default search action
Philippe Leray 0001
Person information
- affiliation: Ecole Polytechnique de l'université de Nantes, France
Other persons with the same name
- Philippe Leray 0002 — imec, Leuven, Belgium
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j19]Walid Fathallah, Nahla Ben Amor, Philippe Leray:
Approximate inference on optimized quantum Bayesian networks. Int. J. Approx. Reason. 175: 109307 (2024) - [j18]Jaime Ramírez Castillo, M. Julia Flores, Philippe Leray:
Predicting spotify audio features from Last.fm tags. Multim. Tools Appl. 83(16): 48311-48330 (2024) - [c70]Amine Boulahmel, Fahima Djelil, Jean-Marie Gilliot, Philippe Leray, Grégory Smits:
Mining Discriminative Sequential Patterns of Self-regulated Learners. ITS (2) 2024: 137-149 - 2023
- [c69]Walid Fathallah, Nahla Ben Amor, Philippe Leray:
An Optimized Quantum Circuit Representation of Bayesian Networks. ECSQARU 2023: 160-171 - 2022
- [c68]Mahmoud Ferhat, Philippe Leray, Mathieu Ritou, Nicolas Le Du:
Iterative knowledge discovery for fault detection in manufacturing systems. KES 2022: 744-753 - 2021
- [c67]Sarah Benikhlef, Philippe Leray, Guillaume Raschia, Montassar Ben Messaoud, Fayrouz Sakly:
Multi-task Transfer Learning for Bayesian Network Structures. ECSQARU 2021: 217-228 - [c66]Mathilde Monvoisin, Philippe Leray, Mathieu Ritou:
Unsupervised Co-training of Bayesian Networks for Condition Prediction. IEA/AIE (2) 2021: 577-588 - 2020
- [j17]Vahé Asvatourian, Philippe Leray, Stefan Michiels, Emilie Lanoy:
Integrating expert's knowledge constraint of time dependent exposures in structure learning for Bayesian networks. Artif. Intell. Medicine 107: 101874 (2020) - [c65]Evan Dufraisse, Philippe Leray, Raphaël Nedellec, Tarek Benkhelif:
Interactive Anomaly Detection in Mixed Tabular Data using Bayesian Networks. PGM 2020: 185-196 - [p2]Salem Benferhat, Philippe Leray, Karim Tabia:
Belief Graphical Models for Uncertainty Representation and Reasoning. A Guided Tour of Artificial Intelligence Research (2) (II) 2020: 209-246
2010 – 2019
- 2019
- [c64]Mathilde Monvoisin, Philippe Leray:
Multi-task Transfer Learning for Timescale Graphical Event Models. ECSQARU 2019: 313-323 - [c63]Dimitri Antakly, Benoît Delahaye, Philippe Leray:
Graphical Event Model Learning and Verification for Security Assessment. IEA/AIE 2019: 245-252 - [c62]Thierno Kanté, Philippe Leray:
A Probabilistic Relational Model for Risk Assessment and Spatial Resources Management. IEA/AIE 2019: 555-563 - [c61]Silja Renooij, Linda C. van der Gaag, Philippe Leray:
On Intercausal Interactions in Probabilistic Relational Models. ISIPTA 2019: 327-329 - 2018
- [c60]Marwa El Abri, Philippe Leray, Nadia Essoussi:
DAPER Joint Learning from Partially Structured Graph Databases. ICDEc 2018: 129-138 - [c59]Rajani Chulyadyo, Philippe Leray:
Using Probabilistic Relational Models to generate synthetic spatial or non-spatial databases. RCIS 2018: 1-12 - [c58]Romain Rincé, Romain Kervarc, Philippe Leray:
Complex Event Processing Under Uncertainty Using Markov Chains, Constraints, and Sampling. RuleML+RR 2018: 147-163 - [c57]Linda C. van der Gaag, Philippe Leray:
Qualitative Probabilistic Relational Models. SUM 2018: 276-289 - [i4]Jiajun Pan, Hoel Le Capitaine, Philippe Leray:
