default search action
npj Digital Medicine, Volume 3
Volume 3, 2020
- Michelle Yuen Ting Yip, Gilbert Lim, Zhan Wei Lim, Quang Duc Nguyen, Crystal C. Y. Chong, Marco Yu, Valentina Bellemo, Yuchen Xie, Xin Qi Lee, Haslina Hamzah, Jinyi Ho, Tien-En Tan, Charumathi Sabanayagam, Andrzej Grzybowski, Gavin Siew Wei Tan, Wynne Hsu, Mong-Li Lee, Tien Yin Wong, Daniel S. W. Ting:
Technical and imaging factors influencing performance of deep learning systems for diabetic retinopathy. - Siddharth R. Krishnan, Hany M. Arafa, Kyeongha Kwon, Yujun Deng, Chun-Ju Su, Jonathan T. Reeder, Juliet Freudman, Izabela Stankiewicz, Hsuan-Ming Chen, Robert Loza, Marcus Mims, Mitchell Mims, Kunhyuck Lee, Zachary Abecassis, Aaron Banks, Diana Ostojich, Manish Patel, Heling Wang, Kaan Börekçi, Joshua M. Rosenow, Matthew C. Tate, Yonggang Huang, Tord Alden, Matthew B. Potts, Amit B. Ayer, John A. Rogers:
Continuous, noninvasive wireless monitoring of flow of cerebrospinal fluid through shunts in patients with hydrocephalus. - Imogen S. Stafford, Melina Kellermann, Enrico Mossotto, R. M. Beattie, Ben D. MacArthur, Sarah Ennis:
A systematic review of the applications of artificial intelligence and machine learning in autoimmune diseases. - Adam B. Cohen, Earl Ray Dorsey, Simon C. Mathews, David W. Bates, Kyan Safavi:
A digital health industry cohort across the health continuum. - Pierre Philip, Lucile Dupuy, Marc Auriacombe, Fuschia Serre, Etienne de Sevin, Alain Sauteraud, Jean-Arthur Micoulaud-Franchi:
Trust and acceptance of a virtual psychiatric interview between embodied conversational agents and outpatients. - Yuxing Tang, Youbao Tang, Yifan Peng, Ke Yan, Mohammadhadi Bagheri, Bernadette A. Redd, Catherine J. Brandon, Zhiyong Lu, Mei Han, Jing Xiao, Ronald M. Summers:
Automated abnormality classification of chest radiographs using deep convolutional neural networks. - Wade L. Schulz, Joseph C. Kvedar, Harlan M. Krumholz:
Agile analytics to support rapid knowledge pipelines. - Mark P. Sendak, Michael Gao, Nathan Brajer, Suresh Balu:
Presenting machine learning model information to clinical end users with model facts labels. - Kevin de Haan, Hatice Ceylan Koydemir, Yair Rivenson, Derek Tseng, Elizabeth Van Dyne, Lissette Bakic, Kerim Doruk Karinca, Kyle Liang, Megha Ilango, Esin Gumustekin, Aydogan Ozcan:
Automated screening of sickle cells using a smartphone-based microscope and deep learning. - Anuraag A. Vazirani, Odhran O'Donoghue, David Brindley, Edward Meinert:
Blockchain vehicles for efficient Medical Record management. - Kenneth D. Mandl, Daniel Gottlieb, Joshua C. Mandel, Vladimir Ignatov, Raheel Sayeed, Grahame Grieve, James R. Jones, Alyssa Ellis, Adam Culbertson:
Push Button Population Health: The SMART/HL7 FHIR Bulk Data Access Application Programming Interface. - Michael Kelley Erb, Daniel R. Karlin, Bryan Ho, Kevin Thomas, Federico Parisi, Gloria P. Vergara-Diaz, Jean-Francois Daneault, Paul W. Wacnik, Hao Zhang, Tairmae Kangarloo, Charmaine Demanuele, Chris R. Brooks, Craig N. Detheridge, Nina Shaafi Kabiri, Jaspreet Bhangu, Paolo Bonato:
mHealth and wearable technology should replace motor diaries to track motor fluctuations in Parkinson's disease. - Sarah Lagan, Patrick Aquino, Margaret R. Emerson, Karen L. Fortuna, Robert Walker, John Torous:
Actionable health app evaluation: translating expert frameworks into objective metrics. - Brinnae Bent, Benjamin Goldstein, Warren A. Kibbe, Jessilyn Dunn:
Investigating sources of inaccuracy in wearable optical heart rate sensors. - Liam G. McCoy, Sujay Nagaraj, Felipe Morgado, Vinyas Harish, Sunit Das, Leo Anthony Celi:
What do medical students actually need to know about artificial intelligence? - Katherine E. Lewinter, Sharon M. Hudson, Lynn Kysh, Marielena Lara, Cecily L. Betz, Juan Espinoza:
Reconsidering reviews: the role of scoping reviews in digital medicine and pediatrics. - James A. Shaw, Nayha Sethi, Christine K. Cassel:
Social license for the use of big data in the COVID-19 era. - Katsunori Masaki, Hiroki Tateno, Akihiro Nomura, Tomoyasu Muto, Shin Suzuki, Kohta Satake, Eisuke Hida, Koichi Fukunaga:
A randomized controlled trial of a smoking cessation smartphone application with a carbon monoxide checker. - Jeremy T. Moreau, Todd C. Hankinson, Sylvain Baillet, Roy W. R. Dudley:
Individual-patient prediction of meningioma malignancy and survival using the Surveillance, Epidemiology, and End Results database. - Erping Long, Jingjing Chen, Xiaohang Wu, Zhenzhen Liu, Liming Wang, Jiewei Jiang, Wangting Li, Yi Zhu, Chuan Chen, Zhuoling Lin, Jing Li, Xiaoyan Li, Hui Chen, Chong Guo, Lanqin Zhao, Daoyao Nie, Xinhua Liu, Xin Liu, Zhe Dong, Bo Yun, Wenbin Wei, Fan Xu, Jian Lv, Min Li, Shiqi Ling, Lei Zhong, Junhong Chen, Qishan Zheng, Li Zhang, Yi Xiang, Gang Tan, Kai Huang, Yifan Xiang, Duoru Lin, Xulin Zhang, Meimei Dongye, Dongni Wang, Weirong Chen, Xiyang Liu, Haotian Lin, Yizhi Liu:
