Masashi Sugiyama:
Boundary-restricted metric learning. 4723-4762 - Patrick Schäfer, Ulf Leser:
WEASEL 2.0: a random dilated dictionary transform for fast, accurate and memory constrained time series classification. 4763-4788 - Awrad Mohammed Ali, Avelino J. Gonzalez:
Machine learning from casual conversation. 4789-4836 - Qitao Tan, Xiaoying Song, Guanghui Ye, Chuan Wu:
An effective negative sampling approach for contrastive learning of sentence embedding. 4837-4861 - Fabian Fumagalli, Maximilian Muschalik, Eyke Hüllermeier, Barbara Hammer:
Incremental permutation feature importance (iPFI): towards online explanations on data streams. 4863-4903 - Víctor Blanco, Alberto Japón, Justo Puerto:
Multiclass optimal classification trees with SVM-splits. 4905-4928 - Shengli Wu, Jinlong Li, Weimin Ding:
A geometric framework for multiclass ensemble classifiers. 4929-4958 - Baturay Saglam, Suleyman S. Kozat:
Deep intrinsically motivated exploration in continuous control. 4959-4993 - Tino Werner:
Trimming stability selection increases variable selection robustness. 4995-5055 - Atefeh Moradan, Andrew Draganov, Davide Mottin, Ira Assent:
UCoDe: unified community detection with graph convolutional networks. 5057-5080 - Marco Favier, Toon Calders, Sam Pinxteren, Jonathan Meyer:
How to be fair? A study of label and selection bias. 5081-5104 - Feng Zhou, Quyu Kong, Zhijie Deng, Fengxiang He, Peng Cui, Jun Zhu:
Heterogeneous multi-task Gaussian Cox processes. 5105-5134 - Shufei Zhang, Zhuang Qian, Kaizhu Huang, Rui Zhang, Jimin Xiao, Yuan He, Canyi Lu:
Robust generative adversarial network. 5135-5161 - Xiao Ma, Wu-Jun Li:
State-based episodic memory for multi-agent reinforcement learning. 5163-5190 - Sebastian Meznar, Saso Dzeroski, Ljupco Todorovski:
Correction to: efficient generator of mathematical expressions for symbolic regression. 5191
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.