Relational Constraints for Metric Learning on Relational Data. CoRR abs/1807.00558 (2018) - 2017
- [c56]Youssef Benhaddou, Philippe Leray:
Customer Relationship Management and Small Data - Application of Bayesian Network Elicitation Techniques for Building a Lead Scoring Model. AICCSA 2017: 251-255 - [c55]Marwa El Abri, Philippe Leray, Nadia Essoussi:
Learning Probabilistic Relational Models with (Partially Structured) Graph Databases. AICCSA 2017: 256-263 - [c54]Maroua Haddad, Philippe Leray, Nahla Ben Amor:
Possibilistic MDL: A New Possibilistic Likelihood Based Score Function for Imprecise Data. ECSQARU 2017: 435-445 - [c53]Maroua Haddad, Philippe Leray, Amélie Levray, Karim Tabia:
Learning the Parameters of Possibilistic Networks from Data: Empirical Comparison. FLAIRS 2017: 736-741 - [c52]Romain Rincé, Romain Kervarc, Philippe Leray:
On the Use of WalkSAT Based Algorithms for MLN Inference in Some Realistic Applications. IEA/AIE (2) 2017: 121-131 - [c51]Thierno Kanté, Philippe Leray:
A Probabilistic Relational Model Approach for Fault Tree Modeling. IEA/AIE (2) 2017: 154-162 - 2016
- [j16]Mouna Ben Ishak, Philippe Leray, Nahla Ben Amor:
Probabilistic relational model benchmark generation: Principle and application. Intell. Data Anal. 20(3): 615-635 (2016) - [c50]Mouna Ben Ishak, Philippe Leray, Nahla Ben Amor:
A Hybrid Approach for Probabilistic Relational Models Structure Learning. IDA 2016: 38-49 - [c49]Nourhene Ettouzi, Philippe Leray, Montassar Ben Messaoud:
An Exact Approach to Learning Probabilistic Relational Model. Probabilistic Graphical Models 2016: 171-182 - [i3]Mouna Ben Ishak, Rajani Chulyadyo, Philippe Leray:
Probabilistic Relational Model Benchmark Generation. CoRR abs/1603.00709 (2016) - [i2]Maroua Haddad, Philippe Leray, Nahla Ben Amor:
Possibilistic Networks: Parameters Learning from Imprecise Data and Evaluation strategy. CoRR abs/1607.03705 (2016) - 2015
- [j15]Montassar Ben Messaoud, Philippe Leray, Nahla Ben Amor:
SemCaDo: A serendipitous strategy for causal discovery and ontology evolution. Knowl. Based Syst. 76: 79-95 (2015) - [j14]Philippe Leray, Grégory Nuel:
Introduction. Rev. d'Intelligence Artif. 29(2): 149-151 (2015) - [j13]Maroua Haddad, Philippe Leray, Nahla Ben Amor:
Apprentissage des réseaux possibilistes à partir de données. Rev. d'Intelligence Artif. 29(2): 229-252 (2015) - [c48]Duc-Thanh Phan, Philippe Leray, Christine Sinoquet:
Modeling Genetical Data with Forests of Latent Trees for Applications in Association Genetics at a Large Scale - Which Clustering Method should Be Chosen?. BIOINFORMATICS 2015: 5-16 - [c47]Duc-Thanh Phan, Philippe Leray, Christine Sinoquet:
Latent Forests to Model Genetical Data for the Purpose of Multilocus Genome-Wide Association Studies. Which Clustering Should Be Chosen? BIOSTEC (Selected Papers) 2015: 169-189 - [c46]Rajani Chulyadyo, Philippe Leray:
Integrating spatial information into probabilistic relational models. DSAA 2015: 1-8 - [c45]Maroua Haddad, Philippe Leray, Nahla Ben Amor:
Evaluating Product-Based Possibilistic Networks Learning Algorithms. ECSQARU 2015: 312-321 - [c44]Gérard Ramstein, Philippe Leray:
CPD Tree Learning Using Contexts as Background Knowledge. ECSQARU 2015: 356-365 - [c43]Anthony Coutant, Hoel Le Capitaine, Philippe Leray:
On the equivalence between regularized NMF and similarity-augmented graph partitioning. ESANN 2015 - [c42]Maroua Haddad, Philippe Leray, Nahla Ben Amor:
Learning possibilistic networks from data: a survey. IFSA-EUSFLAT 2015 - [c41]Anthony Coutant, Philippe Leray, Hoel Le Capitaine:
Probabilistic Relational Models with clustering uncertainty. IJCNN 2015: 1-8 - 2014
- [j12]Aida Jarraya, Philippe Leray, Afif Masmoudi:
Implicit parameter estimation for conditional Gaussian Bayesian networks. Int. J. Comput. Intell. Syst. 7(sup1): 6-17 (2014) - [j11]Aida Jarraya, Philippe Leray, Afif Masmoudi:
Discrete exponential Bayesian networks: Definition, learning and application for density estimation. Neurocomputing 137: 142-149 (2014) - [c40]Anthony Coutant, Philippe Leray, Hoel Le Capitaine:
Learning Probabilistic Relational Models Using Non-Negative Matrix Factorization. FLAIRS 2014 - [c39]Aymeric Le Dorze, Béatrice Duval, Laurent Garcia, David Genest, Philippe Leray, Stéphane Loiseau:
Probabilistic Cognitive Maps - Semantics of a Cognitive Map when the Values are Assumed to be Probabilities. ICAART (1) 2014: 52-62 - [c38]Aymeric Le Dorze, Béatrice Duval, Laurent Garcia, David Genest, Philippe Leray, Stéphane Loiseau:
A Probabilistic Semantics for Cognitive Maps. ICAART (Revised Selected Papers) 2014: 151-169 - [c37]Philippe Leray:
Advances in Learning with Bayesian Networks. ICAART (1) 2014: IS-5 - [c36]Mouna Ben Ishak, Philippe Leray, Nahla Ben Amor:
Random Generation and Population of Probabilistic Relational Models and Databases. ICTAI 2014: 756-763 - [c35]Rajani Chulyadyo, Philippe Leray:
A Personalized Recommender System from Probabilistic Relational Model and Users' Preferences. KES 2014: 1063-1072 - [i1]Raphaël Mourad, Christine Sinoquet, Nevin Lianwen Zhang, Tengfei Liu, Philippe Leray:
A Survey on Latent Tree Models and Applications. CoRR abs/1402.0577 (2014) - 2013
- [j10]Salem Benferhat, Philippe Leray:
Editorial: Uncertainty in Artificial Intelligence and Databases. Int. J. Approx. Reason. 54(7): 825-826 (2013) - [j9]Raphaël Mourad, Christine Sinoquet, Nevin Lianwen Zhang, Tengfei Liu, Philippe Leray:
A Survey on Latent Tree Models and Applications. J. Artif. Intell. Res. 47: 157-203 (2013) - [c34]Ghada Trabelsi, Philippe Leray, Mounir Ben Ayed, Adel M. Alimi:
Dynamic MMHC: A Local Search Algorithm for Dynamic Bayesian Network Structure Learning. IDA 2013: 392-403 - [c33]Montassar Ben Messaoud, Philippe Leray, Nahla Ben Amor:
Active learning of causal Bayesian networks using ontologies: A case study. IJCNN 2013: 1-8 - [c32]Maroua Haddad, Nahla Ben Amor, Philippe Leray:
Imputation of Possibilistic Data for Structural Learning of Directed Acyclic Graphs. WILF 2013: 68-76 - 2012
- [j8]Raphaël Mourad, Christine Sinoquet, Philippe Leray:
Probabilistic graphical models for genetic association studies. Briefings Bioinform. 13(1): 20-33 (2012) - [c31]Christine Sinoquet, Raphaël Mourad, Philippe Leray:
Forests of Latent Tree Models for the Detection of Genetic Associations. BIOINFORMATICS 2012: 5-14 - [c30]Christine Sinoquet, Raphaël Mourad, Philippe Leray:
Forests of Latent Tree Models to Decipher Genotype-Phenotype Associations. BIOSTEC (Selected Papers) 2012: 113-134 - [c29]Amanullah Yasin, Philippe Leray:
iMMPC: Une approche locale pour l'apprentissage incrémental de la structure des réseaux bayésiens. EGC 2012: 587-588 - [c28]Aida Jarraya, Philippe Leray, Afif Masmoudi:
Discrete Exponential Bayesian Networks Structure Learning for Density Estimation. ICIC (3) 2012: 146-151 - 2011
- [j7]Raphaël Mourad, Christine Sinoquet, Philippe Leray:
A hierarchical Bayesian network approach for linkage disequilibrium modeling and data-dimensionality reduction prior to genome-wide association studies. BMC Bioinform. 12: 16 (2011) - [j6]Karim Tabia, Philippe Leray:
Alert correlation: Severe attack prediction and controlling false alarm rate tradeoffs. Intell. Data Anal. 15(6): 955-978 (2011) - [c27]Montassar Ben Messaoud, Philippe Leray, Nahla Ben Amor:
SemCaDo: A Serendipitous Strategy for Learning Causal Bayesian Networks Using Ontologies. ECSQARU 2011: 182-193 - [c26]Sourour Ammar, Philippe Leray:
Mixture of Markov Trees for Bayesian Network Structure Learning with Small Datasets in High Dimensional Space. ECSQARU 2011: 229-238 - [c25]Mouna Ben Ishak, Philippe Leray, Nahla Ben Amor:
A Two-way Approach for Probabilistic Graphical Models Structure Learning and Ontology Enrichment. KEOD 2011: 189-194 - [c24]Aida Jarraya, Philippe Leray, Afif Masmoudi:
Discrete Exponential Bayesian Networks: An Extension of Bayesian Networks to Discrete Natural Exponential Families. ICTAI 2011: 205-208 - [c23]Amanullah Yasin, Philippe Leray:
iMMPC: A Local Search Approach for Incremental Bayesian Network Structure Learning. IDA 2011: 401-412 - [c22]Hoai-Tuong Nguyen, Philippe Leray, Gérard Ramstein:
Multiple Hypothesis Testing and Quasi Essential Graph for Comparing Two Sets of Bayesian Networks. KES (2) 2011: 176-185 - [c21]François Schnitzler, Sourour Ammar, Philippe Leray, Pierre Geurts, Louis Wehenkel:
Efficiently Approximating Markov Tree Bagging for High-Dimensional Density Estimation. ECML/PKDD (3) 2011: 113-128 - 2010
- [j5]Roland Donat, Philippe Leray, Laurent Bouillaut, Patrice Aknin:
A dynamic Bayesian network to represent discrete duration models. Neurocomputing 73(4-6): 570-577 (2010) - [c20]Raphaël Mourad, Christine Sinoquet, Philippe Leray:
Learning Hierarchical Bayesian Networks for Genome-Wide Association Studies. COMPSTAT 2010: 549-556 - [c19]François Schnitzler, Philippe Leray, Louis Wehenkel:
Towards sub-quadratic learning of probability density models in the form of mixtures of trees. ESANN 2010 - [c18]Karim Tabia, Philippe Leray:
Bayesian Network-Based Approaches for Severe Attack Prediction and Handling IDSs' Reliability. IPMU (2) 2010: 632-642 - [c17]Karim Tabia, Philippe Leray:
Handling IDS' Reliability in Alert Correlation - A Bayesian Network-based Model for Handling IDS's Reliability and Controlling Prediction/False Alarm Rate Tradeoffs. SECRYPT 2010: 14-24
2000 – 2009
- 2009
- [c16]Sourour Ammar, Philippe Leray, Boris Defourny, Louis Wehenkel:
Probability Density Estimation by Perturbing and Combining Tree Structured Markov Networks. ECSQARU 2009: 156-167 - [c15]Montassar Ben Messaoud, Philippe Leray, Nahla Ben Amor:
Integrating Ontological Knowledge for Iterative Causal Discovery and Visualization. ECSQARU 2009: 168-179 - 2008