Artificial intelligence manages congenital cataract with individualized prediction and telehealth computing. - Pranav Rajpurkar, Chloe P. O'Connell, Amit Schechter, Nishit Asnani, Jason Li, Amirhossein Kiani, Robyn L. Ball, Marc Mendelson, Gary Maartens, Daniël J. van Hoving, Rulan Griesel, Andrew Y. Ng, Tom H. Boyles, Matthew P. Lungren:
CheXaid: deep learning assistance for physician diagnosis of tuberculosis using chest x-rays in patients with HIV. - Viktor Tóth, Marsha Meytlis, Douglas P. Barnaby, Kevin R. Bock, Michael I. Oppenheim, Yousef Al-Abed, Thomas G. McGinn, Karina W. Davidson, Lance B. Becker, Jamie S. Hirsch, Theodoros P. Zanos:
Let Sleeping Patients Lie, avoiding unnecessary overnight vitals monitoring using a clinically based deep-learning model. - Hanna Drimalla, Tobias Scheffer, Niels Landwehr, Irina Baskow, Stefan Roepke, Behnoush Behnia, Isabel Dziobek:
Towards the automatic detection of social biomarkers in autism spectrum disorder: introducing the simulated interaction task (SIT). - Shivam Kalra, Hamid R. Tizhoosh, Sultaan Shah, Charles Choi, Savvas Damaskinos, Amir Safarpoor, Sobhan Shafiei, Morteza Babaie, Phedias Diamandis, Clinton J. V. Campbell, Liron Pantanowitz:
Pan-cancer diagnostic consensus through searching archival histopathology images using artificial intelligence. - Raheel Sayeed, Daniel Gottlieb, Kenneth D. Mandl:
SMART Markers: collecting patient-generated health data as a standardized property of health information technology. - Jessica K. Paulus, David M. Kent:
Predictably unequal: understanding and addressing concerns that algorithmic clinical prediction may increase health disparities. - Omer T. Inan, P. Tenaerts, Sheila A. Prindiville, H. R. Reynolds, D. S. Dizon, K. Cooper-Arnold, Mintu P. Turakhia, Mark J. Pletcher, Kenzie L. Preston, Harlan M. Krumholz, Benjamin M. Marlin, Kenneth D. Mandl, Predrag V. Klasnja, Bonnie Spring, Erin Iturriaga, R. Campo, P. Desvigne-Nickens, Y. Rosenberg, Steven R. Steinhubl, Robert M. Califf:
Digitizing clinical trials. - William J. Gordon, Adam B. Landman, Haipeng (Mark) Zhang, David W. Bates:
Beyond validation: getting health apps into clinical practice. - Jordan Alpert, Todd M. Manini, Megan Roberts, Naga S. Prabhakar Kota, Tonatiuh Mendoza, Laurence M. Solberg, Parisa Rashidi:
Secondary care provider attitudes towards patient generated health data from smartwatches. - Brian J. Levine, Kelly L. Close, Robert A. Gabbay:
A care team-based classification and population management schema for connected diabetes care. - Kyan C. Safavi, Adam B. Cohen, David Y. Ting, Sreekanth Chaguturu, Jack S. Rowe:
Health systems as venture capital investors in digital health: 2011-2019. - Narges Razavian, Vincent J. Major, Mukund Sudarshan, Jesse Burk-Rafel, Peter Stella, Hardev Randhawa, Seda Bilaloglu, Ji Chen, Vuthy Nguy, Walter Wang, Hao Zhang, Ilan Reinstein, David Kudlowitz, Cameron Zenger, Meng Cao, Ruina Zhang, Siddhant Dogra, Keerthi B. Harish, Brian Bosworth, Fritz Francois, Leora I. Horwitz, Rajesh Ranganath, Jonathan S. Austrian, Yindalon Aphinyanaphongs:
A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients. - Shih-Cheng Huang, Tanay Kothari, Imon Banerjee, Christopher Chute, Robyn L. Ball, Norah Borus, Andrew Huang, Bhavik N. Patel, Pranav Rajpurkar, Jeremy Irvin, Jared Dunnmon, Joseph Bledsoe, Katie S. Shpanskaya, Abhay Dhaliwal, Roham Zamanian, Andrew Y. Ng, Matthew P. Lungren:
PENet - a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. - Catherine P. Adans-Dester, Nicolas Hankov, Anne T. O'Brien, Gloria Vergara-Diaz, Randie Black-Schaffer, Ross Zafonte, Jennifer G. Dy, Sunghoon Ivan Lee, Paolo Bonato:
Enabling precision rehabilitation interventions using wearable sensors and machine learning to track motor recovery. - Rebecca M. Jones, Anuj Sharma, Robert Hotchkiss, John W. Sperling, Jackson Hamburger, Christian Ledig, Robert O'Toole, Michael Gardner, Srivas Venkatesh, Matthew M. Roberts, Romain Sauvestre, Max Shatkhin, Anant Gupta, Sumit Chopra, Manickam Kumaravel, Aaron Daluiski, Will Plogger, Jason Nascone, Hollis Potter, Robert V. Lindsey:
Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs. - Yijun Zhao, Tong Wang, Riley Bove, Bruce Cree, Roland Henry, Hrishikesh Lokhande, Mariann Polgar-Turcsanyi, Mark Anderson, Rohit Bakshi, Howard L. Weiner, Tanuja Chitnis:
Author Correction: Ensemble learning predicts multiple sclerosis disease course in the SUMMIT study. - Adam Sadilek, Yulin Hswen, Shailesh Bavadekar, Tomer Shekel, John S. Brownstein, Evgeniy Gabrilovich:
Lymelight: forecasting Lyme disease risk using web search data. - Julie Redfern, Genevieve Coorey, John Mulley, Anish Scaria, Lis Neubeck, Nashid Hafiz, Chris Pitt, Kristie Weir, Joanna Forbes, Sharon Parker, Fiona Bampi, Alison Coenen, Gemma Enright, Annette Wong, Theresa Nguyen, Mark Harris, Nick Zwar, Clara K. Chow, Anthony Rodgers, Emma Heeley, Katie Panaretto, Annie Lau, Noel E. Hayman, Tim Usherwood, David Peiris:
A digital health intervention for cardiovascular disease management in primary care (CONNECT) randomized controlled trial. - Steven Allender, Joshua Hayward, Sunil Gupta, A. Sanigorski, Santu Rana, Hugh Seward, Stephan Jacobs, Svetha Venkatesh:
Bayesian strategy selection identifies optimal solutions to complex problems using an example from GP prescribing. - Niranjan Sridhar, Ali Shoeb, Philip Stephens, Alaa Kharbouch, David Ben Shimol, Joshua Burkart, Atiyeh Ghoreyshi, Lance Myers:
Deep learning for automated sleep staging using instantaneous heart rate. - Abhishek Pratap, Elias Chaibub Neto, Phil Snyder, Carl Stepnowsky, Noémie Elhadad, Daniel Grant, Matthew H. Mohebbi, Sean D. Mooney, Christine Suver, John Wilbanks, Lara M. Mangravite, Patrick J. Heagerty, Pat A. Areán, Larsson Omberg:
Indicators of retention in remote digital health studies: a cross-study evaluation of 100, 000 participants. - Alicia L. Nobles, Eric C. Leas, Theodore L. Caputi, Shu-Hong Zhu, Steffanie A. Strathdee, John W. Ayers:
Responses to addiction help-seeking from Alexa, Siri, Google Assistant, Cortana, and Bixby intelligent virtual assistants. - Charlotte Schubert, Gareth Archer, Jo M. Zelis, Sarah Nordmeyer, Kilian Runte, Anja Hennemuth, Felix Berger, Volkmar Falk, Pim A. L. Tonino, Rod Hose, Herman J. ter Horst, Titus Kühne, Marcus Kelm:
Wearable devices can predict the outcome of standardized 6-minute walk tests in heart disease. - Adam R. Carr, Yash H. Patel, Charles R. Neff, Sadaf Charkhabi, Nathaniel E. Kallmyer, Hector F. Angus, Nigel F. Reuel:
Sweat monitoring beneath garments using passive, wireless resonant sensors interfaced with laser-ablated microfluidics. - Kimberly Noel, Brooke Ellison:
Inclusive innovation in telehealth. - Terje B. Holmlund, Chelsea Chandler, Peter W. Foltz, Alex S. Cohen, Jian Cheng, Jared Bernstein, Elizabeth Rosenfeld, Brita Elvevåg:
Applying speech technologies to assess verbal memory in patients with serious mental illness. - Chaohui Guo, Hutan Ashrafian, Saira Ghafur, Gianluca Fontana, Clarissa Gardner, Matthew Prime:
Challenges for the evaluation of digital health solutions - A call for innovative evidence generation approaches. - Andrew Ward, Ashish Sarraju, Sukyung Chung, Jiang Li, Robert A. Harrington, Paul Heidenreich, Latha Palaniappan, David Scheinker, Fátima Rodriguez:
Machine learning and atherosclerotic cardiovascular disease risk prediction in a multi-ethnic population. - John S. Brownstein, Adam D. Nahari, Ben Y. Reis:
Internet search patterns reveal firearm sales, policies, and deaths. - Aravind Natarajan, Hao-Wei Su, Conor Heneghan:
Assessment of physiological signs associated with COVID-19 measured using wearable devices. - Bertalan Meskó, Márton Görög:
A short guide for medical professionals in the era of artificial intelligence. - Jennifer C. Goldsack, Andrea R. Coravos, Jessie P. Bakker, Brinnae Bent, Ariel V. Dowling, Cheryl J. Fitzer-Attas, Alan Godfrey, Job G. Godino, Ninad Gujar, Elena Izmailova, Christine Manta, Barry Peterson, Benjamin Vandendriessche, William A. Wood, Will Ke Wang, Jessilyn Dunn:
Verification, analytical validation, and clinical validation (V3): the foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs). - Arunima Roy, Katerina Nikolitch, Rachel McGinn, Safiya Jinah, William Klement, Zachary A. Kaminsky:
A machine learning approach predicts future risk to suicidal ideation from social media data. - Daniel C. Baumgart:
Digital advantage in the COVID-19 response: perspective from Canada's largest integrated digitalized healthcare system. - Zachary S. Ballard, Hyou-Arm Joung, Artem Goncharov, Jesse Liang, Karina Nugroho, Dino Di Carlo, Omai B. Garner, Aydogan Ozcan:
Deep learning-enabled point-of-care sensing using multiplexed paper-based sensors. - Fabian Lenhard, Erik Andersson, David Mataix-Cols, Christian Rück, Kristina Aspvall, Eva Serlachius:
Long-term outcomes of therapist-guided Internet-delivered cognitive behavior therapy for pediatric obsessive-compulsive disorder. - Derek Richards, Angel Enrique, Nora Eilert, Matthew Franklin, Jorge E. Palacios, Daniel Duffy, Caroline Earley, Judith Chapman, Grace Jell, Sarah Sollesse, Ladislav Timulak:
A pragmatic randomized waitlist-controlled effectiveness and cost-effectiveness trial of digital interventions for depression and anxiety. - Tânia Pereira, Nate Tran, Kais Gadhoumi, Michele M. Pelter, Duc H. Do, Randall J. Lee, Rene Colorado, Karl Meisel, Xiao Hu:
Photoplethysmography based atrial fibrillation detection: a review. - Dong-Ju Choi, Jin Joo Park, Taqdir Ali, Sungyoung Lee:
Artificial intelligence for the diagnosis of heart failure. - Stephen K. Woody, David Burdick, Hilmar Lapp, Erich S. Huang:
Application programming interfaces for knowledge transfer and generation in the life sciences and healthcare. - Charlotte Syrykh, Arnaud Abreu, Nadia Amara, Aurore Siegfried, Véronique Maisongrosse, François X. Frenois, Laurent Martin, Cédric Rossi, Camille Laurent, Pierre Brousset:
Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning. - Christine M. Cutillo, Karlie R. Sharma, Luca Foschini, Shinjini Kundu, Maxine Mackintosh, Kenneth D. Mandl, Tyler Beck, Elaine Collier, Christine Colvis, Kenneth Gersing, Valery Gordon, Roxanne Jensen, Behrouz Shabestari, Noel Southall:
Machine intelligence in healthcare - perspectives on trustworthiness, explainability, usability, and transparency. - Ben Moscovitch, John D. Halamka, Shaun J. Grannis:
Better patient identification could help fight the coronavirus. - Gabriela Stegmann, Shira Hahn, Julie Liss, Jeremy Shefner, Seward Rutkove, Kerisa Shelton, Cayla Jessica Duncan, Visar Berisha:
Author Correction: Early detection and tracking of bulbar changes in ALS via frequent and remote speech analysis. - Amarnath R. Annapureddy, Suveen Angraal, Cesar Caraballo, Alyssa Grimshaw, Chenxi Huang, Bobak J. Mortazavi, Harlan M. Krumholz:
The National Institutes of Health funding for clinical research applying machine learning techniques in 2017. - Matthew M. Engelhard, Jason A. Oliver, F. Joseph McClernon:
Digital envirotyping: quantifying environmental determinants of health and behavior. - Andrea R. Coravos, Megan Doerr, Jennifer Goldsack, Christine Manta, Mark Shervey, Beau Woods, William A. Wood:
Publisher Correction: Modernizing and designing evaluation frameworks for connected sensor technologies in medicine. - Alison Callahan, Ethan Steinberg, Jason A. Fries, Saurabh Gombar, Birju S. Patel, Conor K. Corbin, Nigam H. Shah:
Estimating the efficacy of symptom-based screening for COVID-19. - David C. Mohr, Katie Shilton, Matthew Hotopf:
Digital phenotyping, behavioral sensing, or personal sensing: names and transparency in the digital age. - Louis Faust, Keith Feldman, Stephen M. Mattingly, David Hachen, Nitesh V. Chawla:
Deviations from normal bedtimes are associated with short-term increases in resting heart rate. - Khaled Saab, Jared Dunnmon, Christopher Ré, Daniel L. Rubin, Christopher Lee-Messer:
Weak supervision as an efficient approach for automated seizure detection in electroencephalography. - Ron C. Li, Steven M. Asch, Nigam H. Shah:
Developing a delivery science for artificial intelligence in healthcare. - Kirsten I. Taylor, Hannah Staunton, Florian Lipsmeier, David Nobbs, Michael Lindemann:
Outcome measures based on digital health technology sensor data: data- and patient-centric approaches. - Yifan Peng, Tiarnan D. Keenan, Qingyu Chen, Elvira Agrón, Alexis Allot, Wai T. Wong, Emily Y. Chew, Zhiyong Lu:
Predicting risk of late age-related macular degeneration using deep learning. - Mal North, Simon Bourne, Ben Green, Anoop J. Chauhan, Tom Brown, Jonathan Winter, Tom Jones, Dan Neville, Alison Blythin, Alastair Watson, Matthew Johnson, David Culliford, Jack Elkes, Victoria Cornelius, Tom M. A. Wilkinson:
Author Correction: A randomised controlled feasibility trial of E-health application supported care vs usual care after exacerbation of COPD: the RESCUE trial. - Kotaro Miura, Shinichi Goto, Yoshinori Katsumata, Hidehiko Ikura, Yasuyuki Shiraishi, Kazuki Sato, Keiichi Fukuda:
Feasibility of the deep learning method for estimating the ventilatory threshold with electrocardiography data. - Brooke Bell, Ridwan Alam, Nabil Alshurafa, Edison Thomaz, Md. Abu Sayeed Mondol, Kayla de la Haye, John A. Stankovic, John C. Lach, Donna Spruijt-Metz:
Automatic, wearable-based, in-field eating detection approaches for public health research: a scoping review. - Amelia J. Averitt, Chunhua Weng, Patrick B. Ryan, Adler J. Perotte:
Translating evidence into practice: eligibility criteria fail to eliminate clinically significant differences between real-world and study populations. - Sanket S. Dhruva, Joseph S. Ross, Joseph G. Akar, Brittany Caldwell, Karla Childers, Wing Chow, Laura Ciaccio, Paul Coplan, Jun Dong, Hayley J. Dykhoff, Stephen Johnston, Todd Kellogg, Cynthia Long, Peter A. Noseworthy, Kurt Roberts, Anindita Saha, Andrew Yoo, Nilay D. Shah:
Aggregating multiple real-world data sources using a patient-centered health-data-sharing platform. - Stevie Chancellor, Munmun De Choudhury:
Methods in predictive techniques for mental health status on social media: a critical review. - Leia Wedlund, Joseph C. Kvedar, Wanda Layman:
Anticipating and treating dementia: lessons hidden in plain sight. - David M. Levine, Zoe Co, Lisa P. Newmark, Alissa R. Groisser, A Jay Holmgren, Jennifer S. Haas, David W. Bates:
Design and testing of a mobile health application rating tool. - Felix Sattler, Jackie Ma, Patrick Wagner, David Neumann, Markus Wenzel, Ralf Schäfer, Wojciech Samek, Klaus-Robert Müller, Thomas Wiegand:
Risk estimation of SARS-CoV-2 transmission from bluetooth low energy measurements. - Simon P. Rowland, J. Edward Fitzgerald, Thomas Holme, John A. Powell, Alison H. McGregor:
What is the clinical value of mHealth for patients? - Ira Hofer, Christine K. Lee, Eilon Gabel, Pierre Baldi, Maxime Cannesson:
Development and validation of a deep neural network model to predict postoperative mortality, acute kidney injury, and reintubation using a single feature set. - Sara Gerke, Ariel Dora Stern, Timo Minssen:
Germany's digital health reforms in the COVID-19 era: lessons and opportunities for other countries. - Davide Cirillo, Silvina Catuara-Solarz, Czuee Morey, Emre Guney, Laia Subirats, Simona Mellino, Annalisa Gigante, Alfonso Valencia, María-José Rementeria, Antonella Santuccione Chadha, Nikolaos Mavridis:
Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. - Pragya Sharma, Xiaonan Hui, Jianlin Zhou, Thomas Bradley Conroy, Edwin C. Kan:
Wearable radio-frequency sensing of respiratory rate, respiratory volume, and heart rate. - Shih-Cheng Huang, Anuj Pareek, Saeed Seyyedi, Imon Banerjee, Matthew P. Lungren:
Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. - Nina Rank, Boris Pfahringer, Jörg Kempfert, Christof Stamm, Titus Kühne, Felix Schoenrath, Volkmar Falk, Carsten Eickhoff, Alexander Meyer:
Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance. - Amirata Ghorbani, David Ouyang, Abubakar Abid, Bryan He, Jonathan H. Chen, Robert A. Harrington, David H. Liang, Euan A. Ashley, James Y. Zou:
Deep learning interpretation of echocardiograms. - Lee H. Schwamm, Alistair Erskine, Adam Licurse:
A digital embrace to blunt the curve of COVID19 pandemic. - Stan Benjamens, Pranavsingh Dhunnoo, Bertalan Meskó:
The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. - Lorenzo Schiavoni, Giuseppe Pascarella, Stefania Grande, Felice Eugenio Agro:
Neuromuscular block monitoring by smartphone application (i-TOF© system): an observational pilot study. - Joshua Hayward, Saraya Morton, Michael Johnstone, Douglas C. Creighton, Steven Allender:
Tools and analytic techniques to synthesise community knowledge in CBPR using computer-mediated participatory system modelling. - Derek Richards, Angel Enrique, Nora Eilert, Matthew Franklin, Jorge E. Palacios, Daniel Duffy, Caroline Earley, Judith Chapman, Grace Jell, Sarah Sollesse, Ladislav Timulak:
Author Correction: A pragmatic randomized waitlist-controlled effectiveness and cost-effectiveness trial of digital interventions for depression and anxiety. - Zhongwen Li, Chong Guo, Danyao Nie, Duoru Lin, Yi Zhu, Chuan Chen, Lanqin Zhao, Xiaohang Wu, Meimei Dongye, Fabao Xu, Chenjin Jin, Ping Zhang, Yu Han, Pisong Yan, Haotian Lin:
Deep learning from "passive feeding" to "selective eating" of real-world data. - Andrea R. Coravos, Megan Doerr, Jennifer Goldsack, Christine Manta, Mark Shervey, Beau Woods, William A. Wood:
Modernizing and designing evaluation frameworks for connected sensor technologies in medicine. - Satoshi Narumi, Tetsu Ohnuma, Kenji Takehara, Naho Morisaki, Kevin Y. Urayama, Tomoyuki Hattori:
Evaluating the seasonality of growth in infants using a mobile phone application. - Joseph C. Kvedar:
Evidence for the effectiveness of digital health. - Adam S. Miner, Albert Haque, Jason A. Fries, Scott L. Fleming, Denise E. Wilfley, G. Terence Wilson, Arnold Milstein, Dan Jurafsky, Bruce A. Arnow, W. Stewart Agras, Li Fei-Fei, Nigam H. Shah:
Assessing the accuracy of automatic speech recognition for psychotherapy. - Julia Ive, Natalia Viani, Joyce Kam, Lucia Yin, Somain Verma, Stephen Puntis, Rudolf N. Cardinal, Angus Roberts, Robert Stewart, Sumithra Velupillai:
Generation and evaluation of artificial mental health records for Natural Language Processing. - Mal North, Simon Bourne, Ben Green, Anoop J. Chauhan, Tom Brown, Jonathan Winter, Tom Jones, Dan Neville, Alison Blythin, Alastair Watson, Matthew Johnson, David Culliford, Jack Elkes, Victoria Cornelius, Tom M. A. Wilkinson:
A randomised controlled feasibility trial of E-health application supported care vs usual care after exacerbation of COPD: the RESCUE trial. - Jessica Torres Soto, Euan A. Ashley:
Multi-task deep learning for cardiac rhythm detection in wearable devices. - Kathy Li, Iñigo Urteaga, Chris H. Wiggins, Anna Druet, Amanda Shea, Virginia J. Vitzthum, Noémie Elhadad:
Characterizing physiological and symptomatic variation in menstrual cycles using self-tracked mobile-health data. - Emre Sezgin, Yungui Huang, Ujjwal Ramtekkar, Simon Lin:
Readiness for voice assistants to support healthcare delivery during a health crisis and pandemic. - Carissa A. Low:
Harnessing consumer smartphone and wearable sensors for clinical cancer research. - Kristine Arges, Themistocles L. Assimes, Vikram Bajaj, Suresh Balu, Mustafa R. Bashir, Laura Beskow, Rosalia Blanco, Robert M. Califf, Paul Campbell, Larry Carin, Victoria Christian, Scott Cousins, Millie Das, Marie Dockery, Pamela S. Douglas, Ashley Dunham, Julie Eckstrand, Dominik Fleischmann, Emily Ford, Elizabeth Fraulo, John French, Sanjiv S. Gambhir, Geoffrey S. Ginsburg, Robert C. Green, Francois Haddad, Adrian Hernandez, John Hernandez, Erich S. Huang, Glenn Jaffe, Daniel King, Lynne H. Koweek, Curtis P. Langlotz, Yaping J. Liao, Kenneth W. Mahaffey, Kelly Marcom, William J. Marks, David Maron, Reid McCabe, Shannon McCall, Rebecca McCue, Jessica Mega, David Miller, Lawrence H. Muhlbaier, Rajan Munshi, L. Kristin Newby, Ezra Pak-Harvey, Bray Patrick-Lake, Michael Pencina, Eric D. Peterson, Fátima Rodriguez, Scarlet Shore, Svati Shah, Steven Shipes, George Sledge, Susie Spielman, Ryan Spitler, Terry Schaack, Geeta Swamy, Martin J. Willemink, Charlene A. Wong:
The Project Baseline Health Study: a step towards a broader mission to map human health. - Allan Tucker, Zhenchen Wang, Ylenia Rotalinti, Puja Myles:
Generating high-fidelity synthetic patient data for assessing machine learning healthcare software. - Amirhossein Kiani, Bora Uyumazturk, Pranav Rajpurkar, Alex Wang, Rebecca Gao, Erik Jones, Yifan Yu, Curtis P. Langlotz, Robyn L. Ball, Thomas J. Montine, Brock A. Martin, Gerald J. Berry, Michael G. Ozawa, Florette K. Hazard, Ryanne A. Brown, Simon B. Chen, Mona Wood, Libby S. Allard, Lourdes Ylagan, Andrew Y. Ng, Jeanne Shen:
Impact of a deep learning assistant on the histopathologic classification of liver cancer. - Lluís Guasch, Oscar Calderon Agudo, Meng-Xing Tang, Parashkev Nachev, Michael Warner:
Full-waveform inversion imaging of the human brain. - Benjamin W. Nelson, Carissa A. Low, Nicholas Jacobson, Patricia Areán, John Torous, Nicholas B. Allen:
Guidelines for wrist-worn consumer wearable assessment of heart rate in biobehavioral research. - Kushal Kadakia, Bakul Patel, Anand Shah:
Advancing digital health: FDA innovation during COVID-19. - Pranav Gupta, Mohammad J. Moghimi, Yaesuk Jeong, Divya Gupta, Omer T. Inan, Farrokh Ayazi:
Precision wearable accelerometer contact microphones for longitudinal monitoring of mechano-acoustic cardiopulmonary signals. - Adam S. Miner, Liliana Laranjo, Ahmet Baki Kocaballi:
Chatbots in the fight against the COVID-19 pandemic. - Alain Labrique, Smisha Agarwal, Tigest Tamrat, Garrett Mehl:
WHO Digital Health Guidelines: a milestone for global health. - Lennaert van Veen, Jacob Morra, Adam Palanica, Yan Fossat:
Homeostasis as a proportional-integral control system. - Gabriel A. Brat, Griffin M. Weber, Nils Gehlenborg, Paul Avillach, Nathan P. Palmer, Luca Chiovato, James J. Cimino, Lemuel R. Waitman, Gilbert S. Omenn, Alberto Malovini, Jason H. Moore, Brett K. Beaulieu-Jones, Valentina Tibollo, Shawn N. Murphy, Sehi L'Yi, Mark S. Keller, Riccardo Bellazzi, David A. Hanauer, Arnaud Serret-Larmande, Alba Gutiérrez-Sacristán, John J. Holmes, Douglas S. Bell, Kenneth D. Mandl, Robert W. Follett, Jeffrey G. Klann, Douglas A. Murad, Luigia Scudeller, Mauro Bucalo, Katie G. Kirchoff, Jean B. Craig, Jihad S. Obeid, Vianney Jouhet, Romain Griffier, Sébastien Cossin, Bertrand Moal, Lav P. Patel, Antonio Bellasi, Hans-Ulrich Prokosch, Detlef Kraska, Piotr Sliz, Amelia L. M. Tan, Kee Yuan Ngiam, Alberto Zambelli, Danielle L. Mowery, Emily Schriver, Batsal Devkota, Robert L. Bradford, Mohamad Daniar, Christel Daniel, Vincent Benoit, Romain Bey, Nicolas Paris, Patricia Serre, Nina Orlova, Julien Dubiel, Martin Hilka, Anne-Sophie Jannot, Stéphane Bréant, Judith Leblanc, Nicolas Griffon, Anita Burgun, Mélodie Bernaux, Arnaud Sandrin, Elisa Salamanca, Sylvie Cormont, Thomas Ganslandt, Tobias Gradinger, Julien Champ, Martin Boeker, Patricia Martel, Loic Estève, Alexandre Gramfort, Olivier Grisel, Damien Leprovost, Thomas Moreau, Gaël Varoquaux, Jill-Jênn Vie, Demian Wassermann, Arthur Mensch, Charlotte Caucheteux, Christian Haverkamp, Guillaume Lemaitre, Silvano Bosari, Ian D. Krantz, Andrew M. South, Tianxi Cai, Isaac S. Kohane:
International electronic health record-derived COVID-19 clinical course profiles: the 4CE consortium. - Thomas George Kannampallil, Joshua M. Smyth, Steve Jones, Philip R. O. Payne, Jun Ma:
Cognitive plausibility in voice-based AI health counselors. - Ji Hwan Park, Han Eol Cho, Jong Hun Kim, Melanie M. Wall, Yaakov Stern, Hyunsun Lim, Shinjae Yoo, Hyoung Seop Kim, Jiook Cha:
Machine learning prediction of incidence of Alzheimer's disease using large-scale administrative health data. - Matt Desruisseaux, Vess Stamenova, R. Sacha Bhatia, Onil Bhattacharyya:
Channel management in virtual care. - Yijun Zhao, Tong Wang, Riley Bove, Bruce Cree, Roland Henry, Hrishikesh Lokhande, Mariann Polgar-Turcsanyi, Mark Anderson, Rohit Bakshi, Howard L. Weiner, Tanuja Chitnis:
Ensemble learning predicts multiple sclerosis disease course in the SUMMIT study. - Carmen C. Y. Poon, Yuqi Jiang, Ruikai Zhang, Winnie W. Y. Lo, Maggie S. H. Cheung, Ruoxi Yu, Yali Zheng, John C. T. Wong, Qing Liu, Sunny Hei Wong, Tony Wing Chung Mak, James Yun Wong Lau:
AI-doscopist: a real-time deep-learning-based algorithm for localising polyps in colonoscopy videos with edge computing devices. - Pete R. Jones, Tamás Somoskeöy, Hugo Chow-Wing-Bom, David P. Crabb:
Seeing other perspectives: evaluating the use of virtual and augmented reality to simulate visual impairments (OpenVisSim). - C. Beau Hilton, Alex Milinovich, Christina Felix, Nirav Vakharia, Timothy Crone, Chris Donovan, Andrew Proctor, Aziz Nazha:
Personalized predictions of patient outcomes during and after hospitalization using artificial intelligence. - Edgar Rojas-Muñoz, Chengyuan Lin, Natalia Sanchez-Tamayo, Maria Eugenia Cabrera, Daniel Andersen, Voicu Popescu, Juan Antonio Barragan, Ben Zarzaur, Patrick Murphy, Kathryn Anderson, Thomas Douglas, Clare Griffis, Jessica L. McKee, Andrew W. Kirkpatrick, Juan P. Wachs:
Evaluation of an augmented reality platform for austere surgical telementoring: a randomized controlled crossover study in cricothyroidotomies. - Matthew D. Li, Ken Chang, Ben Bearce, Connie Y. Chang, Ambrose J. Huang, J. Peter Campbell, James M. Brown, Praveer Singh, Katharina Viktoria Hoebel, Deniz Erdogmus, Stratis Ioannidis, William E. Palmer, Michael F. Chiang, Jayashree Kalpathy-Cramer:
Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging. - Beau Norgeot, Kathleen Muenzen, Thomas A. Peterson, Xuancheng Fan, Benjamin S. Glicksberg, Gundolf Schenk, Eugenia Rutenberg, Boris Oskotsky, Marina Sirota, Jinoos Yazdany, Gabriela Schmajuk, Dana Ludwig, Theodore C. Goldstein, Atul J. Butte:
Protected Health Information filter (Philter): accurately and securely de-identifying free-text clinical notes. - Gabriela Stegmann, Shira Hahn, Julie Liss, Jeremy Shefner, Seward B. Rutkove, Kerisa Shelton, Cayla Jessica Duncan, Visar Berisha:
Early detection and tracking of bulbar changes in ALS via frequent and remote speech analysis. - Isotta Landi, Benjamin S. Glicksberg, Hao-Chih Lee, Sarah T. Cherng, Giulia Landi, Matteo Danieletto, Joel T. Dudley, Cesare Furlanello, Riccardo Miotto:
Deep representation learning of electronic health records to unlock patient stratification at scale. - Paul Myers, Kenney Ng, Kristen A. Severson, Uri Kartoun, Wangzhi Dai, Wei Huang, Fred Anderson, Collin M. Stultz:
Identifying unreliable predictions in clinical risk models. - Aislinn D. Bergin, Elvira Perez Vallejos, E. Bethan Davies, David Daley, Tamsin Ford, Gordon Harold, Sarah Hetrick, Megan Kidner, Yunfei Long, Sally Merry, Richard Morriss, Kapil Sayal, Edmund Sonuga-Barke, Jo Robinson, John Torous, Chris Hollis:
Preventive digital mental health interventions for children and young people: a review of the design and reporting of research. - Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletarì, Holger R. Roth, Shadi Albarqouni, Spyridon Bakas, Mathieu N. Galtier, Bennett A. Landman, Klaus H. Maier-Hein, Sébastien Ourselin, Micah J. Sheller, Ronald M. Summers, Andrew Trask, Daguang Xu, Maximilian Baust, M. Jorge Cardoso:
The future of digital health with federated learning. - Ralph K. Akyea, Nadeem Qureshi, Joe Kai, Stephen F. Weng:
Performance and clinical utility of supervised machine-learning approaches in detecting familial hypercholesterolaemia in primary care. - Shih-Cheng Huang, Tanay Kothari, Imon Banerjee, Christopher Chute, Robyn L. Ball, Norah Borus, Andrew Huang, Bhavik N. Patel, Pranav Rajpurkar, Jeremy Irvin, Jared Dunnmon, Joseph Bledsoe, Katie S. Shpanskaya, Abhay Dhaliwal, Roham Zamanian, Andrew Y. Ng, Matthew P. Lungren:
Author Correction: PENet - a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. - Charlotte Gentili, Vendela Zetterqvist, Jenny Rickardsson, Linda Holmström, Laura E. Simons, Rikard K. Wicksell:
ACTsmart - development and feasibility of digital Acceptance and Commitment Therapy for adults with chronic pain. - Scott D. Tagliaferri, Maia Angelova, Xiaohui Zhao, Patrick J. Owen, Clint T. Miller, Tim Wilkin, Daniel L. Belavy:
Artificial intelligence to improve back pain outcomes and lessons learnt from clinical classification approaches: three systematic reviews. - Ignacio Perez-Pozuelo, Bing Zhai, João R. M. Palotti, Raghvendra Mall, Michaël Aupetit, Juan M. Garcia-Gomez, Shahrad Taheri, Yu Guan, Luis Fernández-Luque:
The future of sleep health: a data-driven revolution in sleep science and medicine. - Filippo Arcadu, Fethallah Benmansour, Andreas Maunz, Jeff Willis, Zdenka Haskova, Marco Prunotto:
Author Correction: Deep learning algorithm predicts diabetic retinopathy progression in individual patients. - Iñigo Urteaga, Mollie McKillop, Noémie Elhadad:
Learning endometriosis phenotypes from patient-generated data. - Quynh Pham, Jason Hearn, Bruce Gao, Ian Brown, Robert J. Hamilton, Alejandro Berlin, Joseph A. Cafazzo, Andrew Feifer:
Virtual care models for cancer survivorship. - Trishan Panch, Tom J. Pollard, Heather Mattie, Emily Lindemer, Pearse A. Keane, Leo Anthony Celi:
"Yes, but will it work for my patients?" Driving clinically relevant research with benchmark datasets. - Adam B. Cohen, Seth S. Martin:
Innovation without integration. - Raheel Ata, Neil Gandhi, Hannah Rasmussen, Osama El-Gabalawy, Santiago Gutierrez, Alizeh Ahmad, Siddharth Suresh, Roshini Ravi, Kara Rothenberg, Oliver O. Aalami:
Author Correction: Clinical validation of smartphone-based activity tracking in peripheral artery disease patients. - Stephen K. Woody, David Burdick, Hilmar Lapp, Erich S. Huang:
Publisher Correction: Application programming interfaces for knowledge transfer and generation in the life sciences and healthcare. - Niranjan Sridhar, Ali Shoeb, Philip Stephens, Alaa Kharbouch, David Ben Shimol, Joshua Burkart, Atiyeh Ghoreyshi, Lance Myers:
Author Correction: Deep learning for automated sleep staging using instantaneous heart rate. - Christoph M. Kanzler, Mike D. Rinderknecht, Anne Schwarz, Ilse Lamers, Cynthia Gagnon, Jeremia P. O. Held, Peter Feys, Andreas R. Luft, Roger Gassert, Olivier Lambercy:
A data-driven framework for selecting and validating digital health metrics: use-case in neurological sensorimotor impairments. - Caroline Marra, Jacqueline L. Chen, Andrea R. Coravos, Ariel Dora Stern:
Quantifying the use of connected digital products in clinical research. - Ines P. Nearchou, Bethany M. Gwyther, Elena C. T. Georgiakakis, Christos G. Gavriel, Kate Lillard, Yoshiki Kajiwara, Hideki Ueno, David J. Harrison, Peter D. Caie:
Spatial immune profiling of the colorectal tumor microenvironment predicts good outcome in stage II patients. - Nikhil Mahadevan, Charmaine Demanuele, Hao Zhang, Dmitri Volfson, Bryan Ho, Michael Kelley Erb, Shyamal Patel:
Development of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable device. - Patrik Bachtiger, Alexander Adamson, Jennifer Kathleen Quint, Nicholas S. Peters:
Belief of having had unconfirmed Covid-19 infection reduces willingness to participate in app-based contact tracing. - Sujay Kakarmath, Andre Esteva, Rima Arnaout, Hugh Harvey, Santosh Kumar, Evan D. Muse, Feng Dong, Leia Wedlund, Joseph C. Kvedar:
Best practices for authors of healthcare-related artificial intelligence manuscripts. - Fei Li, Diping Song, Han Chen, Jian Xiong, Xingyi Li, Hua Zhong, Guangxian Tang, Sujie Fan, Dennis S. C. Lam, Weihua Pan, Yajuan Zheng, Ying Li, Guoxiang Qu, Junjun He, Zhe Wang, Ling Jin, Rouxi Zhou, Yunhe Song, Yi Sun, Weijing Cheng, Chunman Yang, Yazhi Fan, Yingjie Li, Hengli Zhang, Ye Yuan, Yang Xu, Yunfan Xiong, Lingfei Jin, Aiguo Lv, Lingzhi Niu, Yuhong Liu, Shaoli Li, Jiani Zhang, Linda M. Zangwill, Alejandro F. Frangi, Tin Aung, Ching-Yu Cheng, Yu Qiao, Xiulan Zhang, Daniel S. W. Ting:
Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection. - Matthew Czech, Dimitrios J. Psaltos, Hao Zhang, Tomasz Adamusiak, Monica Calicchio, Amey Kelekar, Andrew Messere, Koene R. A. Van Dijk, Vesper Ramos, Charmaine Demanuele, Xuemei Cai, Mar Santamaria, Shyamal Patel, Fikret Isik Karahanoglu:
Age and environment-related differences in gait in healthy adults using wearables. - Sara Gerke, Boris Babic, Theodoros Evgeniou, I. Glenn Cohen:
The need for a system view to regulate artificial intelligence/machine learning-based software as medical device. - Dong-Hoon Choi, Grant B. Kitchen, Mark T. Jennings, Garry R. Cutting, Peter C. Searson:
Out-of-clinic measurement of sweat chloride using a wearable sensor during low-intensity exercise. - Nisarg A. Patel, Atul J. Butte:
Characteristics and challenges of the clinical pipeline of digital therapeutics. - David H. Epstein, Matthew Tyburski, William J. Kowalczyk, Albert J. Burgess-Hull, Karran A. Phillips, Brenda L. Curtis, Kenzie L. Preston:
Prediction of stress and drug craving ninety minutes in the future with passively collected GPS data. - Seyoung Jung, Ho-Young Lee, Hee Hwang, Keehyuck Lee, Rong-Min Baek:
How IT preparedness helped to create a digital field hospital to care for COVID-19 patients in S. Korea. - Reed T. Sutton, David Pincock, Daniel C. Baumgart, Daniel C. Sadowski, Richard N. Fedorak, Karen I. Kroeker:
An overview of clinical decision support systems: benefits, risks, and strategies for success. - Itsuki Osawa, Tadahiro Goto, Yuji Yamamoto, Yusuke Tsugawa:
Machine-learning-based prediction models for high-need high-cost patients using nationwide clinical and claims data.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.