- [c14]Roland Donat, Laurent Bouillaut, Patrice Aknin, Philippe Leray:
Reliability Analysis using Graphical Duration Models. ARES 2008: 795-800 - [p1]Philippe Leray, Stijn Meganck, Sam Maes, Bernard Manderick:
Causal Graphical Models with Latent Variables: Learning and Inference. Innovations in Bayesian Networks 2008: 219-249 - 2007
- [j4]Philippe Leray:
Éditorial. Rev. d'Intelligence Artif. 21(3): 293-294 (2007) - [c13]Stijn Meganck, Philippe Leray, Bernard Manderick:
Causal Graphical Models with Latent Variables: Learning and Inference. ECSQARU 2007: 5-16 - [c12]Grégory Mallet, Philippe Leray, Hubert Polaert:
Méthodes statistiques et modèles thermiques compacts. EGC 2007: 213-214 - [c11]Olivier François, Philippe Leray:
Generation of Incompliete Test-Data usinng Bayesinan Networks. IJCNN 2007: 2391-2396 - 2006
- [b1]Philippe Leray:
Réseaux bayésiens : Apprentissage et diagnostic de systemes complexes. University of Rouen, France, 2006 - [c10]Sam Maes, Philippe Leray:
Multi-Agent Causal Models for Dependability Analysis. ARES 2006: 794-798 - [c9]Stijn Meganck, Philippe Leray, Bernard Manderick:
Learning Causal Bayesian Networks from Observations and Experiments: A Decision Theoretic Approach. MDAI 2006: 58-69 - [c8]Olivier François, Philippe Leray:
Learning the Tree Augmented Naive Bayes Classifier from incomplete datasets. Probabilistic Graphical Models 2006: 91-98 - [c7]Stijn Meganck, Sam Maes, Philippe Leray, Bernard Manderick:
Learning Semi-Markovian Causal Models using Experiments. Probabilistic Graphical Models 2006: 195-206 - 2005
- [c6]Stijn Meganck, Sam Maes, Bernard Manderick, Philippe Leray:
A Learning Algorithm for Multi-Agent Causal Models. EUMAS 2005: 190-201 - [c5]Ahmad Faour, Philippe Leray, Cédric Foll:
Réseaux bayésiens pour le filtrage d'alarmes dans les systèmes de détection d'intrusions. EGC (Ateliers) 2005: 69-72 - [c4]Olivier François, Philippe Leray:
Apprentissage de structure des réseaux bayésiens et données incomplètes. EGC 2005: 127-132 - [c3]Stijn Meganck, Sam Maes, Bernard Manderick, Philippe Leray:
Distributed learning of Multi-Agent Causal Models. IAT 2005: 285-288 - 2004
- [j3]Iyad Zaarour, Laurent Heutte, Philippe Leray, Jacques Labiche, Bassam Eter, Daniel Mellier:
Clustering And Bayesian Network Approaches For Discovering Handwriting Strategies Of Primary School Children. Int. J. Pattern Recognit. Artif. Intell. 18(7): 1233-1251 (2004) - [j2]Philippe Leray, Olivier François:
Réseaux bayésiens pour la classification Méthodologie et illustration dans le cadre du diagnostic médical. Rev. d'Intelligence Artif. 18(2): 169-193 (2004) - [c2]Bruno Grilhères, Stephan Brunessaux, Philippe Leray:
Combining classifiers for harmful document filtering. RIAO 2004: 173-185 - 2001
- [j1]Philippe Leray, Patrick Gallinari:
De l'utilisation d'OBD pour la sélection de variables dans les perceptrons multicouches. Rev. d'Intelligence Artif. 15(3-4): 373-391 (2001)
1990 – 1999
- 1996
- [c1]Philippe Leray, Patrick Gallinari, Elisabeth Didelet:
Diagnosis Tools for Telecommunication Network Traffic Management. ICANN 1996: 209-214
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-10 19:35 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint